Comparison results and improved quantified inequalities for semilinear elliptic equations - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2017

Comparison results and improved quantified inequalities for semilinear elliptic equations

François Hamel
Emmanuel Russ

Résumé

In this paper, we prove some pointwise comparison results between the solutions of some second-order semilinear elliptic equations in a domain Ω of R n and the solutions of some radially symmetric equations in the equimeasurable ball Ω *. The coefficients of the symmetrized equations in Ω * satisfy similar constraints as the original ones in Ω. We consider both the case of equations with linear growth in the gradient and the case of equations with at most quadratic growth in the gradient. Moreover, we show some improved quantified comparisons when the original domain is not a ball. The method is based on a symmetrization of the second-order terms.
Fichier principal
Vignette du fichier
hamel-russ.pdf (456.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01257408 , version 1 (16-01-2016)
hal-01257408 , version 2 (03-03-2016)

Identifiants

Citer

François Hamel, Emmanuel Russ. Comparison results and improved quantified inequalities for semilinear elliptic equations. Mathematische Annalen, 2017, 367 (1-2), pp.311 - 372. ⟨10.1007/s00208-016-1394-1⟩. ⟨hal-01257408v2⟩
457 Consultations
319 Téléchargements

Altmetric

Partager

More