On the asymptotic behaviour of the kernel of an adjoint convection-diffusion operator in a long cylinder - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2017

On the asymptotic behaviour of the kernel of an adjoint convection-diffusion operator in a long cylinder

Résumé

This paper studies the asymptotic behaviour of the principal eigen-function of the adjoint Neumann problem for a convection diffusion operator defined in a long cylinder. The operator coefficients are 1-periodic in the longitudinal variable. Depending on the sign of the so-called longitudinal drift (a weighted average of the coefficients), we prove that this principal eigenfunction is equal to the product of a specified periodic function and of an exponential, up to the addition of fast decaying boundary layer terms.
Fichier principal
Vignette du fichier
al_pi-adj24.pdf (234.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01258747 , version 1 (19-01-2016)

Identifiants

Citer

Grégoire Allaire, Andrey Piatnitski. On the asymptotic behaviour of the kernel of an adjoint convection-diffusion operator in a long cylinder. Revista Matemática Iberoamericana, 2017, 33 (4), pp.1123-1148. ⟨10.4171/RMI/965⟩. ⟨hal-01258747⟩
384 Consultations
240 Téléchargements

Altmetric

Partager

More