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Abstract

This paper studies the asymptotic behaviour of the principal eigen-
function of the adjoint Neumann problem for a convection diffusion
operator defined in a long cylinder. The operator coefficients are 1-
periodic in the longitudinal variable. Depending on the sign of the
so-called longitudinal drift (a weighted average of the coefficients), we
prove that this principal eigenfunction is equal to the product of a
specified periodic function and of an exponential, up to the addition
of fast decaying boundary layer terms.
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1 Introduction

We study the asymptotic behavior, for ε > 0 going to 0, of the solution pε of

the following boundary value problem




−div
(
a(y)∇pε

)
− div

(
b(y)pε

)
= 0 in Qε,

a(y)∇pε · n+ b(y) · npε = 0 on ∂Qε,
(1)

whereQε = (0, 1/ε)×G is a long cylinder in the direction e1 of cross section G.

The above problem is the adjoint of the Neumann problem for the standard

convection diffusion operator Au = −div
(
a(y)∇u

)
+ b(y) · ∇u which admits

0 as a first eigenvalue with the corresponding constant first eigenfunction.

Therefore, by the Krein-Rutman theorem, there exists a unique solution pε

of (1), up to a multiplicative constant (see Lemma 1 below).

Our main results (Theorems 3 and 6) can be summarized as follows. The

asymptotic behavior of pε depends on the sign of the so-called longitudinal

effective drift b1 which is a kind of weighted average of the velocity field

b(y), in the axial direction e1, defined by (10). Denote by y1 = y · e1 the

longitudinal variable. If b1 > 0, then, under a proper normalization, there

exists a constant θ0 > 0 and a 1-periodic in the variable y1 function pθ0(y) > 0

such that

pε(y) ≈ e−θ0y1pθ0(y),

where the approximation is up to the addition of boundary layer terms con-

centrating at both extremities of the cylinder and decaying faster to zero

than the main limit e−θ0y1pθ0(y). If b1 = 0, then the same holds true with

θ0 = 0. If b1 < 0, a symmetric situation occurs with θ0 < 0.

There are many motivations to study the asymptotic behavior of (1).

First, it appears as a simplified model of reaction-diffusion equations with

asymmetric potentials as studied in [18], [19], [16]. The simplification is that

(1) is a scalar equation (representing a single species instead of two) but the

addition of the convective term makes it non trivial (clearly, if b(y) = 0,
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then pε(y) is a constant). The fact that, asymptotically as ε goes to 0, the

solution pε concentrates at one end of the cylinder, depending on the sign

of the exponent θ0, or equivalently of the drift b1, is a manifestation of the

so-called motor effect. This phenomenon was first studied by homogenization

methods in [18]: their result was weaker (albeit more general) in the sense

that it gives an asymptotic behavior for the logarithm of the solution, namely

log pε(y) ≈ −θ0y1.

The key tool in [18] was the homogenization of a Hamilton-Jacobi equation,

obtained by a logarithmic change of unknowns. The homogenization tech-

niques for Hamilton-Jacobi type equations with (locally-) periodic coefficients

were developed in [11], [12].

A second motivation is the homogenization of convection-diffusion-reaction

equations in periodic heterogeneous media. There are many applications such

as transport in porous media [3], [5] or nuclear reactor physics [7]. Indeed,

by rescaling the space variable as x = εy, (1) is equivalent to





−div
(
a(
x

ε
)∇pε

)
−

1

ε
div

(
b(
x

ε
)pε

)
= 0 in εQε,

a(
x

ε
)∇pε · n+

1

ε
b(
x

ε
) · npε = 0 on ε∂Qε,

(2)

where εQε is now a cylinder of length 1 and small cross section εG. This

geometrical setting is the usual one for homogenization since the cylinder

has now a fixed length. The case of Dirichlet boundary conditions for (2)

at both extremities of the cylinder is by now well-known. Actually, in such

a case, one can consider a more general domain Ω, not necessarily a thin

cylinder. Of course, in the case of Dirichlet boundary conditions, the first

eigenvalue is usually not zero. In any case, the asymptotic behavior of the

first eigenfunction is completely understood, even for more complicated sys-

tems [6], [2], [4], [5]. The case of Neumann boundary conditions is far from

being fully understood and there are very few works which address it. All
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of them address merely the 1-d case or the present almost 1-d setting of a

thin cylinder. Apart from the previously cited work [18], [19], [16], let us

mention [1] which, being 1-d, heavily relies on methods of ordinary differen-

tial equations. Our present setting is more general than that of [1] since all

operators are d-dimensional but, still, we consider only cylinders (and not

general domains) in order to force the direction of the drift vector b1 along

the cylinder axis. Nevertheless, the main difference with [1] is the presence

of delicate boudary layer terms at the cylinder ends. Our present results

in the Neumann case are quite different from that in the Dirichlet case, as

explained in Remark 5.

It should also be noted that the principal eigenvalue of the problem stud-

ied in this paper is equal to zero. It follows from the fact that this problem

is the adjoint to a homogeneous Neumann problem for a convection-diffusion

operator. This makes a difference with [1] where a generic Fourier boundary

condition is imposed at the end points of the interval. This might lead to a

different behaviour of the solution.

A third motivation is the homogenization of the following ”primal” parabolic

problem





∂uε

∂t
+

1

ε
b(
x

ε
)∇uε − div

(
a(
x

ε
)∇uε

)
= 0 in R

+ × εQε,

a(
x

ε
)∇uε · n = 0 on R

+ × ε∂Qε,

uε(0, x) = uinit(x) in εQε.

(3)

Since the first eigenfunction of the primal problem is a constant, associated

to the zero first eigenvalue, we know that for each ε > 0 the solution uε

converges to a constant as t goes to ∞. However, the value of this constant

depends precisely on the adjoint solution pε of (2) since we easily find by

integration by parts that

d

dt

∫

εQε

uε(t, x) pε(x) dx = 0.
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Therefore, in order to find the limit, as ε → 0, of this constant, equal to
∫
εQε

uinit(x) pε(x) dx, one has to investigate the limit behaviour of pε. This is

an additional motivation for studying the adjoint problem (1). In particular,

only the behavior of the initial data close to the left hand y1 = 0 of the

cylinder will matter if b1 > 0 and conversely otherwise.

A fourth motivation comes from studying stochastic diffusion processes in

the cylinder. Indeed, under proper normalization, the solution of problem (1),

respectively of (2), coincides with the density of the invariant measure of a

diffusion process ξεt with generator A = −div
(
a(y)∇

)
+b(y)·∇ (respectively,

Aε = −div
(
a(x/ε)∇

)
+ ε−1b(x/ε) · ∇ ) and with reflection at the cylinder

boundary, see [14] for further details. Furthermore, the time evolution of the

law of non-stationary distribution of the said diffusion process is described

by equation (3). The results of this work can be used for determining the

limit behaviour of the effective covariance of additive functionals of ξε· .

Finally we acknowledge that other authors have been studying the limit

behaviour of solutions and eigenpairs of elliptic problems, stated in asymp-

totically long cylinder: see e.g. [8], [9] and [10].

The content of our paper is as follows. The next section 2 gives a precise

description of problem (1) with all the necessary assumptions and definitions.

Section 3 gives our main result (Theorem 3) in the case b1 > 0. Section 4

deals with the case b1 = 0 (see Theorem 6). Eventually Section 5 explains

how our results can be extended to coefficients with minimal regularity.

Notation. As usual, C denotes a constant which may vary from place to

place but is always independent of ε, except otherwise mentioned.
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2 Statement of the problem

Given a smooth bounded connected domain G ⊂ R
d−1 and a small positive

parameter ε, we define a cylinder

Qε = {y ∈ R
d : 0 < y1 <

1

ε
, , y′ := (y2, . . . , yd) ∈ G}.

Let A be the linear convection-diffusion operator defined in Qε, with a sym-

metric matrix a, and Neumann boundary conditions

Au = −div
(
a(y)∇u

)
+ b(y) · ∇u, a(y)∇u · n = 0 on ∂Qε, (4)

and its adjoint A∗ defined by

A∗u = −div
(
a(y)∇u

)
−div(b(y)u), a(y)∇u·n+b(y)·nu = 0 on ∂Qε. (5)

We consider the corresponding Neumann problem





−div
(
a(y)∇u

)
+ b(y) · ∇u = 0 in Qε,

a(y)∇u · n = 0 on ∂Qε,
(6)

and its adjoint problem





−div
(
a(y)∇pε

)
− div

(
b(y)pε

)
= 0 in Qε,

a(y)∇pε · n+ b(y) · npε = 0 on ∂Qε.
(7)

Here and in what follows n = n(y) stands for the external normal on ∂Qε

and v1 · v2 denotes the inner product of vectors v1 and v2 in R
d.

We assume that the coefficients of A satisfy the following properties.

A1. Uniform ellipticity. The matrix aij is real, symmetric, positive definite:

there exists Λ > 0 such that

‖aij‖L∞(Qε) ≤ Λ−1, 1 ≤ i, j ≤ d, ‖bi‖L∞(Qε) ≤ Λ−1, 1 ≤ i ≤ d,

aij(y)ξiξj ≥ Λ|ξ|2 for all y ∈ Qε and ξ ∈ R
d.
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A2. Periodicity. All the coefficients aij(y) and bi(y) are bounded and 1-

periodic in the axial variable y1.

For presentation simplicity we also assume that all the coefficients are

sufficiently regular. In Section 5 we show that this last assumption can be

discarded. The symmetry of a is assumed just for presentational simplicity.

Our approach also applies in the case of a non-symmetric matrix a. Moreover,

if the entries of a are W 1,∞ regular, the non-symmetric case is reduced to

the symmetric one.

Lemma 1. For each ε > 0 problem (7) has a unique, up to a multiplicative

constant, solution. Under a proper normalization this solution is positive in

Qε.

Proof. By the maximum principle, any solution of problem (6) is equal to a

constant. Consider the spectral problem related to problem (6) and obtained

by replacing 0 on the right-hand side of the equation in (6) with λu. By the

Krein-Rutman theorem (see [15]), λ = 0 is the eigenvalue of this operator

with the smallest real part. By the same theorem for each ε > 0 problem (7)

has a unique, up to a multiplicative constant, solution. This solution does

not change sign. This implies the desired statement.

We now introduce several auxiliary problems and definitions. Denoting

Y = (0, 1)×G and ∂lY = [0, 1]× ∂G, we consider the following problem




−div
(
a(y)∇p0(y)

)
− div

(
b(y)p0(y)

)
= 0 in Y,

a(y)∇p0(y) · n(y) + b(y) · n(y)p0(y) = 0 on ∂lY

p0 is 1-periodic in y1.

(8)

Using the Krein-Rutman theorem one can show (see [17]) that this problem

has a unique up to a multiplicative constant solution. Moreover, this solution

does not change sign. In truth p0 is the first eigenfunction corresponding to

the first eigenvalue λ0 = 0 of the cell spectral problem for the adjoint operator
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A∗ defined by (5). In order to fix the normalization, we assume from now on

that ∫

Y

p0(y) dy = 1. (9)

Next, we define the effective drift which governs the asymptotic behavior of

problem (7) (see [20]).

Definition 1. For the operator A, defined by (4), we introduce its so-called

longitudinal effective drift, given by

b1 =

∫

Y

(
a∇p0 + bp0

)
· e1 dy, (10)

where p0 is the first adjoint eigenfunction, solution of (8) and normalized by

(9), and e1 is the first coordinate vector in R
d.

Note that, in Definition 1, we take advantage of the fact that the first

eigenfunction of the cell spectral problem for the operator A is constant,

equal to 1. If p0 was not normalized by (9), then b1 should be divided by
∫
Y
p0(y) dy.

In the sequel, we consider separately two cases, namely b1 6= 0 and b1 = 0.

In the first case we assume for the sake of definiteness that b1 > 0. The

opposite case is reduced to this one by replacing y1 with −y1.

3 Main results for positive effective drift b1 >

0

In this section we formulate our main result when b1 > 0.

Lemma 2. Let b1 > 0. Then under the normalization condition

max
Qε

pε(y) = 1 (11)

the following limit relation holds:

lim
ε→0

max
y′∈G

pε
(
ε−1, y′

)
= 0. (12)
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Furthermore,

pε(y) ≤ Ce−κy1 , y ∈ Qε, (13)

for some κ > 0 and C > 0 that do not depend on ε.

Proof. In a first step, we prove a uniform local Harnack inequality for pε,

using a reflexion argument. Denote by Qr,s a finite cylinder {y ∈ R
d : r <

y1 < s, y′ ∈ G} and by Gs the cross section {y ∈ R
d : y1 = s, y′ ∈ G}.

We then introduce the functions

ãε(y) =

{
a(y), in Qε

a(−y1, y
′), in Q−ε−1,0

, p̃ε(y) =

{
pε(y), in Qε

pε(−y1, y
′), in Q−ε−1,0

,

b̃ε(y) =

{
b(y), in Qε

(−b1(−y1, y
′), b′(−y1, y

′)), in Q−ε−1,0

and extend them periodically in the infinite cylinder Q−∞,∞. with the period

2ε−1 in y1. The function p̃ε satisfies the equation

−div
(
ãε(y)∇p̃ε(y)

)
− div

(
b̃ε(y)p̃ε(y)

)
= 0 in Q−∞,∞,

ãε(y)∇p̃ε(y) · n(y) + b̃ε(y) · n(y)p̃ε(y) = 0 on ∂Q−∞,∞.

Making one more reflection with respect to ∂G we may assume that p̃ε sat-

isfies the equation

−div
(
ãε(y)∇p̃ε(y)

)
− div

(
b̃ε(y)p̃ε(y)

)
= 0

in a larger cylinder (−∞,+∞)×Ĝ with G ⊂ Ĝ. Therefore (see [13, Corollary

8.21 ]), p̃ε satisfies the Harnack inequality uniformly in ε. So does pε. This

means that for any r ∈ [0, ε−1 − 1] the inequality holds

max
Qr,r+1

pε ≤ C min
Qr,r+1

pε

with a constant C that does not depend on ε, nor on r.

In a second step, we prove the asymptotic decay of pε by a contradiction

argument. We represent pε as a sum of two functions pε = p−,ε+ p+,ε, where

9



p−,ε and p+,ε solve the following problems:





−div
(
a(y)∇p−,ε(y)

)
− div

(
b(y)p−,ε(y)

)
= 0 in Qε,

a(y)∇p−,ε(y)·n(y) + b(y) · n(y)p−,ε(y) = 0 on ∂lQε,

p−,ε = pε on G0, p−,ε = 0 on G1/ε,

(14)

and




−div
(
a(y)∇p+,ε(y)

)
− div

(
b(y)p+,ε(y)

)
= 0 in Qε,

a(y)∇p+,ε(y) · n(y) + b(y) · n(y)p+,ε(y) = 0 on ∂lQε,

p+,ε = 0 on G0, p+,ε = pε on G1/ε,

(15)

with ∂lQε = ∂Qε \ (G0 ∪ G1/ε) being the lateral boundary of Qε. Due to

the fact that Dirichlet conditions are imposed on the cylinder bases, both

problems (14) and (15) are well posed for each ε > 0, so that the functions

p±,ε are uniquely defined. The reduction to problems (14) and (15) with

Dirichlet boundary conditions allows us to use some previous results of [17].

We now use factorization techniques (see [2] and references therein) to

simplify the above equations. It amounts to factorize the unknown by p0(y)

and to multiply the equations by the primal first eigenfunction (which, in

the case of (4) is equal to 1). Defining q±,ε by the identity

p±,ε(y) = p0(y)q
±,ε(y) (16)

and using equation (8) for p0, (14) and (15) become, after straightforward

rearrangements,





−div
(
p0(y)a(y)∇q−,ε(y)

)
− b̌(y)∇q−,ε(y) = 0 in Qε,

p0(y)a(y)∇q−,ε(y)·n(y) = 0 on ∂lQε,

q−,ε = pε(p0)
−1 on G0, q−,ε = 0 on G1/ε,

(17)

and




−div
(
p0(y)a(y)∇q+,ε(y)

)
− b̌(y)∇q+,ε(y) = 0 in Qε,

p0(y)a(y)∇q+,ε(y) · n(y) = 0 on ∂lQε,

q+,ε = 0 on G0, q+,ε = pε(p0)
−1 on G1/ε,

(18)
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with b̌(y) = a(y)∇p0(y) + b(y)p0(y). By the definition of p0 we have

div b̌(y) = 0, b̌(y) · n = 0 on ∂lQε,

∫

Y

b̌(y) · e1dy = b1, (19)

where b1 is precisely the longitudinal effective drift, introduced in Definition

1. Let us denote by Ǎ the operator appearing in (17) and (18), namely

Ǎu = −div
(
p0(y)a(y)∇u

)
− b̌(y) · ∇u in Y,

p0(y)a(y)∇u(y) · n = 0 on ∂lY,

with its adjoint Ǎ∗

Ǎ∗u = −div
(
p0(y)a(y)∇u

)
+ b̌(y) · ∇u(y) in Y,

p0(y)a(y)∇u(y) · n = 0 on ∂lY.

It is easy to check that the kernel of Ǎ∗ in the unit cell Y , with 1-periodic

boundary conditions in y1, is equal to a constant. Considering our normal-

ization for the kernel of adjoint operator and recalling Definition 1 of the

longitudinal effective drift, we conclude after simple computations that the

effective longitudinal drift of Ǎ is −|Y |−1 b1. Under our standing assumptions

this drift is negative.

By contradiction with (12), assume now that, for a subsequence, max
G1/ε

(pε)

does not go to zero as ε → 0. Then by the Harnack inequality

0 < C ≤ pε(ε−1, y′) ≤ 1, 0 < C ≤ q+,ε(ε−1, y′).

Because the effective drift of Ã is negative, as a consequence of [17, Theorem

6.1 and Lemma 6.3] and by Corollary 12 in the Appendix, there are constants

Cε, 0 < C ≤ Cε ≤ C1, and κ > 0 such that

|q−,ε| ≤ e−κ/ε, |q+,ε − Cε| ≤ e−κ/ε in Q 1

3ε
, 2

3ε
.

Considering the definition of q±,ε and p±,ε, we derive from that last inequal-

ities that

|pε(y)− Cεp0(y)| ≤ e−κ/ε in Q 1

3ε
, 2

3ε
. (20)
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By local elliptic estimates the last inequality implies

‖pε − Cεp0‖H1(Qs,s+1)
≤ Ce−κ/ε,

1

3ε
≤ s ≤

2

3ε
− 1. (21)

On the other hand, integrating (7) on Q0,r, we get

∫

Gr

(
a(y)∇pε(y) · n + b(y) · npε(y)

)
dy′ = 0,

while integrating (8) on Qs,r shows that the following surface integral is

constant ∫

Gr

(
a(y)∇p0(y) · n+ b(y) · np0(y)

)
dy′ = b1 > 0 (22)

for all r ∈ [0, 1/ε]. Since Cε ≥ C > 0, the last two relations contradict (20),

(21). Thus, (12) holds true.

The assumption that (13) does not hold leads to a contradiction in exactly

the same way. This completes the proof.

One of the key ingredients of our study is the following auxiliary problem

stated in a semi-infinite cylinder Q∞ = (0,∞)×G:

{
−div

(
a(y)∇p∞(y)

)
− div

(
b(y)p∞) = 0 in Q∞,

a(y)∇p∞(y) · n(y) + b(y) · n(y)p∞(y) = 0 on ∂Q∞.
(23)

The boundary condition at +∞ reads

lim
y1→∞

p∞(y) = 0. (24)

We also widely use the exponential, or so-called Gelfand, transformation of

the operators A and A∗ defined on Y by

Aθv(y) = e−θy1A(eθy1v(y)), A∗

θv(y) = eθy1A∗(e−θy1v(y)), θ ∈ R,

with the corresponding Neumann-type boundary conditions on ∂lY . Denote

by λ(θ) the principal eigenvalue of Aθ and A∗
θ on Y in the space of 1-periodic

in y1 functions. By the Krein-Rutman theorem, λ(θ) is real and simple for
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each θ ∈ R. Moreover, according to [6], λ(θ) is a smooth strictly concave

function of θ that tends to −∞, as θ → ±∞.

Under our standing assumptions λ(0) = 0. It can also be checked (see

[6]) that λ′(0) > 0 if and only if b1 > 0. Therefore, there is a unique θ0 > 0

such that λ(θ0) = 0. We denote by pθ0 the corresponding periodic in y1

eigenfunction of A∗
θ0

which is normalized in such a way that
∫
Y
pθ0(y) dy = 1.

Lemma 3. Let b1 > 0. Then problem (23), (24) has a unique up to a mul-

tiplicative constant bounded solution p∞. This solution decays exponentially,

as y1 → ∞. Moreover, p∞ admits the following representation:

p∞(y) = e−θ0y1pθ0(y) + p−bl(y), (25)

where, for some θ1 > θ0,

|p−bl(y)| ≤ Ce−θ1y1 .

Remark 1. In representation (25), the function p−bl is a boundary layer which

decays exponentially faster than the main term as y1 goes to +∞. Notice that,

according to Lemma 3, in the case b1 > 0 problem (23) has a unique L2(Q∞)

eigenfunction related to the eigenvalue 0.

If we replace in (23) the Neumann boundary condition at the cylinder

base with the Dirichlet condition, then the modified problem reads

−div
(
a(y)∇p(y)

)
− div

(
b(y)p) = 0 in Q∞,

p = 0 on G0, a(y)∇p(y) · n(y) + b(y) · n(y)p(y) = 0 on ∂lQ∞.

Although 0 still belongs to the spectrum of this problem, there is no local-

ized eigenfunction related to 0. The only solution of this problem with an

additional condition (24) is the function identically equal to zero.

Proof of Lemma 3. Consider the function pε introduced in (7) on the cylinder

Qε. From (11) and Lemma 2, there exists a constant C > 0, which does

not depend on ε, such that 0 < C ≤ maxG0
pε ≤ 1. Indeed, due to (13),
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the maximum of pε is attained in a finite cylinder that does not depend

on ε. Then the lower bound follows from the Harnack inequality. Since

the coefficients in (7) do not depend on ε, then, according to [13], pε are

uniformly in ε Hölder continuous functions in the whole domain Qε. Passing

to the limit ε → 0 in the family pε (up to a subsequence), we obtain a

function p∞ which solves problem (23), (24) and satisfies estimate (13) for

all y ∈ Q∞. Indeed, the fact that p∞ satisfies the equation (23) in Q∞ and

the boundary condition on the lateral boundary and on G0 is evident. It is

also clear that maxQ∞
p∞ = 1.

Let us show that with a properly chosen constant c the function cp∞

admits representation (25). To this end we notice that the function p∞

coincides with a solution to the following problem





A∗v = 0 in Q∞,
a∇v · n+ b · nv = 0 on ∂Q∞\G0,

v(0, y′) = p∞(0, y′),
lim

y1→∞
v = 0.

(26)

Consider the operator defined on H1/2(G) that maps the Dirichlet boundary

condition on G0 into the trace on G1 of the solution of (26). We denote this

operator by S so that

v(1, y′) = Sp∞(0, y′).

Due to smoothing properties of elliptic equations, the operator S is well

defined and compact in the space of continuous functions on G. It also

follows by the maximum principle that S maps the cone of positive functions

into itself. Then according to [15] the principal eigenvalue, µ1 say, of S is

real simple and positive, and all other points of the spectrum belong to the

ball of radius µ̄ with µ̄ < µ1. Denote by v1 the eigenfunction corresponding

to µ1. Since Snv tends to zero, as n → ∞, for any solution v of (26),

we have µ1 < 1. It is then easy to check that θ0 = − log µ1, and that
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v1(y
′) = pθ0(0, y

′). Letting θ1 = − log µ̄, we obtain from [15] that

Snp∞(0, y′) = c0e
θ0nv1(y

′) + ṽ(n, y′)

with c0 > 0 and |ṽ(n, y′)| ≤ Ce−θ1n. This implies the representation

p∞(y) = c0e
−θ0y1pθ0(y) + p−bl(y) (27)

with |p−bl(y)| ≤ Ce−θ1y1 . Dividing this relation by c0 yields (25).

We proceed with the uniqueness. Suppose that in addition to p∞ there

is another solution p1,∞ of problem (23), (24). Denote by v1 a solution to

problem (26) with p∞(0, y′) replaced with p1,∞(0, y′). Then v1 = p1,∞, and

v1(n, y′) = Snp1,∞(0, y′). Therefore, this solution also admits representation

(27) with some constant c10 which need not be positive. We set q(y) =

p1,∞(y)(p∞(y))−1. Due to (25) and Hölder continuity of p1,∞(p∞)−1, q(y)

satisfies the estimate |q| ≤ C2. Moreover, q(y) converges to a constant as

y1 → ∞. We denote this constant by qinf . It is easy to check that q solves in

Q∞ the following problem

−div
(
â(y)∇q(y)

)
+ b̂(y)∇q(y) = 0 in Q∞,

â(y)∇q(y) · n(y) = 0 on ∂Q∞

with â = (p∞)2a and b̂ = (p∞)2b. It readily follows from the Harnack in-

equality that the coefficients â and b̂ are locally uniformly bounded, and â is

locally uniformly elliptic. Denote by M(r) and m(r) respectively the maxi-

mum and the minimum of q over the cross section Gr. We have lim
r→∞

M(r) =

lim
r→∞

m(r) = qinf . If q 6= const, then either M(r) > qinf , or m(r) < qinf for

some r. This contradicts the maximum principle.

Lemma 4. Let b1 > 0. There exists a constant cε such that

pε(y) = cε
(
p−ε (y) + e−θ0y1pθ0(y) + p+ε (y)

)
, (28)

where

|p−ε (y)| ≤ ce−θ1y1 , |p+ε (y)| ≤ c
(
e−θ0/εeθ2(y1−ε−1) + e−θ1/ε

)
(29)
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with constants θ1 > θ0 and θ2 > 0. Moreover, as ε → 0,

cε −→ c0, pε −→ c0p
∞ uniformly in Q∞,

with c0 defined in (27).

Remark 2. In formula (28), the functions p−ε and p+ε are boundary layers

which are exponentially smaller than the main term e−θ0y1pθ0(y) for 1 <<

y1 << ε−1.

Proof. We represent pε as the sum of solutions to the following two problems:





−div
(
a(y)∇p̂−,ε(y)

)
− div

(
b(y)p̂−,ε(y)

)
= 0 in Q∞,

a(y)∇p̂−,ε(y)·n(y) + b(y) · n(y)p̂−,ε(y) = 0 on ∂lQ∞,

p̂−,ε = pε on G0, lim
y1→∞

p̂−,ε = 0,

(30)

and




−div
(
a(y)∇p̂+,ε(y)

)
− div

(
b(y)p̂+,ε(y)

)
= 0 in Qε,

a(y)∇p̂+,ε(y) · n(y) + b(y) · n(y)p̂+,ε(y) = 0 on ∂lQε,

p̂+,ε = 0 on G0, p̂+,ε = pε − p̂−,ε. on G1/ε

(31)

In exactly the same way as in the proof of Lemma 3 one can show that

p̂−,ε = cε
(
p−ε (y) + e−θ0y1pθ0(y)

)
in Q∞, (32)

where |p−ε (y)| ≤ ce−θ1y1 with θ1 > θ0, as defined in the proof of Lemma

3. Moreover, since pε(0, y′) converges to p∞(0, y′), we have cε → c0 and

p−ε → (p∞ − e−θ0y1pθ0) = p−bl. It follows from (32) and the standard elliptic

estimates that

∣∣∣
∫

Gr

(
a(y)∇p̂−,ε(y) · n + b(y) · np̂−,ε(y)

)
dy′

∣∣∣

= lim
z→∞

∣∣∣
∫

Gz

(
a(y)∇p̂−,ε(y) · n + b(y) · np̂−,ε(y)

)
dy′

∣∣∣ = 0.
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In the same way as in the proof of Lemma 2 this implies that

min pε(ε−1, ·) < max p̂−,ε(ε−1, ·), min p̂−,ε(ε−1, ·) < max pε(ε−1, ·).

Making the same factorization as in (16) and applying the results from [17],

see also Theorem 11 and Corollary 12 in the Appendix, one can check that

there exist constants C > 0 and θ̂ > 0 such that

|p̂+,ε(y)− Cεp0(y)| ≤ C(e−θ0y1 + eθ̂(y1−1/ε))‖pε(ε−1, ·)− p̂−,ε(ε−1, ·)‖L∞ (33)

with a constant Cε that satisfies the inequalities

min(pε(ε−1, ·)− p̂−,ε(ε−1, ·)) ≤ Cε ≤ max(pε(ε−1, ·)− p̂−,ε(ε−1, ·)).

From the last three relations and (32) we obtain

p̂+,ε(y) ≤ Ce−ε−1θ0e−θ2(y1−ε−1)

with θ2 > 0. Combining the last estimate with (32) yields the desired rep-

resentation of pε. Other statements are straightforward consequences of the

uniqueness of a solution to problem (23).

Consider the scaled and shifted functions P ε = eθ0/εpε
(
y1 +

1
ε
, y′

)
. These

functions are defined in the cylinder Q−
1

ε
,0 =

(
− 1

ε
, 0
)
× G. We assume

first that 1
ε
is integer. Then the coefficients with shifted argument coincide

with the original coefficients. It follows from the previous Lemma and the

standard elliptic estimates (see [13]) that

0 < C ≤ P ε(0, y′) ≤ C1;

∣∣P ε(y)− cεe
−θ0y1pθ0(y)

∣∣ ≤ C1

(
eθ2y1 + eθ0ε

−1

e−θ1(ε−1+y1)
)

in Q−
1

ε
,0,

where 0 < c ≤ cε ≤ c1, the constants c, C, c1 and C1 do not depend on ε.

Moreover, P ε is uniformly in ε Hölder continuous in any finite cylinder Q−L,0.
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Therefore P ε converges for a subsequence, as ε → 0, locally uniformly and

weakly in H1
loc to a function P∞ such that

0 < C ≤ P∞(0, y′) ≤ C1;
∣∣P∞(y)−c0e

−θ0y1pθ0(y)
∣∣ ≤ C1e

θ2y1 in Q−∞,0. (34)

Passing to the limit in the integral identity of problem

−div
(
a(y)∇P ε(y)

)
− div

(
b(y)P ε(y)(y)

)
= 0 in Q−

1

ε
,0,

a(y)∇P ε(y)(y) · n(y) + b(y) · n(y)P ε(y)(y) = 0 on ∂Q−
1

ε
,0,

(35)

we conclude that P∞ satisfies the equation

−div
(
a(y)∇P∞(y)

)
− div

(
b(y)P∞(y)(y)

)
= 0 in Q−∞,0,

a(y)∇P∞(y)(y) · n(y) + b(y) · n(y)P∞(y)(y) = 0 on ∂Q−∞,0.
(36)

In the same way as in the proof of Lemma 3 one can show that a solution of

problem (36) that satisfies the estimate

P∞(y) = c0e
−θ0y1pθ0(y)

(
1 + o(1)

)
in Q−∞,0.

is unique. Furthermore, taking into account (34) one can check that P∞(y) =

c0e
−θ0y1pθ0(y) + c0p

+
bl(y), where |p+bl(y)| ≤ ceθ2y1.

This implies that eθ0/εp+ε (y) converges to p+bl(y1 −
1
ε
, y′) uniformly in Qε.

We summarize the results of this section in the following statement.

Theorem 3. Let conditions A1.–A2. be fulfilled, and assume that b1 > 0.

Then, under a proper normalization, the solution of problem (7) admits the

following representation:

pε(y) = e−θ0y1pθ0(y) + p−ε (y) + p+ε (y), (37)

where, for some constants θ1 > θ0 and θ2 > 0,

|p−ε (y)| ≤ Ce−θ1y1, |p+ε (y)| ≤ C
(
e−θ1/ε + e−θ0εeθ2(y1−

1

ε
)
)
. (38)

Moreover, p−ε converges to p−bl uniformly in Qε, and eθ0/εp+ε (y) converges to

p+bl(y1 −
1
ε
, y′) uniformly in Qε.
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Proof. It suffices to introduce a new normalization of pε dividing it by the

constant cε defined in Lemma 4. Then, dividing relation (28) by cε and

considering estimates (29) in Lemma 4, one concludes that, under the new

normalization, pε satisfies (37)–(38), and the announced convergence of p−ε

and eθ0/εp+ε (y) holds.

Remark 4. In formula (37), the functions p−ε and p+ε are boundary layers

which are exponentially smaller than the main term e−θ0y1pθ0(y) for 1 <<

y1 << ε−1. Notice that (37) holds under a normalization of pε that differs

from that in (11). More precisely, we have to divide pε by the constant cε

defined in Lemma 4.

Remark 5. If in problem (7) we consider Dirichlet boundary condition at

both ends G0 and G1/ε of the cylinder (still keeping the lateral Neumann

boundary conditions on ∂lQε), then the asymptotic behavior, predicted by

Theorem 3, changes completely. Of course, in such a case, the first eigenvalue

λε is not zero anymore and, denoting the first eigenfunction pεDir(y), (7)

becomes




−div
(
a(y)∇pεDir

)
− div

(
b(y)pεDir

)
= λεpεDir in Qε,

a(y)∇pεDir · n + b(y) · npεDir = 0 on ∂lQε,

pεDir = 0 on G0 ∪G1/ε.

(39)

Indeed, after some simple adaptation, the results of [6], [7] show that the

solution pεDir(y) of (39) satisfies

pεDir(
x

ε
) ≈ e−θ0

x1
ε pθ0(

x

ε
)p1(x1),

where p1(x1) is the first eigenfunction of an homogenized problem in the seg-

ment (0, 1) (which is the limit of the rescaled cylinder εQε) with Dirichlet

boundary condition. Typically p1 is a cosine function. Furthermore, the ap-

proximation is not merely up to the addition of boundary layers ; rather,

homogenization correctors have to be added to improve the approximation.
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The absence of homogenized problem for the Neumann case studied in the

present paper is thus in sharp contrast with the Dirichlet case of [6], [7].

4 Main result for vanishing effective drift b1 =

0

In the case b1 = 0, we shall prove (see Theorem 6) that the function pε

is exponentially close, in the interior part of the cylinder, to the periodic

eigenfunction p0, solution of (8). In the vicinity of the cylinder bases the

difference between pε and p0 is an exponential boundary layer.

The construction of the boundary layers relies on the following statement.

Lemma 5. Let b1 = 0. Then problem (23) has a unique, up to a multiplica-

tive constant, bounded solution. Moreover, there are constants ϑ > 0, C > 0

and c such that

|p∞ − cp0| ≤ Ce−ϑy1. (40)

Proof. Consider a sequence of problems (7) and the corresponding solutions

pε normalized in such a way that

max
Qε

pε = 1.

Denote

â(y) = p0(y)a(y), b̂(y) = a(y)∇p0(y) + p0(y)b(y).

Representing pε(y) = p0(y)q
∗,ε(y), we arrive at the following problem





−div
(
â(y)∇q∗,ε(y)

)
− div

(
b̂(y)q∗,ε(y)

)
= 0 in Qε,

â(y)∇q∗,ε(y) · n(y) + b̂(y) · n(y)q∗,ε(y) = 0 on ∂lQε,

â(y)∇q∗,ε(y) · n(y) + b̂(y) · n(y)q∗,ε(y) = 0 on G0 ∪G1/ε.

(41)

Observe that by the definition of p0 we have

div
(
b̂(y)q∗,ε(y)

)
= b̂(y)∇q∗,ε(y) in Qε, b̂(y) · n(y) = 0 on ∂lQε. (42)
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Therefore,

max
Qε

q∗,ε = max
G0∪G 1

ε

q∗,ε, min
Qε

q∗,ε = min
G0∪G 1

ε

q∗,ε. (43)

Indeed, due to (42) the equation in (41) takes the form

−div
(
â(y)∇q∗,ε(y)

)
− b̂(y)∇q∗,ε(y) = 0, y ∈ Qε,

â(y)∇q∗,ε(y) · n(y) = 0 on ∂lQε.

Since q∗,ε satisfies homogeneous Neumann condition on the lateral boundary,

q∗,ε cannot attain its maximum (or minimum) in the interior of Qε nor on

the lateral boundary, unless q∗,ε is a constant.

Lemma 6. The inequalities hold true

max
G0

q∗,ε ≥ min
G 1

ε

q∗,ε, min
G0

q∗,ε ≤ max
G 1

ε

q∗,ε.

Proof. Assume that min
G0

q∗,ε > max
G 1

ε

q∗,ε. Then there is κ ∈ R such that

min
G0

q∗,ε > κ > max
G 1

ε

q∗,ε. (44)

Consider an auxiliary problem




−div
(
â(y)∇qκ,ε(y)

)
− div

(
b̂(y)qκ,ε(y)

)
= 0 in Qε,

−â(y)∇qκ,ε(y) · n(y) = 0 on ∂lQε,

qκ,ε(y) = q∗,ε(y) on G0,

qκ,ε(y) = κ on G1/ε.

(45)

By the maximum principle and due to (44), the minimum of qκ,ε over Qε is

attained on G1/ε, and furthermore

â(y)∇qκ,ε · n < 0 on G1/ε.

Integrating this relation over G1/ε and considering the fact that
∫

G1/ε

b̂(y) · n dy′ = 0,

we get ∫

G1/ε

(
â(y)∇qκ,ε · n− b̂ · nqκ,ε

)
dy′ < 0.
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Therefore,

∫

G1/ε

(
â(y)∇(qκ,ε − q∗,ε) · n− b̂ · n(qκ,ε − q∗,ε)

)
dy′ < 0 on G1/ε. (46)

On the other hand, the function (qκ,ε − q∗,ε) has its minimum at G0, and

thus, by the strong maximum principle,

a(y)
∂

∂n
(qκ,ε − q∗,ε) < 0 on G0. (47)

Integrating equations (41) and (45) over Qε, taking the difference of the

resulting relations and integrating by parts, we obtain

0 = −

∫

G1/ε

(
â(y)∇(qκ,ε − q∗,ε) · n− b̂(y) · n(qκ,ε − q∗,ε)

)
dy′

−

∫

G0

(
â(y)∇(qκ,ε − q∗,ε) · n− b̂(y) · n(qκ,ε − q∗,ε)

)
dy′ < 0.

We arrived at contradiction. This completes the proof of Lemma 6.

It follows from our normalization condition for pε, the definition of q∗,ε and

the properties of p0 that C ≤ max
Qε

q∗,ε ≤ C−1. Combining these estimates

with Lemma 6 and the Harnack inequality yields

C ≤ min
Qε

q∗,ε ≤ max
Qε

q∗,ε ≤ C−1

for a positive constant C that does not depend on ε. Passing to the limit in

(41), as ε → 0, we obtain a solution of the following problem




−div
(
â(y)∇q∗,0(y)

)
− div

(
b̂(y)q∗,0(y)

)
= 0 in Q∞,

â(y)∇q∗,0(y) · n(y) = 0 on ∂lQ∞,

â(y)∇q∗,0(y) · n(y) + b̂(y) · n(y)q∗,0(y) = 0 on G0,

(48)

such that C ≤ inf
Q∞

q∗,0 ≤ sup
Q∞

q∗,0 ≤ C−1. This proves the existence of a

positive bounded solution. Estimate (40) follows from [17, Theorem 6.1 and

Lemma 6.3]. The uniqueness can be proved in the same way as in the previous

section.
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Lemma 7. For each ε > 0 there is a unique constant κ = κ(ε) such that

for the solution of problem (45) the following relation is fulfilled

Jκ :=

∫

G0

(
− â(y)∇qκ,ε · n− b̂(y) · nqκ,ε

)
dy′ = 0. (49)

Proof. In the same way as in the proof of Lemma 6 one can show that Jκ > 0

if κ > max
G0

qκ,ε, and Jκ < 0 if κ < max
G0

qκ,ε. Since Jκ is a continuous function

of κ, the existence of desired κ follows. The uniqueness is straightforward.

Lemma 8. As ε → 0, the sequence qκ(ε),ε converges to q∗,0.

Proof. By the definition of qκ,ε we have qκ(ε),ε(0, y′) = q∗,ε(0, y′). Passing

to the limit one can easily check that the limit function q̃∗,0 is a bounded

solution to the following problem:





−div
(
â(y)∇q̃∗,0(y)

)
− div

(
b̂(y)q̃∗,0(y)

)
= 0 in Q∞,

â(y)∇q̃∗,0(y) · n(y) = 0 on ∂lQ∞,

q̃∗,0(y) = q∗,0(y) on G0.

The desired statement is now a consequence of the uniqueness result obtained

in [17].

We now turn to the main result of this section. Let p∞ be a bounded

solution of problem (23) such that |p∞ − p0| ≤ ce−ϑy1 , ϑ > 0. In addition to

p∞ we also introduce a function P∞
γ as a bounded solution to the following

problem

−div
(
a(y)∇P∞

γ (y)
)
− div

(
b(y)P∞

γ (y)) = 0 in Q−∞,γ

−a(y)∇P∞
γ (y) · n(y)− b(y) · n(y)P∞

γ (y) = 0 on ∂Q−∞,γ

(50)

with Q−∞,γ = (−∞, γ) × G. By Lemma 5 such a solution exists and is

unique up to a multiplicative constant. Due to periodicity of the coefficients,

P∞
γ (y1 + 1, y′) = P∞

γ+1(y). As we did with p∞, we normalize P∞
γ in such a

way that (P∞
γ − p0) → 0 as y1 → −∞.
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Theorem 6. Let b1 = 0. Then, under a proper normalization, there exists

ϑ > 0 such that

|pε(y)− (p∞(y) + P∞

1/ε(y)− p0(y))| ≤ Cε(e
−ϑy1 + eϑ(y1−1/ε))

where Cε → 0 as ε → 0, so that

‖pε − (p∞ + P∞

1/ε − p0)‖L∞(Qε) −→ 0.

Remark 7. Theorem 6 states that pε is equal to the 1-periodic eigenfunction

p0, solution of (8), up to the addition of boundary layers which are exponen-

tially small for 1 << y1 << ε−1. The boundary layers are precisely (p∞−p0)

on the left and (P∞

1/ε − p0) on the right of the cylinder.

Proof. In addition to problem (45) we also consider a problem




−div
(
â(y)∇qκ1,ε

− (y)
)
− div

(
b̂(y)qκ1,ε

− (y)
)
= 0 in Qε,

−â(y)∇qκ1,ε
− (y) · n(y) = 0 on ∂lQε,

qκ1,ε
− (y) = q∗,ε(y) on G1/ε,

qκ1,ε
− (y) = κ1 on G0.

(51)

By Lemma 7 there is a constant κ1 = κ1(ε) such that

J1,κ1
:=

∫

G1/ε

(
â(y)∇qκ1,ε

− · n− b̂(y) · nqκ1,ε
−

)
dy′ = 0. (52)

Choosing now the constants κ and κ1 in such a way that relations (49) and

(52) hold true, it is straightforward to check that the function

q̌ε(y) = q∗,ε(y)− qκ(ε),ε(y)− q
κ1(ε),ε
− (y)

solves the following problem




−div
(
â(y)∇q̌ε(y)

)
− div

(
b̂(y)q̌ε(y)

)
= 0 in Qε,

−â(y)∇q̌ε(y) · n(y) = 0 on ∂lQε,

q̌ε(y) = −κ on G1/ε,

q̌ε(y) = −κ1 on G0,

(53)
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and satisfies the relation

∫

G0

(
â(y)∇q̌ε · n− b̂(y) · nq̌ε

)
dy′ = 0. (54)

By the same arguments as in the proof of Lemma 6 we conclude that κ1 = κ.

Choosing now a normalization condition in such a way that κ = 1, we

see that

q∗,ε(y) = qκ,ε(y) + qκ,ε− (y)− 1,

and

pε(y) = qκ,ε(y)p0(y) + qκ,ε− (y)p0(y)− p0(y).

Consider a bounded solution of the problem





−div
(
â(y)∇q∞,ε

0 (y)
)
− div

(
b̂(y)q∞,ε

0 (y)
)
= 0 in Q∞,

â(y)∇q∞,ε
0 (y) · n(y) = 0 on ∂lQ∞,

q∞,ε
0 (y) = q∗,ε(y) on G0.

By the arguments used in the proof of Lemma 6 and the maximum principle,

one can deduce that, for some ϑ > 0,

‖q∞,ε
0 − qκ,ε‖L∞(Qε) ≤ ce−ϑ/ε,

and, since κ = 1, this yields

|qκ,ε(y)− 1| ≤ ce−ϑy1, |qκ,ε− (y)− 1| ≤ ceϑ(y1−(1/ε)).

Sending the length of the cylinder to ∞, we obtain

|q∗,0(y)− 1| ≤ ce−ϑy1 , |q∗,0− (y1 − 1, y′)− 1| ≤ ceϑ(y1−(1/ε))

Taking into account the relations p∞(y) = q∗,0(y)p0(y) and P∞

1/ε(y) = q∗,0− (1/ε−

y1, y
′)p0(y), we deduce the desired statements from the last three formulae.

This completes the proof.
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5 Equations with non-smooth coefficients

In this section we show that the regularity assumption that was imposed

in the previous sections can be discarded. We assume here that conditions

A1. and A2. are fulfilled and that the entries of the matrix a(·) and the

components of the vector field b(·) are merely L∞(Y ) functions. Under these

assumptions the proof of Lemma 1 remains unchanged.

5.1 The case b1 > 0

Lemma 9. The statements of Lemma 2 remain valid.

Proof. The proof of the uniform local Harnack inequality did not use any

regularity of the coefficients. Thus, this inequality holds. We now change

the factorization which lead to equations (17) and (18) in the proof of Lemma

2. We do so because of regularity issues (see the discussion in Remark 8).

Letting

p±,ε(y) = p0(y)q
±,ε(y) (55)

and multiplying the resulting equation by p0(y), after straightforward rear-

rangements we get





−div
(
p20(y)a(y)∇q−,ε(y)

)
− p20(y)b(y)∇q−,ε(y) = 0 in Qε,

−p20(y)a(y)∇q−,ε(y)·n(y) = 0 on ∂lQε,

q−,ε = pε(p0)
−1 on G0, q−,ε = 0 on G1/ε,

(56)

and




−div
(
p20(y)a(y)∇q+,ε(y)

)
− p20(y)b(y)∇q+,ε(y) = 0 in Qε,

−p20(y)a(y)∇q+,ε(y) · n(y) = 0 on ∂lQε,

q+,ε = 0 on G0, q+,ε = pε(p0)
−1 on G1/ε.

(57)

Let us denote by Ã the following operator

Ãu = −div
(
p20(y)a(y)∇u

)
− p20(y)b(y) · ∇u,

−p20(y)a(y)∇u(y) · n(y) = 0 on ∂lY,
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with its adjoint Ã∗

Ã∗u = −div
(
p20(y)a(y)∇u

)
+ div(p20(y)b(y)u),

−p20(y)a(y)∇u(y) · n(y) + p20(y)b(y) · n(y)u(u) = 0 on ∂lY.

It is easy to check that the kernel of Ã∗ in the unit cell Y , with 1-periodic

boundary conditions in y1, is equal to 1/p0. Considering the normalized func-

tion
( ∫

Y
1

p0(y)
dy

)−1
1
p0

and recalling Definition 1 of the longitudinal effective

drift, we conclude after simple computations that the effective longitudinal

drift of Ã (the operator appearing in (17) and (18)) is −
( ∫

Y
(1/p0(y))dy

)−1

b1.

Under our standing assumptions this drift is negative.

By contradiction with (12), assume now that, for a subsequence, maxG 1
ε

(pε)

does not go to zero as ε → 0. Then by the Harnack inequality

0 < C ≤ pε(ε−1, y′) ≤ 1, 0 < C ≤ q+,ε(ε−1, y′).

According to [17] and Corollary 12, because the effective drift of Ã is negative,

there are constants Cε, 0 < C ≤ Cε ≤ C1, and κ > 0 such that

|q−,ε| ≤ e−κ/ε, |q+,ε − Cε| ≤ e−κ/ε in Q 1

3ε
, 2

3ε
.

Considering the definition of q±,ε and p±,ε, we derive from that last inequal-

ities that

|pε(y)− Cεp0(y)| ≤ e−κ/ε in Q 1

3ε
, 2

3ε
. (58)

By the local elliptic estimates the last inequality implies

‖pε − Cεp0‖H1(Qs,s+1)
≤ Ce−κ/ε,

1

3ε
≤ s ≤

2

3ε
− 1. (59)

On the other hand, integrating (7) on Q0,r, we get
∫

Gr

(
a(y)∇pε(y) · n + b(y) · npε(y)

)
dy′ = 0,

while integrating (8) on Qs,r shows that the following surface integral is

constant ∫

Gr

(
a(y)∇p0(y) · n+ b(y) · np0(y)

)
dy′ = b1 > 0 (60)
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for all r ∈ [0, 1/ε]. Since Cε ≥ C > 0, the last two relations contradict (58),

(59). Thus, (12) holds true.

The assumption that (13) does not hold leads to a contradiction in exactly

the same way. This completes the proof.

Remark 8. It is a common practice to write down the factorized equa-

tions for q−,ε and q+,ε in the form (17) and (18). The advantage of this

representation is the divergence-free structure of b̌ = a∇p0 + bp0. Indeed,

it satisfies div b̌ = 0 in Qε, and b̌ · n = 0 on ∂lQε. This simplifies the

study of problems (17) and (18). However, there is an important disad-

vantage. If the original coefficients a(y) and b(y) are just measurable, then

b̌(y) = a(y)∇p0(y)+ b(y)p0(y) need not belong to L∞ while the coefficients in

(56) and (57) remain bounded.

In the proofs of Lemma 3 and Lemma 4 we did not use regularity of

the coefficients. Therefore, the statements of these Lemmata hold under our

standing assumptions. Then Theorem 3 also remains valid.

Theorem 9. Let assumptions A1.—A2. be fulfilled, and assume that the

coefficients of equations (7) are bounded measurable functions. Then all the

statements of Theorem 3 hold true.

5.2 The case b1 = 0

In the case of non-smooth coefficients we cannot use equation (41) any more

because its coefficients need not be bounded. Instead, we write down the

problem for q∗,ε in the following form




−div
(
p20(y)a(y)∇q∗,ε(y)

)
− p20(y)b(y)∇q∗,ε(y) = 0 in Qε,

p20(y)a(y)∇q∗,ε(y)·n(y) = 0 on ∂lQε,

q∗,ε = pε(p0)
−1 on G0, q∗,ε = pε(p0)

−1 on G1/ε,

(61)

which is equivalent to (41) for smooth coefficients. This implies by the max-

imum principle relations (43).
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The proof of Lemma 6 should be modified as follows. Assuming by con-

tradiction that max
G1/ε

q∗,ε < min
G0

q∗,ε and taking a constant κ that satisfies the

inequality max
G1/ε

q∗,ε < κ < min
G0

q∗,ε, we consider the auxiliary problem





−div
(
p20(y)a(y)∇qκ,ε(y)

)
− p20(y)b(y)∇qκ,ε(y) = 0 in Qε,

p20(y)a(y)∇qκ,ε(y)·n(y) = 0 on ∂lQε,

qκ,ε = pε(p0)
−1 on G0, qκ,ε = κ on G1/ε.

(62)

Subtract the equation in (62) from the equation in (61), multiply the differ-

ence by (p0(y))
−1 and integrate the resulting relation over Qε. After integra-

tion by parts and straightforward rearrangements this yields

−

∫

G0

[
a∇

(
p0(q

∗,ε − qκ,ε)
)
· n+ b · n p0(q

∗,ε − qκ,ε)
]
dy′

−

∫

G 1
ε

[
a∇

(
p0(q

∗,ε − qκ,ε)
)
· n + b · n p0(q

∗,ε − qκ,ε)
]
dy′ = 0.

(63)

Since q∗,ε− qκ,ε = 0 on G0 and p0(q
∗,ε− qκ,ε) ≤ 0 in Qε, the first term on the

left-hand side of (63) is non-positive. By the definition of q∗,ε,

∫

G 1
ε

[
a∇(p0q

∗,ε) · n+ b · n p0q
∗,ε
]
dy′ = 0.

We also have ∫

G 1
ε

[
a∇

(
p0q

κ,ε
)
· n + b · n p0q

κ,ε
]
dy′

=

∫

G 1
ε

p0a∇qκ,ε · n dy′ + κb1 =

∫

G 1
ε

p0a∇qκ,ε · n dy′

Since qκ,ε = κ on G 1

ε
and qκ,ε ≥ κ in Qε, the integral on the right-hand side

here is non-negative, and, therefore, the second term on the left-hand side of

(63) is non-positive.

Consider now two constants κ1 and κ2 such that max
G1/ε

q∗,ε < κ1 < κ2 <

min
G0

q∗,ε. Writing down the equation for the difference qκ1,ε− qκ2,ε, multiply-

ing this equation by (p0)
−1(qκ1,ε−qκ2,ε) and integrating the resulting relation
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over Qε, after integration by parts and straightforward rearrangements we

obtain

−

∫

G0

p0(q
κ1,ε − qκ2,ε)a∇(qκ1,ε − qκ2,ε) · n dy′

−

∫

G0
1

ε

p0(q
κ1,ε − qκ2,ε)a∇(qκ1,ε − qκ2,ε) · n dy′

+

∫

Qε

p0a∇(qκ1,ε − qκ2,ε) · ∇(qκ1,ε − qκ2,ε)dy = 0.

The first integral on the left-hand side is equal to zero because qκ1,ε− qκ2,ε =

0 on G0. Since qκ1,ε 6= qκ2,ε in Qε, the third integral is strictly positive.

Therefore,

−(κ1 − κ2)

∫

G0
1

ε

p0a∇(qκ1,ε − qκ2,ε) · n dy′ < 0,

and for at least one of the constants κ1 and κ2 equality (63) is contradictory.

This completes the proof of Lemma 6. Other statements in Section 4 can be

justified in exactly the same way as in the smooth case. We arrive at the

following result.

Theorem 10. Let assumptions A1.—A2. be fulfilled, and assume that the

coefficients of equations (7) are bounded measurable functions. Then all the

statements of Theorem 6 hold true.

6 Perspectives

In this short section we discuss possible generalizations of the results of this

work.

Operators with locally periodic coefficients. Consider the problem

−div
(
a(x, ε−1x)∇pε

)
−

1

ε
div

(
b(x, ε−1x)pε

)
= 0 in εQε,

−a(x, ε−1x)∇pε · n− b(x, ε−1x) · npε = 0 on ε∂Qε.

Under the assumption that a(x, y) and b(x, y) are periodic in y1 and a uniform

ellipticity assumption one can study the logarithmic asymptotics of a solution
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of this problem as ε → 0. Making the logarithmic transform of pε we reduce

the above problem to homogenization problem for a perturbed Hamilton-

Jacobi type equation. Then we can use the approaches developed in [12],

[19]. Additional difficulties here are due to the fact that the homogenization

is combined with the dimension reduction. We should also derive the effective

boundary conditions at the end points of the interval where the limit equation

is stated. The work on this problem is in progress.

Fourier boundary conditions on the cylinder bases. Instead of adjoint Neu-

mann boundary conditions on the cylinder bases in (1) one can consider the

spectral problem with arbitrary Fourier boundary conditions on the bases.

In this case the principal eigenvalue need not be equal to zero any more.

In the 1-d case this problem has been investigated in [1]. In the multidi-

mensional case, making again a logarithmic transformation of the principal

eigenfunction, one can reduce the studied spectral problem to an appropriate

boundary value problem for the corresponding perturbed Hamilton-Jacobi

type equation. The derivation of effective boundary conditions for the effec-

tive Hamilton-Jacobi equation is getting rather non-trivial in this case. This

work is also in progress.

Elliptic systems. We believe that in the case of cooperative systems to which

the maximum principle applies the results of this work hold true and can be

proved by the same methods (but we did not check this). For more general

elliptic systems the question is completely open.

7 Appendix

In this Appendix for the reader convenience we formulate the key results

from [17] and provide a number of corollaries of these results.
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Let, as in (23), Q∞ = (0,∞)×G, and consider the following problem





−div
(
a(y)∇v(y)

)
+ b(y)∇v(y) = 0 in Q∞,

a(y)∇v(y) · n(y) = 0 on (0,+∞)× ∂G,

v(y) = v0(y) on G0;

(64)

here v0 is a given function, v0 ∈ L∞(G) ∩H1/2(G).

Theorem 11. (see [17, Theorem 6.1]) If b1 < 0, then for any constant c

there is a solution of (64) that converges to c as y1 → +∞. Such a solution

(with a fixed limit c) is unique.

If b1 ≥ 0, then problem (64) has a unique bounded solution.

In both cases any bounded solution v of problem (64) converges to a constant

at exponential rate that is there exist constants γ > 0, c and C0 such that

|v(y)− c| ≤ C0e
−γy1 ,

and the constant γ does not depend on v0.

In the case b1 ≥ 0 we denote by c(v0) the unique constant to which the

bounded solution converges at infinity.

Consider also in the cylinder Qε the problem





−div
(
a(y)∇vε(y)

)
+ b(y)∇vε(y) = 0 in Qε,

a(y)∇vε(y) · n(y) = 0 on (0, ε−1)× ∂G,

vε(y) = v0(y) on G0,

vε(y) = v1(y) on Gε−1.

(65)

As a consequence of Theorem 11 we have

Corollary 12. Let b1 > 0. Then

|vε(y)− c(v0)| ≤ C
(
‖v0‖L∞(G)

e−γy1 + ‖v1‖L∞(G)
eγ(y1−ε−1)

)

with a constant C that does not depend on v0 and v1.
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Proof. Let v be a solution of problem (64) with Dirichlet boundary condition

v0 on G0. Then by Theorem 11 we have |v(y) − c(v0)| ≤ C‖v0‖L∞(G)e
−γy1 .

In the cylinder Q−∞,ε−1 consider the following problem





−div
(
a(y)∇vε+(y)

)
+ b(y)∇vε+(y) = 0 in Q−∞,ε−1,

a(y)∇vε+(y) · n(y) = 0 on (−∞, ε−1)× ∂G,

vε+(y) = v1(y)− c(v0) on Gε−1,

vε+(y) → 0, as y1 → −∞.

(66)

By Theorem 11 this problem has a unique solution. Moreover,

|vε+(y)| ≤ C(‖v0‖L∞(G) + ‖v1‖L∞(G))e
γ(y1−ε−1).

Clearly, the function v + vε+ − vε satisfies the equation and the boundary

condition on the lateral boundary in (65). On the bases of Qε we have

|v + vε+ − vε|G0
≤ C(‖v0‖L∞(G) + ‖v1‖L∞(G))e

−γε−1

,

|v + vε+ − vε|Gε−1
≤ C‖v0‖L∞(G)e

−γε−1

.

Then, by the maximum principle,

|v + vε+ − vε| ≤ C(‖v0‖L∞(G) + ‖v1‖L∞(G))e
−γε−1

in Qε. This yields the desired bound.
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