High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality - Archive ouverte HAL Access content directly
Journal Articles Numerical Algorithms Year : 2017

High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality

Abstract

Explicit generators for high order ($r>1$) scalar and vector finite element spaces generally used in numerical electromagnetism are presented and classical degrees of freedom, the so-called moments, revisited. Properties of these generators on simplicial meshes are investigated and a general technique to restore duality between moments and generators is proposed. Algebraic and exponential optimal $h$- and $r$-error rates are numerically validated for high order edge elements on the problem of Maxwell's eigenvalues in a square domain.
Fichier principal
Vignette du fichier
mbfr.pdf (571.65 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01260354 , version 1 (02-06-2016)

Identifiers

Cite

Marcella Bonazzoli, Francesca Rapetti. High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality. Numerical Algorithms, 2017, ⟨10.1007/s11075-016-0141-8⟩. ⟨hal-01260354⟩
279 View
350 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More