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Introduction and main results

Throughout all the paper, n ≥ 1 is a given integer, Ω is a bounded domain of R n of class C 2 and Ω * denotes the open Euclidean ball centered at 0 such that |Ω * | = |Ω|, where by a domain we mean a non-empty open connected subset of R n and, for any measurable subset E ⊂ R n , |E| stands for the Lebesgue measure of E.

We consider the following problem: given a bounded domain Ω ⊂ R n of class C 2 and given a positive solution u of a quasilinear elliptic equation of the type -div(A(x)∇u) + H(x, u, ∇u) = 0 in Ω, u = 0 on ∂Ω, (1.1) in a sense to be detailed later, we want to compare u to a solution v of a similar problem in the ball Ω * , namely -div( A(x)∇v) + H(x, v, ∇v) = 0 in Ω * , v = 0 on ∂Ω * .

(1.2)

Our goal is to show that, under some natural assumptions on A and H, any solution u of (1.1) in Ω will be controlled from above by a radially symmetric solution v of a similar problem (1.2) in Ω * . More precisely, we will show that the distribution function of u is not larger than that of v. Moreover, the coefficients of the problem (1.2) solved by v in the ball Ω * will actually be radially symmetric, and the solution v itself will also be radially symmetric.

Let us list the precise notations and the assumptions attached to the problem (1.1) and made throughout the paper. We denote by S n (R) the set of n×n symmetric matrices with real entries. We always assume that A : Ω → S n (R) is in W 1,∞ (Ω). This assumption will be denoted by A = (A i,i ′ ) 1≤i,i ′ ≤n ∈ W 1,∞ (Ω, S n (R)): all the components A i,i ′ are in W 1,∞ (Ω) and they can therefore be assumed to be continuous in Ω up to a modification on a zero-measure set. We always assume that A is uniformly elliptic in Ω: there exists λ > 0 such that A ≥ λ Id in Ω, where Id ∈ S n (R) is the identity matrix, that is

1≤i,i ′ ≤n A i,i ′ (x)ξ i ξ i ′ = A(x)ξ • ξ ≥ λ |ξ| 2 := λ 1≤i≤n (ξ i ) 2
for all x ∈ Ω and ξ ∈ R n . Actually, in some statements we compare the matrix field A with a matrix field of the type x → Λ(x)Id in the sense that A(x) ≥ Λ(x)Id a.e. in Ω, (1.3) where Λ ∈ L ∞ + (Ω) and

L ∞ + (Ω) = Λ ∈ L ∞ (Ω); ess inf Ω Λ > 0 = Λ ∈ L ∞ (Ω); ∃ λ > 0, Λ(x) ≥ λ a.e. in Ω .
The inequality (1.3) means that A(x)ξ • ξ ≥ Λ(x)|ξ| 2 for a.e. x ∈ Ω and all ξ ∈ R n . For instance, if, for each x ∈ Ω, Λ A (x) denotes the smallest eigenvalue of the matrix A(x), then Λ A ∈ L ∞ + (Ω) and there holds A(x) ≥ Λ A (x)Id for all x ∈ Ω. The given function H : Ω × R × R n → R is assumed to be continuous and such that there exist a real number 1 ≤ q ≤ 2 and three bounded and continuous functions a, b and f : Ω × R × R n → R such that H(x, s, p) ≥ -a(x, s, p)|p| q + b(x, s, p)s -f (x, s, p), b(x, s, p) ≥ 0 (1.4) for all (x, s, p) ∈ Ω × R × R n . In particular, H is bounded from below by an at most quadratic function in its last variable p. Notice that no bound from above is assumed a priori. The cases q = 1 and 1 < q ≤ 2 will actually be treated separately, since the existence and uniqueness results for problems (1.1) or (1.2) are different whether q be equal to or larger than 1, and since an additional condition will be used when q > 1.

We say that u is a weak solution of (1.1) if u ∈ H 1 0 (Ω), H(•, u(•), ∇u(•)) ∈ L 1 (Ω) and

Ω A(x)∇u • ∇ϕ + Ω H(x, u, ∇u)ϕ = 0 for all ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω).
The condition u = 0 on ∂Ω simply means that the trace of u on ∂Ω is equal to 0. When H(•, u(•), ∇u(•)) belongs to L 2 (Ω), then this identity holds for all test functions ϕ in H 1 0 (Ω). Similarly, one defines the notion of weak solution v of (1.2). Throughout the paper, the solutions of (1.1) and (1.2) are always understood as weak solutions, even if they may of course be stronger under some additional assumptions on the coefficients. Furthermore, we denote W (Ω) the space W (Ω) = 1≤p<+∞ W 2,p (Ω). We recall from the Sobolev embeddings that any function u in W (Ω) belongs to C 1,α (Ω) for all α ∈ [0, 1), even if it means redefining u in a negligible subset of Ω. Notice that if u ∈ W (Ω) is a weak solution of (1.1), then u is a strong solution, the equation (1.1) is satisfied almost everywhere in Ω and the boundary condition on ∂Ω holds in the pointwise sense.

In order to compare a solution of (1.1) in Ω to another function defined in the equimeasurable ball Ω * , the natural way is to use their distribution functions. Namely, for any function u ∈ L 1 (Ω), let µ u be the distribution function of u given by µ u (t) = x ∈ Ω; u(x) > t for all t ∈ R. Note that µ u is right-continuous, non-increasing, µ u (t) → |Ω| as t → -∞ and µ u (t) → 0 as t → +∞. For all x ∈ Ω * \{0}, define

u * (x) = min t ∈ R; µ u (t) ≤ α n |x| n ,
where α n = π n/2 /Γ(n/2+1) denotes the Lebesgue measure of the Euclidean unit ball in R n . The function u * , called the decreasing Schwarz rearrangement of u, is clearly radially symmetric, non-increasing in the variable |x| and it satisfies

x ∈ Ω; u(x) > ζ = x ∈ Ω * ; u * (x) > ζ
for all ζ ∈ R. An essential property of the Schwarz symmetrization is the following one: if u belongs to the space H 1 0 (Ω), then |u| * ∈ H 1 0 (Ω * ) and it is such that |u| * L 2 (Ω * ) = u L 2 (Ω) and ∇|u| * L 2 (Ω * ) ≤ ∇u L 2 (Ω) , see [START_REF] Bramanti | Simmetrizzazione di Schwarz di funzioni e applicazioni a problemi variazionali ed equazioni a derivate parziali[END_REF][START_REF] Burchard | A short course on rearrangement inequalities[END_REF][START_REF] Kawohl | Rearrangements and Convexity of Level Sets in Partial Differential Equations[END_REF][START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF].

In this paper, motivated by some results on the comparison of principal eigenvalues of non-symmetric second-order elliptic operators in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], we aim at comparing any given positive solution u ∈ W (Ω) of (1.1) to a weak solution v of a problem of the type (1.2), in the sense that u * ≤ v in Ω * , where the new coefficients A and H of (1.2) are radially symmetric with respect to x ∈ Ω * and satisfy similar constraints or bounds as the given coefficients A and H. As already mentioned, we consider two types of assumptions regarding the dependency of the lower bound (1.4) with respect to the variable p: namely, we treat separately the case where the lower bound is at most linear in |p| (that is, q = 1) and the general case where 1 < q ≤ 2 and the lower bound is at most quadratic in |p|, for which an additional assumption on the function b is made.

Linear growth with respect to the gradient

Our first main result is concerned with the case where H is linear in |∇u| from below, in the sense that q = 1 in (1.4). If g is a real number or a real-valued function, we set g + = max(g, 0). Theorem 1.1. Assume (1.3) and (1.4) with Λ ∈ L ∞ + (Ω) and q = 1. Let u ∈ W (Ω) be a solution of (1.1) such that u > 0 in Ω and |∇u| = 0 everywhere on ∂Ω. Then there are two radially symmetric functions

Λ ∈ L ∞ + (Ω * ) and a ∈ L ∞ (Ω * ) such that      0 < ess inf Ω Λ ≤ ess inf Ω * Λ ≤ ess sup Ω * Λ ≤ ess sup Ω Λ, Λ -1 L 1 (Ω * ) = Λ -1 L 1 (Ω) , 0 ≤ inf Ω×R×R n a + ≤ ess inf Ω * a ≤ ess sup Ω * a ≤ sup Ω×R×R n a + , (1.5) 
and u * ≤ v a.e. in Ω * , (1.6) where v ∈ H 1 0 (Ω * ) is the unique weak solution of -div( Λ(x)∇v) + H(x, ∇v) = 0 in Ω * , v = 0 on ∂Ω * (1.7) with H(x, p) = -a(x) |p| -f * u (x) and f * u is the Schwarz rearrangement of the function f u defined in Ω by f u (y) = f (y, u(y), ∇u(y)) for all y ∈ Ω.

(1.8)

Furthermore, v belongs to C(Ω * ).

Notice that, since H(•, ∇v(•)) ∈ L 2 (Ω * ), the fact that v ∈ H 1 0 (Ω * ) is a weak solution of (1.7) means that

Ω * Λ(x)∇v • ∇ϕ - Ω * a(x) |∇v| ϕ - Ω *
f * u (x) ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ).

From Theorem 1.1 and the maximum principle, the following corollary holds.

Corollary 1.2. Under the notations of Theorem 1.1, for any functions a and f in L ∞ (Ω * ) such that a ≤ a and f * u ≤ f a.e. in Ω * , there holds u * ≤ v a.e. in Ω * , where v ∈ H 1 0 (Ω * ) is the unique weak solution of -div( Λ(x)∇v) + H(x, ∇v) = 0 in Ω * , v = 0 on ∂Ω * (1.9)

with H(x, p) = -a(x) |p| -f (x). In particular, there holds u * ≤ V a.e. in Ω * , where V ∈ H 1 0 (Ω * ) is the unique weak solution of (1.9) with a = sup Ω×R×R n a + and f = sup Ω×R×R n f . Furthermore, v and V belong to C(Ω * ).

Proof. Notice first that, for problem (1.9), the existence and uniqueness of the solutions v and V in H 1 0 (Ω * ) is a direct consequence of Theorem 2.1 of Porretta [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF] (similarly, there is a unique solution v of (1.7) in H 1 0 (Ω * )). The proof of the inequality u * ≤ v (and u * ≤ V ) in Corollary 1.2 is an immediate consequence of Corollary 2.1 of Porretta [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF]: indeed, with the notations of Theorem 1.1 and Corollary 1.2, there holds -div( Λ(x)∇v) + H(x, ∇v) = ( a(x) -a(x))|∇v| + f * u (x) -f (x) ≤ 0 in the weak H 1 0 (Ω * ) sense, that is Ω * Λ(x)∇v • ∇ϕ -Ω * a(x) |∇v| ϕ -Ω * f (x) ϕ ≤ 0 for all ϕ ∈ H 1 0 (Ω * ) with ϕ ≥ 0 a.e. in Ω * . In other words, v ∈ H 1 0 (Ω * ) is a weak subsolution of (1.9). The maximum principle (Corollary 2.1 of [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF]) yields v ≤ v a.e. in Ω * , whence u * ≤ v a.e. in Ω * from (1.6). In particular, u * ≤ V a.e. in Ω * (moreover, since v is a weak subsolution of the equation satisfied by V , there holds v ≤ V a.e. in Ω * ).

Lastly, in the equation satisfied by the function V , since the coefficients Λ, a and f are radially symmetric (a and f are constant in this particular case), it follows from the uniqueness that V is itself radially symmetric. Furthermore, V is then Hölder continuous in Ω * from the radial symmetry and the local De Giorgi-Moser-Nash estimates (see Theorem 8.29 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]). For problem (1.9) satisfied by v, the function v is still locally Hölder continuous in Ω * , but it may not be radially symmetric in general, since the functions a and f are not assumed to be radially symmetric. However, it follows from the previous paragraph that 0 ≤ u * ≤ v ≤ V in Ω * , and since V is continuous in Ω * and vanishes on ∂Ω * , the function v is continuous in Ω * too.

For problem (1.1), additional conditions guaranteeing the existence and uniqueness of a solution u in H 1 0 (Ω) can be given. Namely, if one assumes that

∃ ω > 0, ∀ (x, s, s ′ , p) ∈ Ω × R × R × R n , ω -1 (s -s ′ ) ≤ H(x, s, p) -H(x, s ′ , p) ≤ ω(s -s ′ ), ∃ α ∈ L r (Ω), ∀ (x, s, p, p ′ ) ∈ Ω × R × R n × R n , |H(x, s, p) -H(x, s, p ′ )| ≤ α(x)(1 + |s| 2/n )|p -p ′ |,
where r = n 2 /2 if n ≥ 3, r ∈ (2, +∞) if n = 2 and r = 2 if n = 1, then there is at most one solution of (1.1) in H 1 0 (Ω) (see Theorem 5.1 of [START_REF] Hamel | Comparison results for semilinear elliptic equations using a new symmetrization method[END_REF]). If, in addition to the previous assumption, one assumes that

∃ β ∈ L t (Ω), ∀ (x, s, p) ∈ Ω × R × R n , |H(x, s, p)| ≤ β(x)(1 + |s| + |p|),
where t = n if n ≥ 3, t is any real number in (2, +∞) if n = 2 and t = 2 if n = 1, then there exists a (unique) solution u of (1.1) in H 1 0 (Ω). Furthermore, if the function β above is such that β ∈ L ∞ (Ω), then the unique solution u of (1.1) belongs to the space W (Ω). Lastly, under the additional assumption of the existence of ̟ ≥ 0 such that H(x, 0, p) ≤ ̟ |p| for all (x, p) ∈ Ω × R n and H(•, 0, 0) ≡ 0 in Ω, then u > 0 in Ω and ∂ ν u := ν • ∇u < 0 on ∂Ω, where ν denotes the outward unit normal to ∂Ω. These aforementioned existence and uniqueness results, which are inspired from [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF], are summarized in Theorem 5.1 of [START_REF] Hamel | Comparison results for semilinear elliptic equations using a new symmetrization method[END_REF]. For further uniqueness results on semilinear problems of the type (1.1) with linear growth in |∇u|, we refer to [START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF][START_REF] Droniou | A uniqueness result for quasilinear elliptic equations with measures as Rend[END_REF].

Let us now compare Theorem 1.1 with some existing results in the literature. Theorem 1.1 provides a comparison of the distribution functions of a given solution of (1.1) in Ω and a solution v of (1.7) in Ω * . The so-called pseudo-rearranged coefficients Λ and H in (1.7), which are rearranged with respect to the solution u (as will be detailed in Section 2), satisfy the same type of pointwise bounds as the coefficients A and H in Ω (see also [START_REF] Alvino | Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri[END_REF][START_REF] Alvino | A lower bound for the first eigenvalue of an elliptic operator[END_REF][START_REF] Alvino | Isoperimetric inequalities connected with torsion problem and capacity[END_REF][START_REF] Mossino | Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics[END_REF][START_REF] Talenti | Linear elliptic P.D.E.'s: level sets, rearrangements and a priori estimates of solutions[END_REF] and the comments below on the use of such pseudo-rearrangements). Furthermore, the diffusion matrix Λ Id in the second-order term of (1.7) is proportional to the identity matrix at each point x, and the nonlinear term H(x, ∇v) is exactly affine in |∇v|. The first comparison result in the spirit of Theorem 1.1 goes back to the seminal paper of Talenti [START_REF] Talenti | Elliptic equations and rearrangements[END_REF]

: if A ∈ L ∞ (Ω, S n (R)) and A ≥ Id a.e. in Ω, Λ = 1 and H(x, s, p) = b(x)s -f (x) with b, f ∈ L ∞ (Ω) and b ≥ 0 a.e. in Ω, then equation (1.1) admits a unique solution u ∈ H 1 0 (Ω) and |u| * ≤ v a.e. in Ω * , where v ∈ W (Ω * ) is the unique solution of -∆v = |f | * in Ω * with v = 0 on ∂Ω * . If A ∈ L ∞ (Ω, S n (R)) and A ≥ Id a.e. in Ω, Λ = 1, H(x, s, p) = α(x) • p + b(x)s -f (x), α ∈ L ∞ (Ω, R n ), b, f ∈ L ∞ (Ω), b ≥ 0 a.e.
in Ω, then it follows from Talenti [START_REF] Talenti | Linear elliptic P.D.E.'s: level sets, rearrangements and a priori estimates of solutions[END_REF] (among other results) that the unique solution u ∈ H 1 0 (Ω) of (1.1) satisfies

|u| * ≤ v a.e. in Ω * , where v ∈ W (Ω * ) ∩ H 1 0 (Ω * ) is the unique weak solution of -∆v + α e r • ∇v = |f | * in Ω * .
Here, e r (x) = x/|x| for all x ∈ Ω * \{0} and the nonnegative and radially symmetric L ∞ (Ω * ) function α is a pseudo-rearrangement of |α| which satisfies properties similar to the function a in Theorem 1.1. The proof of [START_REF] Talenti | Linear elliptic P.D.E.'s: level sets, rearrangements and a priori estimates of solutions[END_REF] uses Schwarz symmetrization and is completely different from the one we use in the present paper (actually, in Section 5.3 of [START_REF] Hamel | Comparison results for semilinear elliptic equations using a new symmetrization method[END_REF], we show that our method in the proof of Theorem 1.1 can be used to recover some of the seminal results of [START_REF] Talenti | Elliptic equations and rearrangements[END_REF][START_REF] Talenti | Linear elliptic P.D.E.'s: level sets, rearrangements and a priori estimates of solutions[END_REF], assuming that the matrix field A is continuous in Ω). On the other hand, Trombetti and Vazquez [START_REF] Trombetti | A symmetrization result for elliptic equations with lower-order terms[END_REF] 

proved that if, in particular, A ≥ Id, Λ = 1, H(x, s, p) = α(x) • p + bs -f (x) with α ∈ W 1,∞ (Ω, R n ), b, f ∈ L ∞ (Ω), min(b, div(α) + b) ≥ 0 a.e. in Ω, then u L p (Ω) ≤ v L p (Ω * ) for all 1 ≤ p ≤ +∞, where v ∈ W (Ω * ) solves -∆v + α e r • ∇v + c * v = |f | * in Ω * with v = 0 on ∂Ω * , α = |α| L ∞ (Ω) and c * ∈ L ∞ (Ω * ) is the nondecreasing symmetric rearrangement of any function c such that 0 ≤ c ≤ min(b, div(α) + b) in Ω.
Further results in this spirit can be found in [START_REF] Alvino | Comparison results for elliptic and parabolic equations via Schwarz symmetrization[END_REF][START_REF] Alvino | Comparison results for solutions of elliptic problems via symmetrization[END_REF][START_REF] Iyer | Exit times of diffusions with incompressible drift[END_REF].

In the references cited in the paragraph above, the function Λ appearing in (1.3) was assumed to be constant. When Λ is given as a constant λ > 0 in (1.3) (this is always possible since the matrix field A is assumed to be uniformly elliptic), then it follows from (1.5) that the function Λ appearing in Theorem 1.1 is equal to λ and the principal part in (1.7) is proportional to the Laplacian. Furthermore, in this case, Corollary 1.2 (or [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF][START_REF] Talenti | Linear elliptic P.D.E.'s: level sets, rearrangements and a priori estimates of solutions[END_REF]) implies that u * ≤ V a.e. in Ω * , where V ∈ H 1 0 (Ω * ) ∩ C(Ω * ) is the unique weak solution of the following independent-of-u equation: -λ∆V -a|∇V | = f , where a = sup Ω×R×R n a + and f = sup Ω×R×R n f . However, in the present paper, Λ is not assumed to be constant and the function Λ is actually not constant in general (see Remark 5.5 of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] for some examples). Notice in particular from (1.5) that ess inf Ω * Λ ≥ ess inf Ω Λ and ess sup Ω * Λ ≤ ess sup Ω Λ, and that ess sup

Ω * Λ > ess inf Ω Λ and ess inf Ω * Λ < ess sup Ω Λ
as soon as Λ is not constant. To our best knowledge, the first occurrence of a non-constant function Λ in comparison results for elliptic problems of the type (1.1) goes back to some papers by Alvino and Trombetti [2,[START_REF] Alvino | A lower bound for the first eigenvalue of an elliptic operator[END_REF][START_REF] Alvino | Isoperimetric inequalities connected with torsion problem and capacity[END_REF]. In [START_REF] Alvino | Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri[END_REF], problem (1.1) is considered with H linear in s and independent of p given by H(x, s, p) = b(x)s -f (x) and b ≥ 0 a.e. in Ω. By using Schwarz symmetrization, it is proved that |u| * ≤ v a.e. in Ω * , where v ∈ H 1 0 (Ω * ) is the weak solution of -div( Λ(x)∇v) = |f | * in Ω * for some pseudo-rearranged coefficient Λ. Comparisons of principal eigenvalues of self-adjoint second-order elliptic operators are given in [START_REF] Alvino | A lower bound for the first eigenvalue of an elliptic operator[END_REF][START_REF] Conca | An extremal eigenvalue problem for a two-phase conductor in a ball[END_REF] and isoperimetric estimates for the torsion problem are proved in [START_REF] Alvino | Isoperimetric inequalities connected with torsion problem and capacity[END_REF].

The problems described in the previous two paragraphs were concerned with functions H(x, u, ∇u) which were linear with respect to u and ∇u. Analogous results for nonlinear problems have been established in [START_REF] Alvino | Comparison results for elliptic and parabolic equations via Schwarz symmetrization[END_REF][START_REF] Bandle | Comparison theorems for a class of nonlinear Dirichlet problems[END_REF][START_REF] Cianchi | Symmetrization in anisotropic elliptic problems[END_REF][START_REF] Ferone | Comparison results for nonlinear elliptic equations with lower-order terms[END_REF][START_REF] Messano | Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient[END_REF][START_REF] Talenti | Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces[END_REF]. In most of these works, the second-order coefficients for problems of the type (1.1) in Ω are compared with a multiple of the Laplace operator for a problem of the type (1.2) in Ω * (or with homogeneous second-order terms such as the p-Laplacian), and the comparisons between u * and v are either pointwise or only integral and hold either in the whole ball Ω * or only in a strict subdomain, depending on the assumptions on the lower-order coefficients. In Theorem 1.1, the original problem (1.1) is nonlinear with respect to u and ∇u, the highest-order terms in (1.1) are compared with equations having heterogeneous second-order terms, and the comparison between u * and v are pointwise in the whole ball Ω * . One of the main novelties is also the method, which involves a symmetrization of the second-order terms with respect to the level sets of u. We refer to the proofs in the following sections for more details.

As a matter of fact, the method used in the proof of Theorem 1.1 leads to a quantified comparison result in the case where the original domain Ω is not a ball. We recall that A = (A i,i ′ ) 1≤i,i ′ ≤n and we denote

A W 1,∞ (Ω) = max 1≤i,i ′ ≤n A i,i ′ W 1,∞ (Ω) .
Theorem 1.3. Assume that Ω is not a ball, that (1.3) and (1.4) hold with Λ ∈ L ∞ + (Ω) and q = 1. Then, under the notations of Theorem 1.1, there is a constant η u > 0, which depends on Ω, n and u, such that

(1 + η u ) u * ≤ v a.e. in Ω * .
(1.10)

Furthermore, if there is M > 0 such that          A W 1,∞ (Ω) + Λ -1 L ∞ (Ω) + a L ∞ (Ω×R×R n ) + f L ∞ (Ω×R×R n ) ≤ M, |H(x, s, p) -H(x, 0, 0)| ≤ M (|s| + |p|) for all (x, s, p) ∈ Ω × R × R n , -M ≤ H(x, 0, 0) ≤ 0 for all x ∈ Ω, Ω H(x, 0, 0) dx ≤ -M -1 < 0, (1.11)
then there is a constant η > 0, which depends on Ω, n and M but not on u, such that

(1 + η) u * ≤ v a.e. in Ω * .
(1.12)

In addition to the aforementioned differences with respect to the existing results in the literature, the improved quantified comparisons stated in Theorem 1.3 for problems of the type (1.1) and (1.7) when Ω is not a ball have, to our knowledge, never been established in the literature, even in particular situations.

Remark 1.4. In our results, the solution u of (1.1) is assumed to be in W (Ω) (notice that this assumption is equivalent to u ∈ C 1 (Ω), from the standard elliptic estimates applied to (1.1) and the fact that the function H is continuous). In the proof of our results, u is approximated by some analytic functions u j in W 2,p (Ω) weakly for all 1 ≤ p < +∞ and in C 1,α (Ω) strongly for all 0 ≤ α < 1. Since u > 0 in Ω and |∇u| > 0 on ∂Ω by assumption, the functions u j satisfy these properties for large j and one can then apply to them the symmetrization method described in Section 2. In the approximation of u by u j , the W 2,p theory is needed and the Lipschitz-continuity of the matrix field A is used. It is actually beyond the scope of this paper to see under which minimal regularity assumptions on the coefficients of (1.1) the main results would still hold. Whereas the proof of Talenti's results are based on the Schwarz symmetrization, on Pólya-Szegö inequality and on the standard geometric isoperimetric inequality, our proofs are based on the symmetrization of the second-order terms and they require more regularity assumptions on the equation. However, our results also cover the case where the ellipticity functions Λ in Ω and Λ in Ω * are not constant in general. Furthermore, they provide some new pointwise differential inequalities which can be quantitatively expressed in terms of some bounds on the coefficients and the domain and which can then be improved when the domain is not a ball.

At most quadratic growth with respect to the gradient

Our second main result is concerned with the general case where H is at most quadratic in |∇u| from below, under the additional assumption that inf Ω×R×R n b > 0 in (1.4).

Theorem 1.5. Assume that (1.3) and (1.4) with Λ ∈ L ∞ + (Ω), 1 < q ≤ 2 and inf Ω×R×R n b > 0.
(1.13)

Let u ∈ W (Ω) be a solution of (1.1) such that u > 0 in Ω and |∇u| = 0 everywhere on ∂Ω. Then there are three radially symmetric functions

Λ ∈ L ∞ + (Ω * ), a ∈ L ∞ (Ω * ) and f ∈ L ∞ (Ω * ), and a positive constant δ such that                        0 < ess inf Ω Λ ≤ ess inf Ω * Λ ≤ ess sup Ω * Λ ≤ ess sup Ω Λ, Λ -1 L 1 (Ω * ) = Λ -1 L 1 (Ω) , 0 ≤ inf Ω×R×R n a + × ess inf Ω Λ ess sup Ω Λ q-1 ≤ ess inf Ω * a ≤ ess sup Ω * a ≤ sup Ω×R×R n a + × ess sup Ω Λ ess inf Ω Λ 2q-2 , inf Ω×R×R n f ≤ ess inf Ω * f ≤ ess sup Ω * f ≤ sup Ω×R×R n f, Ω * f = Ω f u , (1.14 
)

and u * ≤ v a.e. in Ω * , (1.15) 
where f u is defined as in (1.8)

and v ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is the unique weak solution of -div( Λ(x)∇v) + H(x, v, ∇v) = 0 in Ω * , v = 0 on ∂Ω * (1.16) with H(x, s, p) = -a(x) |p| q + δ s -f (x).
(1.17)

Furthermore, for every ε > 0, there is a radially symmetric function f ε ∈ L ∞ (Ω * ) such that µ fε = µ fu and

(u * -v ε ) + L 2 * (Ω * ) ≤ ε, (1.18) 
where

v ε ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is the unique weak solution of -div( Λ(x)∇v ε ) + H ε (x, v ε , ∇v ε ) = 0 in Ω * , v ε = 0 on ∂Ω * (1.19) with H ε (x, s, p) = -a(x) |p| q + δ s -f ε (x).
(1.20)

In (1.18), 2 * = 2n/(n -2) if n ≥ 3, 2 * = ∞ if n = 1 and 2 * is any fixed real number in [1, +∞) if n = 2.
Notice that, contrary to the conclusion of Theorem 1.1, f and f u do not have the same distribution function in general, but f ε and f u do.

Since 1 < q ≤ 2, the functions a |∇v| q and a |∇v ε | q are only in

L 1 (Ω * ) in general. Since H(•, v(•), ∇v(•)) ∈ L 1 (Ω * ), the fact that v ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is a weak solution of (1.16) means that Ω * Λ(x)∇v • ∇ϕ - Ω * a(x) |∇v| q ϕ + Ω * δ v ϕ -Ω * f (x) ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω *
), and similarly for v ε with f ε instead of f . From Theorem 1.5 and the maximum principle, the following corollary will be infered.

Corollary 1.6. Under the notations of Theorem 1.5, for any functions a and f in L ∞ (Ω * ) such that a ≤ a and f ≤ f a.e. in Ω * , and for any constant δ such that 0 < δ ≤ δ, there holds u * ≤ v a.e. in Ω * , where

v ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is the unique weak solution of -div( Λ(x)∇v) + H(x, v, ∇v) = 0 in Ω * , v = 0 on ∂Ω * (1.21) with H(x, s, p) = -a(x) |p| q + δ s -f (x). In particular, u * ≤ V a.e. in Ω * , where V ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is the unique weak solution of (1.21) with δ = δ, a = sup Ω×R×R n a + × ess sup Ω Λ/ess inf Ω Λ 2q-2 and f = sup Ω×R×R n f .
Proof. With the notations of Theorem 1.5 and Corollary 1.6, together with the fact that v ≥ u * ≥ 0 a.e. in Ω * (from Theorem 1.5), there holds

-div( Λ(x)∇v) + H(x, v, ∇v) = ( a(x) -a(x))|∇v| q + (δ -δ) v + f (x) -f (x) ≤ 0 in the weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) sense, that is Ω * Λ(x)∇v • ∇ϕ -Ω * a(x) |∇v| q ϕ + Ω * δ v ϕ -Ω * f (x) ϕ ≤ 0 for all ϕ ∈ H 1 0 (Ω * )∩L ∞ (Ω *
) with ϕ ≥ 0 a.e. in Ω * . In other words, v is a weak H 1 0 (Ω * )∩L ∞ (Ω * ) subsolution of (1.21), with δ > 0. The maximum principle (Theorem 2.1 of [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF]) yields v ≤ v a.e. in Ω * , whence u * ≤ v a.e. in Ω * from (1.15).

For problems (1.16), (1.19) and (1.21), the existence of weak solutions v, v ε and v in H 1 0 (Ω * ) ∩ L ∞ (Ω * ) follows from a paper by Boccardo, Murat and Puel (Théorème 2.1 and the following comments of [START_REF] Boccardo | Résultats d'exitence pour certains problèmes elliptiques quasilinéaires[END_REF], see also [START_REF] Boccardo | Existence of bounded solutions for non linear elliptic unilateral problems[END_REF]) and the uniqueness follows from Barles and Murat (Theorem 2.1 of [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF]). Furthermore, even if it means redefining them in a negligible subset of Ω * , v, v ε and v are locally Hölder continuous in Ω * from Corollary 4.23 of [START_REF] Han | Elliptic Partial Differential Equations[END_REF], and v and v ε are radially symmetric (v and v ε are then Hölder continuous in Ω * ) by uniqueness since all coefficients of (1.16) are radially symmetric. For problem (1.21), the function v may not be radially symmetric in general, since the functions a and f are not assumed to be radially symmetric. But it follows from the maximum principle and Corollary 1.6 that 0 ≤ u * ≤ v ≤ V in Ω * , and since V is continous in Ω * and vanishes on ∂Ω * , the function v is continuous in Ω * too.

More generally speaking, for problem (1.1), it follows from [START_REF] Boccardo | Existence of bounded solutions for non linear elliptic unilateral problems[END_REF][START_REF] Boccardo | L ∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result[END_REF] that there exists a solution u ∈

H 1 0 (Ω) ∩ L ∞ (Ω) if H(x, s, p) = β(x, s, p) + H(x, s, p), β(x, s, p)s ≥ δ s 2 , |β(x, s, p)| ≤ κ (γ(x) + |s| + |p|), | H(x, s, p)| ≤ ρ + ̺(|s|) |p| 2
with δ > 0, κ > 0, ρ > 0, γ ∈ L 2 (Ω), γ ≥ 0 a.e. in Ω and ̺ : R + → R + is increasing (see also [START_REF] Bensoussan | On a non linear partial differential equation having natural growth terms and unbounded solution[END_REF][START_REF] Vecchio | Strongly nonlinear problems with gradient dependent lower order nonlinearity[END_REF][START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF] for further existence results). Furthermore, if q < 1 + 2/n and if there exist M ≥ 0 and r ≥ 0 such that r(n -2) < n + 2 and |H(x, s, p)| ≤ M (1 + |s| r + |p| q ) for all (x, s, p) ∈ Ω × R × R n , then any weak solution u of (1.1) belongs to W (Ω) (see Theorem 5.5 in [START_REF] Hamel | Comparison results for semilinear elliptic equations using a new symmetrization method[END_REF]). On the other hand, it follows from [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF] 

(Ω) ∩ L ∞ (Ω)
, and u is necessarily nonnegative if H(•, 0, 0) ≤ 0 in Ω (see also [START_REF] Barles | Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions[END_REF][START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF] for other results in this direction). We refer to [START_REF] Barles | Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations[END_REF][START_REF] Betta | Uniqueness results for nonlinear elliptic equations with a lower order term[END_REF][START_REF] Grenon | Existence and a priori estimates for elliptic problems with subquadratic gradient dependent terms[END_REF] for further existence and uniqueness results for problems with strictly sub-quadratic dependence in |∇u| (say, q < 2 in (1.16)) and to [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF][START_REF] Ferone | Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small[END_REF][START_REF] Ferone | L ∞ -estimates for nonlinear elliptic problems with p-growth in the gradient[END_REF][START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF][START_REF] Sirakov | Solvability of uniformly elliptic fully nonlinear PDE[END_REF] for further existence results for problems of the type (1.16), (1.19), (1.21), or more general ones, when δ ≤ 0 and f , f ε or f are small in some spaces. However, it is worth pointing out that the existence and the uniqueness are not always guaranteed for general functions f , f ε or f if δ ≤ 0, see in particular [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF][START_REF] Hamid | Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient[END_REF][START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF][START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF][START_REF] Sirakov | Solvability of uniformly elliptic fully nonlinear PDE[END_REF] for problems of the type (1.16), (1.19), (1.21) or for more general problems.

Comparisons between a solution u of (1.1) and a solution v of a problem of the type (1.16) when H(x, s, p) is nonlinear in p and grows at most quadratically in |p| were first established by Alvino, Trombetti and Lions [START_REF] Alvino | Comparison results for elliptic and parabolic equations via Schwarz symmetrization[END_REF] in the case H = H(x, p) with

A ≥ Id, Λ = 1, |H(x, p)| ≤ f (x) + κ |p| q (1.22) and κ > 0, f ∈ L ∞ (Ω), f ≥ 0 a.e.
in Ω: in this case, there holds u * ≤ v a.e. in Ω * , where v ∈

H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is any weak solution of -∆v = f * + κ|∇v| q in Ω * , (1.23) 
provided such a solution v exists (it does if f L ∞ (Ω) is small enough). We refer to [START_REF] Maderna | Quasilinear elliptic equations with quadratic growth in the gradient[END_REF][START_REF] Messano | Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient[END_REF][START_REF] Pašić | Isoperimetric inequalities in quasilinear equations of Leray-Lions type[END_REF] for further results in this direction. On the other hand, Ferone and Posteraro [START_REF] Ferone | On a class of quasilinear elliptic equations with quadratic growth in the gradient[END_REF] (see also [START_REF] Ferone | L ∞ -estimates for nonlinear elliptic problems with p-growth in the gradient[END_REF]) showed that if

A ≥ Id, Λ = 1, H(x, s, p) = div(F ) + H(x, s, p), | H(x, s, p)| ≤ f (x) + |p| 2 with F ∈ (L r (Ω)) n , f ∈ L r/2
(Ω) and r > n, then u * ≤ v a.e. in Ω * for any weak solution v * ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) of -∆v = f * (x) + |∇v| 2 + div( F e r ) in Ω * , provided such a solution v exists (it does if the norms of f and F are small enough), where F shares some common properties with the function a appearing in Theorems 1.1 and 1.5. To our best knowledge, in the case of at most quadratic growth with respect to the gradient, the only comparison result involving non-constant functions Λ is contained in a recent paper by Tian and Li [START_REF] Tian | Comparison results for nonlinear degenerate Dirichlet and Neumann problems with general growth in the gradient[END_REF]

: if |H(x, s, p)| ≤ f (x) + κ Λ(x) 2/q |p| q with κ > 0 and f ≥ 0 a.e. in Ω, then u * ≤ v a.e. in Ω * for any weak solution v ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) of -div( Λ(x)∇v) = f * (x) + κ Λ(x) 2/q |∇v| q
in Ω * , provided such a solution v exists (it does if f is small enough), where Λ shares some common properties with the function Λ appearing in Theorems 1.1 and 1.5 (in [START_REF] Tian | Comparison results for nonlinear degenerate Dirichlet and Neumann problems with general growth in the gradient[END_REF], the function Λ can even be degenerate at some points, that is Λ is nonnegative but is not necessarily in L ∞ + (Ω), and f /Λ belongs to L r (Ω) for some suitable r). Lastly, we refer to [START_REF] Maderna | Dirichlet problem for elliptic equations with nonlinear first order terms: a comparison result[END_REF] for comparison results where u is compared to a solution v, if any, of an equation whose principal part is a homogeneous nonlinear term such as the p-Laplacian.

In the references of the previous paragraph, a bound on the absolute value |H| of H in Ω × R × R n is used, the existence of solutions v of some symmetrized problems in Ω * is assumed and the functions H of these symmetrized problems only depend on (x, p) ∈ Ω * × R n . As already mentioned, the existence of such solutions v is guaranteed only when some norms of the function f (or f u ) are small, since the existence of v does not hold for general functions f or f u . However, when H = H(x, p), roughly speaking, one can integrate the one-dimensional equation satisfied by the radially symmetric function v and it is then possible to compare v with the solution of an equation involving the Schwarz rearrangement f * u of the function f u , as in the results of Section 1.1 (see also Lemma 3.4 

below).

On the contrary, in Theorem 1.5, only the lower bound (1.4) is needed and the existence (and uniqueness) of the solutions v and v ε of (1.16) and (1. [START_REF] Bramanti | Simmetrizzazione di Schwarz di funzioni e applicazioni a problemi variazionali ed equazioni a derivate parziali[END_REF]) is actually automatically guaranteed by the condition δ > 0, which follows from the additional assumption inf Ω×R×R n b > 0. The counterpart of the positivity of δ in (1.17) and (1.20) is that one cannot integrate the one-dimensional equations satisfied by the functions v and v ε . Thus, we do not know if it is possible to compare these functions v and v ε to the solution of the same type of equation with f * u instead of f or f ε in (1.17) or (1.20). However, since inf Ω×R×R n b > 0 and since δ is shown to be positive, there is no need to assume that some norms of f u , f or f ε are small. The function f in (1.4) can be any bounded function.

We also point out an interesting particular case of Corollary 1.6: namely, if Λ = λ > 0 is assumed to be constant, then u * ≤ V almost everywhere in Ω * , where V is the unique

H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of -λ∆V -a |∇V | q + δ V = f in Ω * , V = 0 on ∂Ω * ,
where a = sup Ω×R×R n a + and f = sup Ω×R×R n f . Despite its apparent simplicity, even this particular case of Corollary 1.6 is actually new. Furthermore, under the assumption (1.26) below with n ≥ 2, it follows from Lemma 4.1 and Steps 2 and 3 of the proof of Theorems 1.5 and 1.7 given in Section 4.1 below, that the real number δ can be chosen independently of u, whence the upper function V is actually independent of u too.

As for Theorem 1.1, the method used in the proof of Theorem 1.5 is based on a symmetrization of the second-order terms. However, a special attention has to be put on the constant δ appearing in (1.16) and (1.19), for these problems to be well-posed.

Lastly, when Ω is not a ball, an improved quantified inequality can be established. To our knowledge, such an improved inequality for problems (1.1) and (1.16) had never been obtained before, even in particular situations.

Theorem 1.7. Assume that Ω is not a ball, that (1.3) and (1.4) hold with Λ ∈ L ∞ + (Ω), 1 < q ≤ 2 and that (1.13) is satisfied. Then, under the notations of Theorem 1.5, there is a constant η u > 0, which depends on Ω, n and u, such that

(1 + η u ) u * ≤ v a.e. in Ω * (1.24) and ((1 + η u ) u * -v ε ) + L 2 * (Ω * ) ≤ ε. (1.25) Furthermore, if q < 1 + 2/n and if there are M > 0 and r ≥ 0 such that r(n -2) < n + 2 and                    A W 1,∞ (Ω) + Λ -1 L ∞ (Ω) + a L ∞ (Ω×R×R n ) + f L ∞ (Ω×R×R n ) ≤ M, b(x, s, p) ≥ M -1 > 0 for all (x, s, p) ∈ Ω × R × R n , |H(x, s, p) -H(x, 0, 0)| ≤ M (|s| r + |p| q ) for all (x, s, p) ∈ Ω × R × R n , |H(x, s, p)| ≤ M (1 + |s| r + |p| q ) for all (x, s, p) ∈ Ω × R × R n , H(x, 0, 0) ≤ 0 for all x ∈ Ω, Ω H(x, 0, 0) dx ≤ -M -1 < 0, (1.26)
then there is a constant η > 0 depending only on Ω, n, q, M and r such that

(1 + η) u * ≤ v a.e. in Ω * (1.27) and ((1 + η) u * -v ε ) + L 2 * (Ω * ) ≤ ε. (1.28)
Outline of the paper. In Section 2, we set the basic ingredients for the proof of the main theorems. Namely, we prove some pointwise and differential rearrangement inequalities using a symmetrization of the second-order terms of (1.1). Section 3 is devoted to the proofs of Theorems 1.1 and 1.3 for equation (1.1) when the nonlinear term H is bounded from below by an at most linear function of |∇u|. In Section 4, we consider the general case q ∈ (1, 2] in the lower bound (1.4) of H and we do the proofs of Theorems 1.5 and 1.7.

Rearrangement inequalities

This section is devoted to the proofs of some rearrangement inequalities in the spirit of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], Section 3. These pointwise estimates and partial differential inequalities are of independent interest and are thus stated in a separate section. They will then be used in the proof of the main theorems of the paper in the next sections.

Definitions of the symmetrizations

As in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], let Ω be a

C 2 bounded domain of R n , let A Ω ∈ C 1 (Ω, S n (R)), Λ Ω ∈ C 1 (Ω) ∩ L ∞ + (Ω)
and assume that A Ω (x) ≥ Λ Ω (x)Id for all x ∈ Ω. Let ψ be a C 1 (Ω) function, analytic and positive in Ω, such that div(A Ω ∇ψ) ∈ L 1 (Ω), ψ = 0 on ∂Ω and |∇ψ(x)| = 0 for all x ∈ ∂Ω, so that ν • ∇ψ < 0 on ∂Ω, where ν denotes the outward unit normal to ∂Ω. For the sake of completeness, let us recall some definitions and notations already introduced in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF]. Set M = max x∈Ω ψ(x). For all a ∈ [0, M ), define

Ω a = x ∈ Ω; ψ(x) > a (2.1)
and, for all a ∈ [0, M ],

Σ a = x ∈ Ω; ψ(x) = a .
Notice that the n-dimensional Lebesgue measure |Σ a | of Σ a is equal to 0 for every a ∈ (0, M ] by analyticity of ψ in Ω, and that the n-dimensional Lebesgue measure of Σ 0 = ∂Ω is also equal to 0. The set {x ∈ Ω; ∇ψ(x) = 0} is included in some compact set K ⊂ Ω, which implies that the set

Z = a ∈ [0, M ]; ∃ x ∈ Σ a , ∇ψ(x) = 0
of the critical values of ψ is finite ( [START_REF] Souček | Morse-Sard theorem for real-analytic functions[END_REF]) and can then be written as

Z = {a 1 , • • • , a m } for some positive integer m ∈ N * = N\{0}.
Observe also that M ∈ Z and that 0 ∈ Z. One can then assume without loss of generality that 0

< a 1 < • • • < a m = M . The set Y = [0, M ]\Z of the non-critical values of ψ is open relatively to [0, M ]
and can be written as

Y = [0, M ]\Z = [0, a 1 ) ∪ (a 1 , a 2 ) ∪ • • • ∪ (a m-1 , M ).
Denote by R the radius of Ω * , that is Ω * = B R , where, for s > 0, B s denotes the open Euclidean ball centered at the origin with radius s. For all a ∈ [0, M ), let ρ(a) ∈ (0, R] be defined so that

|Ω a | = |B ρ(a) | = α n ρ(a) n , (2.2) 
where α n is the volume of the unit ball B 1 . The function ρ is extended at M by ρ(M ) = 0. It follows then from [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] (Lemma 3.1 in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF]) and the fact that

|Σ a | = 0 for every a ∈ [0, M ] that ρ is a continuous decreasing map from [0, M ] onto [0, R]. Lastly, call E = x ∈ Ω * ; |x| ∈ ρ(Y ) . (2.3)
The set E is a finite union of spherical shells, it is open relatively to Ω * and can be written as

E = x ∈ R n ; |x| ∈ (0, ρ(a m-1 )) ∪ • • • ∪ (ρ(a 2 ), ρ(a 1 )) ∪ (ρ(a 1 ), R] with 0 = ρ(a m ) = ρ(M ) < ρ(a m-1 ) < • • • < ρ(a 1 ) < R. Notice that 0 ∈ E.
Let us now recall the definition of the symmetrization ψ of ψ introduced in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF]. To do so, we first define a symmetrization of Λ Ω . Namely, for all r ∈ ρ(Y ), set

G(r) = Σ ρ -1 (r) |∇ψ(y)| -1 dσ ρ -1 (r) Σ ρ -1 (r) Λ Ω (y) -1 |∇ψ(y)| -1 dσ ρ -1 (r) > 0, (2.4) 
where ρ -1 : [0, R] → [0, M ] denotes the reciprocal of the function ρ and dσ a denotes the surface measure on Σ a for a ∈ Y . For all x ∈ E, define

Λ(x) = G(|x|) (2.5)
and set, say, Λ(x) = 0 for all x in the negligible set

Ω * \E = Σ a 1 ∪ • • • ∪ Σ am . Notice that 0 < min Ω Λ Ω ≤ ess inf Ω * Λ ≤ ess sup Ω * Λ ≤ max Ω Λ Ω and Ω * Λ -1 = Ω Λ -1 Ω (2.6)
from the co-area formula and the fact that

|Σ a | = 0 for all a ∈ [0, M ]. Furthermore, the L ∞ + (Ω * ) function Λ is actually of class C 1 in E ∩ Ω * . Define now F (0) = 0 and, for all r ∈ ρ(Y ), set F (r) = 1 nα n r n-1 G(r) Ω ρ -1 (r) div(A Ω ∇ψ)(x) dx. (2.7)
This definition makes sense when r ∈ ρ(Y )\{R} since A Ω ∇ψ is of class C 1 in Ω, and also when r = R since div(A Ω ∇ψ) is assumed to be in L 1 (Ω). Let ν a denote the outward unit normal to Ω a for a ∈ Y . From Green-Riemann formula, there holds

F (r) = 1 nα n r n-1 G(r) Σ ρ -1 (r)
A Ω (y)∇ψ(y)

• ν ρ -1 (r) (y) dσ ρ -1 (r) = -1 nα n r n-1 G(r) Σ ρ -1 (r) |∇ψ(y)| A Ω (y)ν ρ -1 (r) (y) • ν ρ -1 (r) (y) dσ ρ -1 (r) < 0 (2.8)
for all r ∈ ρ(Y )\{R}, as well as for r = R from Lebesgue's theorem and the smoothness of ∂Ω. From (2.7) and (2.8), it follows that the function F is actually continuous and bounded on the set ρ(Y

) ∪ {0} = [0, ρ(a m-1 )) ∪ • • • ∪ (ρ(a 2 ), ρ(a 1 )) ∪ (ρ(a 1 )
, R] (the continuity at r = 0 follows from definition (2.7) and the fact that

|Ω ρ -1 (r) | = |B r | = α n r n ). Finally, for all x ∈ Ω * , set ψ(x) = - R |x| F (r)dr.
(2.9)

We recall from [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] that ψ is positive in Ω * , equal to zero on ∂Ω * = ∂B R , radially symmetric, decreasing with respect to

|x| in Ω * , continuous in Ω * , of class C 1 in E ∪ {0}, of class C 2 in E ∩ Ω * , and that ψ ∈ W 1,∞ (Ω * ) ∩ H 1 0 (Ω *
). Throughout this Section 2, we are also given a real number q such that 1 ≤ q ≤ 2, and two continuous functions a Ω and f Ω in Ω. We now define symmetrizations of the coefficients a Ω and f Ω . For all x ∈ E, define a(x) by

a(x) =                    max y∈Σ ρ -1 (|x|) a + Ω (y)Λ -1 Ω (y) × Λ(x) if q = 2,      Σ ρ -1 (|x|) a + Ω (y) 2 2-q Λ Ω (y) -q 2-q |∇ψ(y)| -1 dσ ρ -1 (|x|) Σ ρ -1 (|x|) |∇ψ(y)| -1 dσ ρ -1 (|x|)      2-q 2 × Λ(x) q 2 if 1 ≤ q < 2, (2.10) 
and f (x) by

f (x) = Σ ρ -1 (|x|) f Ω (y) |∇ψ(y)| -1 dσ ρ -1 (|x|) Σ ρ -1 (|x|) |∇ψ(y)| -1 dσ ρ -1 (|x|)
.

(2.11)

Note that a and f are defined almost everywhere in Ω * (they can be extended by, say, 0 on Ω * \E).

Let us list here a few basic properties satisfied by the functions a and f , which will be used later in Section 3. Firstly, the functions a and f are continuous in E. Secondly, from (2.5), it follows immediately that, when q = 2, a(x) ≥ min

Ω a + Ω for all x ∈ E. (2.12) 
When 1 ≤ q < 2, the Hölder inequality yields, for all x ∈ E,

Σ ρ -1 (|x|) Λ Ω (y) -1 |∇ψ(y)| -1 dσ ρ -1 (|x|) ≤ Σ ρ -1 (|x|) Λ Ω (y) -q 2-q |∇ψ(y)| -1 dσ ρ -1 (|x|) 2-q q × Σ ρ -1 (|x|) |∇ψ(y)| -1 dσ ρ -1 (|x|) 2q-2 q , whence a(x) Λ(x) -q 2 ≥ min Ω a + Ω ×      Σ ρ -1 (|x|) Λ Ω (y) -q 2-q |∇ψ(y)| -1 dσ ρ -1 (|x|) Σ ρ -1 (|x|) |∇ψ(y)| -1 dσ ρ -1 (|x|)      2-q 2 ≥ min Ω a + Ω ×      Σ ρ -1 (|x|) Λ Ω (y) -1 |∇ψ(y)| -1 dσ ρ -1 (|x|) Σ ρ -1 (|x|) |∇ψ(y)| -1 dσ ρ -1 (|x|)      q 2 = min Ω a + Ω × Λ(x) -q 2
from (2.5). Therefore, (2.12) holds for 1 ≤ q < 2 as well. As for the upper bound of a, it follows immediately from (2.6) and (2.10) that, when q = 2,

a(x) ≤ max Ω a + Ω × max Ω Λ -1 Ω × max Ω Λ Ω = max Ω a + Ω × max Ω Λ Ω min Ω Λ Ω
for all x ∈ E. When 1 ≤ q < 2, we get from (2.5), (2.6), (2.10) and by writing Λ Ω (y) -q/(2-q) = Λ Ω (y) -2(q-1)/(2-q) × Λ Ω (y) -1 , that, for all x ∈ E,

a(x) Λ(x) -q 2 ≤ max Ω a + Ω × max Ω Λ -(q-1) Ω ×      Σ ρ -1 (|x|) Λ Ω (y) -1 |∇ψ(y)| -1 dσ ρ -1 (|x|) Σ ρ -1 (|x|) |∇ψ(y)| -1 dσ ρ -1 (|x|)      2-q 2 = max Ω a + Ω × max Ω Λ -(q-1) Ω × Λ(x) -2-q 2 , whence a(x) ≤ max Ω a + Ω × max Ω Λ -(q-1) Ω × Λ(x) q-1 ≤ max Ω a + Ω × max Ω Λ Ω / min Ω Λ Ω q-1 . To sum up, there holds min Ω a + Ω ≤ ess inf Ω * a ≤ ess sup Ω * a ≤ max Ω a + Ω × max Ω Λ Ω min Ω Λ Ω q-1 (2.13)
in all cases 1 ≤ q ≤ 2. We also point out that min

Ω f Ω ≤ ess inf Ω * f ≤ ess sup Ω * f ≤ max Ω f Ω and Ω * f = Ω f Ω . (2.14) 
from (2.11), the co-area formula and the fact that

|Σ a | = 0 for all a ∈ [0, M ].
Lastly, we are given a nonnegative continuous function b Ω in Ω.

Inequalities for the symmetrized data

Recall first that the function ψ satisfies the following key inequality (see [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], Corollary 3.6):

Proposition 2.1. For all x ∈ Ω * and all y ∈ Σ ρ -1 (|x|) , ψ(x) ≥ ψ(y) = ρ -1 (|x|) ≥ 0.
We now establish a pointwise differential inequality involving all the symmetrizations defined in Section 2.1:

Proposition 2.2. For all x ∈ E ∩ Ω * , there exists y ∈ Σ ρ -1 (|x|) such that -div Λ∇ ψ (x) -a(x)|∇ ψ(x)| q -f (x) ≤ -div(A Ω ∇ψ)(y) -a Ω (y) |∇ψ(y)| q -f Ω (y) ≤ -div(A Ω ∇ψ)(y) -a Ω (y) |∇ψ(y)| q + b Ω (y)ψ(y) -f Ω (y).
For the proof of Proposition 2.2, we need the following lemma: Lemma 2.3. For all x ∈ E with |x| = r, there holds

lim t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) a Ω (y) |∇ψ(y)| q dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) ≤ a(x) ∇ ψ(x) q (2.15)
and

lim t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t)
f Ω (y) dy

Ω ρ -1 (r) \ Ω ρ -1 (r-t) = f (x). (2.16) Proof. Let x ∈ E with |x| = r. Notice that {z ∈ R n ; r -η ≤ |z| ≤ r} ⊂ E
for some η > 0, and that formula (2.16) is an immediate consequence of the co-area formula and the definition (2.11) of f . For the proof of (2.15), consider first the case where q = 2. By the co-area formula, lim

t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) a Ω (y) |∇ψ(y)| 2 dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) = Σ ρ -1 (r) a Ω (y) |∇ψ(y)| dσ ρ -1 (r) Σ ρ -1 (r) |∇ψ(y)| -1 dσ ρ -1 (r)
.

As a consequence, by the definition of a in (2.10), lim

t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) a Ω (y) |∇ψ(y)| 2 dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) ≤ a(x) Λ(x) -1 Σ ρ -1 (r) Λ Ω (y) |∇ψ(y)| dσ ρ -1 (r) Σ ρ -1 (r) |∇ψ(y)| -1 dσ ρ -1 (r)
.

But inequality (3.16) in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] yields

Σ ρ -1 (r) Λ Ω (y) |∇ψ(y)| dσ ρ -1 (r) Σ ρ -1 (r) |∇ψ(y)| -1 dσ ρ -1 (r) ≤ Λ(x) ∇ ψ(x) 2 , (2.17) 
which ends the proof of (2.15) when q = 2. Consider now the case where 1 ≤ q < 2. Then, using the co-area formula again, one has lim

t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) a Ω (y) |∇ψ(y)| q dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) = Σ ρ -1 (r) a Ω (y) |∇ψ(y)| q-1 dσ ρ -1 (r) Σ ρ -1 (r) |∇ψ(y)| -1 dσ ρ -1 (r)
.

(2.18)

The Hölder inequality yields

Σ ρ -1 (r) a Ω (y) |∇ψ(y)| q-1 dσ ρ -1 (r) ≤ Σ ρ -1 (r) a + Ω (y)Λ Ω (y) -q 2 |∇ψ(y)| q 2 -1 Λ Ω (y) q 2 |∇ψ(y)| q 2 dσ ρ -1 (r) ≤ Σ ρ -1 (r) a + Ω (y) 2 2-q Λ Ω (y) -q 2-q |∇ψ(y)| -1 dσ ρ -1 (r) 2-q 2 × Σ ρ -1 (r) Λ Ω (y) |∇ψ(y)| dσ ρ -1 (r) q 2
, so that, by the definition (2.10) of a and by (2.18), lim

t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) a Ω (y) |∇ψ(y)| q dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) ≤ a(x) Λ(x) -q 2 ×      Σ ρ -1 (r) Λ Ω (y) |∇ψ(y)| dσ ρ -1 (r) Σ ρ -1 (r) |∇ψ(y)| -1 dσ ρ -1 (r)      q 2 .
Using inequality (2.17), one therefore concludes that lim

t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) a Ω (y) |∇ψ(y)| q dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) ≤ a(x) ∇ ψ(x) q ,
as claimed. The proof of Lemma 2.3 is thereby complete.

Proof of Proposition 2.2. Let x ∈ E ∩ Ω * with |x| = r and let η be a positive real number such that {z ∈ R n ; r -η ≤ |z| ≤ r} ⊂ E ∩ Ω * . It follows from the definition of ψ and the Green-Riemann formula that, for all t ∈ (0, η] and for all z ∈ R n with |z| = 1, one has

Ω ρ -1 (r) \Ω ρ -1 (r-t) div(A Ω ∇ψ)(y) dy = nα n r n-1 Λ(rz)∇ ψ(rz) • z -nα n (r -t) n-1 Λ((r -t)z)∇ ψ((r -t)z) • z = Br\B r-t div Λ∇ ψ (y) dy,
since Λ is radially symmetric and of class C 1 in E and ψ is radially symmetric and of class 

C 2 in E ∩ Ω * . Hence, lim t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) div(A Ω ∇ψ)(y) dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) = lim t→0 + Br\B r-t div Λ∇ ψ (y) dy |B r \ B r-t | = div Λ∇ ψ (x). ( 2 
t→0 + Ω ρ -1 (r) \Ω ρ -1 (r-t) div(A Ω ∇ψ)(y) + a Ω (y) |∇ψ(y)| q + f Ω (y) dy Ω ρ -1 (r) \ Ω ρ -1 (r-t) ≤ div Λ∇ ψ (x) + a(x) ∇ ψ(x) q + f(x).
Arguing as in the proof of Proposition 3.8 in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], one therefore obtains the existence of a point y ∈ Σ ρ -1 (r) such that div(A Ω ∇ψ)(y) + a Ω (y) |∇ψ(y)| q + f Ω (y) ≤ div Λ∇ ψ (x) + a(x) ∇ ψ(x) q + f (x). Since both functions b Ω and ψ are nonnegative, the conclusion of Proposition 2.2 readily follows.

An improved inequality when min Ω b Ω > 0

Let us now state an improved version of Proposition 2.2, assuming especially that b Ω is bounded from below on Ω by a positive constant. For all N > 0 and all β > 0, let E N,β (Ω) be the set of functions

φ ∈ C 1 (Ω) such that φ = 0 on ∂Ω, φ C 1 (Ω) ≤ N and φ(x) ≥ β d(x, ∂Ω) ≥ 0 for all x ∈ Ω, where d(•, ∂Ω) denotes the Euclidean distance to ∂Ω and φ C 1 (Ω) = φ L ∞ (Ω) + |∇φ| L ∞ (Ω) .
Proposition 2.4. In addition to the general assumptions of Section 2.1, assume that

min Ω b Ω ≥ m b > 0, (2.20) that m Λ > 0, M a ≥ 0, M f ≥ 0, N > 0 and β > 0 are such that min Ω Λ Ω ≥ m Λ > 0, a + Ω L ∞ (Ω) ≤ M a , f + Ω L ∞ (Ω) ≤ M f and ψ ∈ E N,β ( 
Ω), and that there exists κ ≥ 0 such that

-div(A Ω ∇ψ)(y) -a Ω (y) |∇ψ(y)| q + b Ω (y)ψ(y) -f Ω (y) ≤ κ in Ω.
(2.21)

Then there exists a constant δ > 0 only depending on Ω, n, m b , m Λ , M a , M f , N , β and κ, with the following property: for all x ∈ E ∩ Ω * , there exists y ∈ Σ ρ -1 (|x|) such that

-div Λ∇ ψ (x) -a(x) ∇ ψ(x) q + δ ψ(x) -f (x) ≤ -div(A Ω ∇ψ)(y) -a Ω (y) |∇ψ(y)| q + b Ω (y)ψ(y) -f Ω (y).
The proof relies on the following observation:

Lemma 2.5. Under the assumptions of Proposition 2.4, there exists a constant δ > 0 only depending on Ω, n, m Λ , M a , M f , N , β and κ, such that, for all x ∈ Ω * and all y ∈ Σ ρ -1 (|x|) , there holds δ ψ(x) ≤ ψ(y).

Proof. We first claim that there exists γ > 0 only depending on Ω and β such that, for all φ ∈ E N,β (Ω) and all a ∈ [0, max

Ω φ], 0 ≤ α n (R n -(ρ φ (a)) n ) ≤ γa, (2.22) 
where ρ φ is the function ρ associated with φ, as defined in (2. 

y k ∈ Σ (ρ φ k ) -1 (|x k |) and d(y k , ∂Ω) < d(x k , ∂Ω * ) k (2.24)
for all k ≥ 1. This implies that d(y k , ∂Ω) → 0, and since the C 1 (Ω) norms of the functions φ k are uniformly bounded, it follows that

φ k (y k ) → 0. Applying (2.22) with a = φ k (y k ), one obtains that ρ φ k (φ k (y k )) → R, that is |x k | = ρ φ k (φ k (y k )) → R when k → +∞.
Using again the uniform bound for the C 1 (Ω) norms of φ k , one has, for all k large enough,

φ k (y k ) ≤ N d(y k , ∂Ω), whence φ k (y k ) ≤ N d(x k , ∂Ω * )/k = N (R -|x k |)/k.
Applying ρ φ k to both sides of this inequality and using the fact that ρ φ k is nonincreasing, it follows that

|x k | ≥ ρ φ k (N (R -|x k |)/k
) for all k large enough. Using (2.22) again, one easily deduces that, for all k large enough, 

α n |x k | n ≥ α n R n -γN (R -|x k |)/k, that is, for all k large enough, α n R n -|x k | n R -|x k | ≤ γN k (note
ψ(y) ≥ β d(y, ∂Ω) ≥ β η d(x, ∂Ω * ) = β η (R -|x|) (2.25)
for all x ∈ Ω * and y ∈ Σ ρ -1 (|x|) . But, using (2.4), (2.7), (2.21) and the nonnegativity of b Ω and ψ, one has, for all r ∈ ρ(Y ),

-F (r) ≤ 1 nα n r n-1 G(r) Ω ρ -1 (r) a + Ω L ∞ (Ω) N q + κ + f + Ω L ∞ (Ω) dy ≤ R M a max(1, N ) 2 + κ + M f n m Λ , since min Ω Λ Ω ≥ m Λ > 0 and |Ω ρ -1 (r) | = |B r | = α n r n .
Together with (2.9), it follows that there exists θ > 0 only depending on Ω, n, m Λ , M a , M f , N and κ, such that 

ψ(x) ≤ θ (R -|x|) (2.
-div Λ∇ ψ (x) -a(x) ∇ ψ(x) q -f (x) ≤ -div(A Ω ∇ψ)(y) -a Ω (y) |∇ψ(y)| q -f Ω (y). (2.27)
Now, it follows from Lemma 2.5 and (2.20) that, with δ = δ m b > 0, one has

δ ψ(x) ≤ m b ψ(y) ≤ b Ω (y) ψ(y), (2.28) 
and it is therefore enough to sum up (2.27) and (2.28) to obtain the conclusion of Proposition 2.4.

2.4

The case where Ω is not a ball

Let us finally recall that Proposition 2.1 can be improved when Ω is not a ball. Following Section 4 of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], for all α ∈ (0, 1), all N > 0 and all β > 0, let E α,N,β (Ω) be the set of functions

φ ∈ E N,β (Ω) ∩ C 1,α (Ω) such that φ C 1,α (Ω) ≤ N , where φ C 1,α (Ω) = φ C 1 (Ω) + sup (x,y)∈Ω×Ω, x =y |∇φ(x) -∇φ(y)| |x -y| α .
It was established in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] (Corollary 4.4 in [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF]) that:

Proposition 2.6. In addition to the general assumptions of Section 2.1, assume that ψ ∈ E α,N,β (Ω) for some α ∈ (0, 1), N > 0, β > 0, and that Ω is not a ball. Then, there exists η > 0 only depending on Ω, n, α, N and β such that ψ(x) ≥ (1 + η) ψ(y) for all x ∈ Ω * and all y ∈ Σ ρ -1 (|x|) .

3 Linear growth with respect to the gradient This section is devoted to the proofs of Theorems 1.1 and 1.3. The proofs of some technical lemmas used in the proofs of these theorems are done in Section 3.2. The proofs of Theorems 1.1 and 1.3, that are done in Section 3.1, follow the same general scheme. As a matter of fact, the only difference in the conclusions (1.6), (1.10) and (1.12) is that the inequalities (1.10) and (1.12) are quantified when Ω is not a ball, in that they involve a parameter η u > 0 (resp. η > 0) which depends on Ω, n and u (resp. Ω, n and M given in (1.11)). Most of the steps of the proofs of Theorems 1.1 and 1.3 will be identical, this is the reason why the proofs are done simultaneously. However, in some steps or in some arguments, we will consider specifically the case where Ω is not ball and where the assumption (1.11) is made. Some more precise estimates will be proved in this case. Throughout this section, we assume (1.3) and (1.4) with Λ ∈ L ∞ + (Ω) and q = 1, that is the nonlinear function H is bounded from below by an at most linear function of |p|. Furthermore, u ∈ W (Ω) denotes a solution of (1.1) such that u > 0 in Ω and |∇u| = 0 on ∂Ω.

(3.1)
We recall that, even if it means redefining u on a negligible subset of Ω, one can assume without loss of generality that u ∈ C 1,α (Ω) for all α ∈ [0, 1).

Proofs of Theorems 1.1 and 1.3

The preliminary step (Step 1) of the proofs is concerned with some uniform bounds on u, depending only on Ω, n and M , under the assumption (1.11). These bounds, which are of independent interest, will be used later in the specific case where Ω is not a ball. Then, the general strategy consists firstly in approximating u in Ω by smooth solutions u j of some regularized equations (Step 2) and then in applying the rearrangement inequalities of Section 2 to the approximated solutions u j and the coefficients appearing in the approximated equations (Step 3). In Step 3, these rearrangement inequalities are quantified when Ω is not a ball and (1.11) is assumed. The ideas used in the next steps of the proofs are identical for Theorems 1.1 and 1.3. More precisely, in Steps 4 and 5, we apply a maximum principle to the symmetrized functions in Ω * , called ψ k = u j k , namely we compare them to the solutions v k of some radially symmetric equations in Ω * . We then pass to the limit as k → +∞ in Ω * (Steps 6 and 7). We also approximate the symmetrized coefficients f k in Ω * appearing in the proof by some functions in Ω * having the same distribution function as the function f u defined in (1.8) (Steps 8 and 9). Finally, in Steps 10 and 11, we pass to some limits and we use the Hardy-Littlewood inequality to compare some approximated solutions in Ω * with the solution v of (1.7).

Step 1: uniform bounds on u under assumption (1.11) In this step, some uniform pointwise and smoothness estimates are established under assumption (1.11).

Actually, these quantified estimates will only be needed for the quantified inequality (1.12) in Theorem 1.3.

We recall that the sets E α,N,β (Ω) have been defined in Section 2.4

Lemma 3.1. Under assumption (1.11), there are some real numbers N > 0 and β > 0, which depend only on Ω, n and M , such that u ∈ E 1/2,N,β (Ω).

The proof of this lemma, which has its independent interest, is postponed in Section 3.2. We prefer to directly go in the sequel on the main steps of the proofs of Theorems 1.1 and 1.3.

Step 2: approximated coefficients and approximated solutions u j in Ω Let H ∞ : Ω → R be the continuous function defined by H ∞ (x) = H(x, u(x), ∇u(x)) for all x ∈ Ω and let (H j ) j∈N be a sequence of polynomial functions such that

H j (x) -→ j→+∞ H ∞ (x) = H(x, u(x), ∇u(x)) uniformly in x ∈ Ω. (3.2)
We recall that the given matrix field

A = (A i,i ′ ) 1≤i,i ′ ≤n is in W 1,∞ (Ω, S n (R)
) and that all entries A i,i ′ can be assumed to be continuous in Ω without loss of generality. Now, following Steps 1 and 2 of Section 5.2.1 of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF], there is a sequence of C ∞ (Ω, S n (R)) matrix fields (A j ) j∈N = ((A j;i,i ′ ) 1≤i,i ′ ≤n ) j∈N with polynomial entries A j;i,i ′ and a sequence of

C ∞ (Ω) ∩ L ∞ + (Ω) functions (Λ j ) j∈N such that            A j;i,i ′ -→ j→+∞ A i,i ′ uniformly in Ω for all 1 ≤ i, i ′ ≤ n, sup j∈N A j W 1,∞ (Ω) < +∞, A j ≥ Λ j Id in Ω and Λ -1 j L 1 (Ω) = Λ -1 L 1 (Ω) for all j ∈ N, 0 < ess inf Ω Λ ≤ lim inf j→+∞ min Ω Λ j ≤ lim sup j→+∞ max Ω Λ j ≤ ess sup Ω Λ (3.3)
(namely, one can take A j = A j,j and Λ j = α j,j Λ j,j for all j ∈ N, with the notations of Section 5.2.1 of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF]).

For each j ∈ N, let u j be the solution of -div(A j ∇u j )(x) = -H j (x) in Ω,

u j = 0 on ∂Ω. (3.4)
Each function u j belongs to W (Ω) ∩ H 1 0 (Ω) and is analytic in Ω. Furthermore, from the previous definitions and from standard elliptic estimates, the functions u j converge, up to extraction of a subsequence, in W 2,p (Ω) weakly for all 1 ≤ p < +∞ and in C 1,α (Ω) strongly for all 0 ≤ α < 1 to the solution

u ∞ ∈ W (Ω) ∩ H 1 0 (Ω) of -div(A∇u ∞ )(x) = -H ∞ (x) = -H(x, u(x), ∇u(x)) in Ω, u ∞ = 0 on ∂Ω,
which, by uniqueness of the solution of this linear problem with right-hand side -H ∞ , is necessarily equal to u. By uniqueness of the limit, one gets that the whole sequence (u j ) j∈N converges to u in W 2,p (Ω) weak for all 1 ≤ p < +∞ and in C 1,α (Ω) strong for all 0 ≤ α < 1.

On the other hand, there are some positive real numbers N u and β u , which depend on u, such that u ∈ E 1/2,Nu,βu (Ω), because of (3.1) and the smoothness of u. Thus, it follows from the convergence of the sequence (u j ) j∈N to u, in (at least) C 1,1/2 (Ω) that, for all j large enough,

|∇u j | = 0 on ∂Ω, u j > 0 in Ω and u j ∈ E 1/2,2Nu,βu/2 (Ω) (3.5) 
(notice that the properties |∇u j | = 0 on ∂Ω and u j > 0 in Ω are actually automatically fulfilled when the third property u j ∈ E 1/2,2Nu,βu/2 (Ω) is fulfilled, since β u > 0, but we prefer to write the three properties all together for the sake of clarity). We can assume that (3.5) holds for all j ∈ N without loss of generality. Furthermore, under assumption (1.11) of Theorem 1.3, it follows from Lemma 3.1 that u ∈ E 1/2,N,β (Ω) for some positive constants N and β which only depend on Ω, n and M (and which do not depend on u). As in the previous paragraph, one can then assume without loss of generality that, under assumption (1.11), |∇u j | = 0 on ∂Ω, u j > 0 in Ω and u j ∈ E 1/2,2N,β/2 (Ω) for all j ∈ N.

(3.6)

Step 3: symmetrized coefficients and the inequalities u

* j k ≤ ψ k , (1+η u ) u * j k ≤ ψ k and (1+η) u * j k ≤ ψ k in Ω *
Let now k ∈ N be fixed in this step and in the next two ones. For all j ∈ N and x ∈ Ω, denote

B j (x) = -div(A j ∇u j )(x) -a(x, u(x), ∇u(x)) |∇u j (x)| + b(x, u(x), ∇u(x)) u j (x) -f (x, u(x), ∇u(x)) -2 -k = -H j (x) -a(x, u(x), ∇u(x)) |∇u j (x)| + b(x, u(x), ∇u(x)) u j (x) -f (x, u(x), ∇u(x)) -2 -k .
Due to (1.4), (3.2) and the fact that u j → u in (at least) C 1 (Ω) as j → +∞, it follows that lim sup j→+∞ sup x∈Ω B j (x) ≤ -2 -k < 0. Therefore, there is an integer

j k ∈ N such that B j k (x) ≤ 0 for all x ∈ Ω, that is -div(A j k ∇u j k )(x) -a(x, u(x), ∇u(x)) |∇u j k (x)| + b(x, u(x), ∇u(x)) u j k (x) -f (x, u(x), ∇u(x)) -2 -k ≤ 0 for all x ∈ Ω. (3.7)
Without loss of generality, one can assume that j k ≥ k.

One can then apply the general results of Section 2 to the coefficients

     A Ω (x) = A j k (x), Λ Ω (x) = Λ j k (x), ψ(x) = u j k (x), a Ω (x) = a(x, u(x), ∇u(x)), b Ω (x) = b(x, u(x), ∇u(x)), f Ω (x) = f (x, u(x), ∇u(x)) = f u (x), (3.8) 
and q = 1. Call

ρ k : [0, max Ω u j k ] → [0, R], E k , Λ k , ψ k ,
a k and f k the symmetrized quantities defined as in (2.2), (2.3), (2.5), (2.9), (2.10) and (2.11). In particular, the set E k can be written as

E k = x ∈ R n ; |x| ∈ (0, ρ k (a k m k -1 )) ∪ • • • ∪ (ρ k (a k 2 ), ρ k (a k 1 )) ∪ (ρ k (a k 1 ), R] (3.9) 
where 0 

< a k 1 < • • • < a k m k = max Ω u j k denote the m k critical values of the function u j k in Ω. The function ψ k belongs to W 1,∞ (Ω * )∩H 1 0 (Ω * ) and is of class C 1 in E k ∪{0} and C 2 in E k ∩Ω * , the function Λ k ∈ L ∞ + (Ω * ) is of class C 1 in E k ∩ Ω * and the functions a k and f k ∈ L ∞ (Ω * ) are continuous in E k . All functions Λ k , ψ k ,
                0 < min Ω Λ j k ≤ ess inf Ω * Λ k ≤ ess sup Ω * Λ k ≤ max Ω Λ j k , Λ -1 k L 1 (Ω * ) = Λ -1 j k L 1 (Ω) = Λ -1 L 1 (Ω) , inf Ω×R×R n a + ≤ min Ω a(•, u(•), ∇u(•)) + ≤ ess inf Ω * a k ≤ ess sup Ω * a k ≤ max Ω a(•, u(•), ∇u(•)) + ≤ sup Ω×R×R n a + , inf Ω×R×R n f ≤ min Ω f u ≤ ess inf Ω * f k ≤ ess sup Ω * f k ≤ max Ω f u ≤ sup Ω×R×R n f. (3.10)
For the proof of Theorem 1.1, it follows then from Proposition 2.1 that

ψ k (x) ≥ u j k (y) ≥ 0 for all x ∈ Ω * and y ∈ Σ ρ -1 k (|x|) . (3.11) 
That means that 0

≤ u * j k (x) ≤ ψ k (x) for all x ∈ Ω * , (3.12) 
where u * j k denotes the Schwarz symmetrization of the function u j k . On the other hand, if Ω is not a ball, it follows from (3.5) and Proposition 2.6 that, for all x ∈ Ω * and y ∈ Σ ρ -1 k (|x|) , ψ k (x) ≥ (1 + η u ) u j k (y) ≥ 0, where η u > 0 only depends on Ω, n, N u and β u , that is on Ω, n and u. Therefore, 0

≤ (1 + η u ) u * j k (x) ≤ ψ k (x) for all x ∈ Ω * . (3.13)
Furthermore, if Ω is not a ball and the assumption (1.11) of Theorem 1.3 is made, it follows from (3.6) and Proposition 2.6 that ψ k (x) ≥ (1 + η) u j k (y) ≥ 0 for all x ∈ Ω * and y ∈ Σ ρ -1 k (|x|) , where η > 0 only depends on Ω, n, N and β, that is on Ω, n and M . Therefore,

0 ≤ (1 + η) u * j k (x) ≤ ψ k (x) for all x ∈ Ω * (3.14)
in this case. Lastly, for both Theorems 1.1 and 1.3, Proposition 2.2 implies that, for all x ∈ E k ∩ Ω * , there exists a point y

∈ Σ ρ -1 k (|x|) such that -div Λ k ∇ ψ k (x) -a k (x)|∇ ψ k (x)| -f k (x) -2 -k ≤ -div(A j k ∇u j k )(y) -a(y, u(y), ∇u(y)) |∇u j k (y)| + b(y, u(y), ∇u(y)) u j k (y) -f (y, u(y), ∇u(y)) -2 -k ≤ 0,
where the last inequality follows from (3.7). In other words,

-div Λ k ∇ ψ k (x) + a k (x)e r (x) • ∇ ψ k (x) ≤ g k (x) for all x ∈ E k ∩ Ω * , (3.15) 
where e r (x) = x/|x| for all x ∈ R n \{0} and

g k (x) = f k (x) + 2 -k (3.16)
for all x ∈ E k (remember indeed that ∇ ψ k (x) points in the direction of -e r (x) for all x ∈ E k , from (2.8) and (2.9)).

Step 4: the functions ψ k are H 1 0 (Ω * ) weak subsolutions of (3.15) The inequality (3.15) holds in E k ∩ Ω * , whence almost everywhere in Ω * . But the quantities appearing in (3.15) might be discontinuous across the critical spheres ∂E k in general. The goal of this step is to show that (3.15) holds nevertheless in the H 1 0 (Ω * ) weak sense as well, as stated in the following lemma.

Lemma 3.2. There holds

Ω * Λ k ∇ ψ k • ∇ϕ + Ω * a k e r • ∇ ψ k ϕ - Ω * g k ϕ ≤ 0 (3.17)
for all k ∈ N and for all ϕ ∈ H 1 0 (Ω * ) with ϕ ≥ 0 a.e. in Ω * .

In order not to lengthen the main scheme of the proofs of Theorems 1.1 and 1.3, the proof of Lemma 3.2 is postponed in Section 3.2 below.

Step 5: the inequalities u

* j k ≤ v k , (1 + η u ) u * j k ≤ v k and (1 + η) u * j k ≤ v k in Ω *
We first point out that a k and g k are in L ∞ (Ω * ). Let then v k be the unique H 1 0 (Ω * ) solution of

-div Λ k ∇v k + a k e r • ∇v k = g k in Ω * , v k = 0 on ∂Ω * , (3.18) 
where the above equation is understood in the weak sense, that is

Ω * Λ k ∇v k • ∇ϕ + Ω * a k (e r • ∇v k ) ϕ - Ω * g k ϕ = 0 for every ϕ ∈ H 1 0 (Ω * ).
The existence and uniqueness of v k is guaranteed by Theorem 8.3 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. Since ψ k is an H 1 0 (Ω * ) subsolution of this problem, in the sense of Lemma 3.2 of Step 4, it then follows from the weak maximum principle (see Theorem 8.1 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that ψ k ≤ v k a.e. in Ω * . Hence, (3.12) yields 0

≤ u * j k ≤ v k a.e. in Ω * (3.19)
under the assumptions of Theorem 1.1, whereas (3.13) implies that

0 ≤ (1 + η u ) u * j k ≤ v k a.e. in Ω * (3.20)
if Ω is not a ball, and (3.14) yields

0 ≤ (1 + η) u * j k ≤ v k a.e. in Ω * , (3.21) 
if Ω is not a ball and (1.11) is assumed, where η u > 0 and η > 0 are as in Step 3.

Step 6: the limiting inequalities

u * ≤ v ∞ , (1 + η u ) u * ≤ v ∞ and (1 + η) u * ≤ v ∞ in Ω *
First of all, since u j → u as j → +∞ in (at least) C 1 (Ω) and since j k ≥ k for all k ∈ N, it follows from [START_REF] Crandall | Some relations between nonexpansive and order preserving mappings[END_REF] that u * j k → u * in L 1 (Ω * ) as k → +∞. Up to extraction of a subsequence, one can then assume that u * j k (x) → u * (x) a.e. in Ω * as k → +∞. (3.22) Let us now pass to the limit in the H 1 0 (Ω * ) solutions v k of (3.18). Notice first, from (3.3), (3.10) and (3.16), that the sequences ( Λ k ) k∈N , ( Λ -1 k ) k∈N , ( a k ) k∈N and (g k ) k∈N are bounded in L ∞ (Ω * ). It follows then from Corollary 8.7 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] that the sequence (v k ) k∈N is bounded in H 1 0 (Ω * ). Therefore, up to extraction of a subsequence, there exists a radially symmetric function v ∞ ∈ H 1 0 (Ω * ) such that under the assumptions of Theorem 1.1, that

v k ⇀ v ∞ in H 1 0 (Ω * ) weak, v k → v ∞ in L 2 (Ω * )
0 ≤ (1 + η u ) u * ≤ v ∞ a.e. in Ω * (3.25)
if Ω is not a ball, and that 0

≤ (1 + η) u * ≤ v ∞ a.e. in Ω * (3.26)
if Ω is not a ball and assumption (1.11) is made, where η u > 0 and η > 0 are as in Step 3.

Step 7: a limiting equation satisfied by v ∞ in Ω *

Let us now pass to the limit in the coefficients Λ k , a k and g k of (3.18). From (3.3), (3.10) and (3.16), there exist three radially symmetric functions Λ ∈ L ∞ + (Ω * ), a ∈ L ∞ (Ω * ) and f ∈ L ∞ (Ω * ) such that, up to extraction of some subsequence,

Λ -1 k ⇀ Λ -1 , Λ -1 k a k ⇀ Λ -1 a and g k ⇀ f in L ∞ (Ω * ) weak-* as k → +∞, (3.27) whence 0 < ess inf Ω Λ ≤ ess inf Ω * Λ ≤ ess sup Ω * Λ ≤ ess sup Ω Λ and Λ -1 L 1 (Ω * ) = Λ -1 L 1 (Ω) . (3.28) 
Namely, the function a = Λ Λ -1 a is defined as Λ times the L ∞ (Ω * ) weak-* limit of the sequence ( Λ -1 k a k ) k∈N . Furthermore, a is thus the L ∞ (Ω * ) weak-* limit of the functions Λ Λ

-1 k a k . Since min Ω a(•, u(•), ∇u(•)) + ≤ ess inf Ω * a k ≤ ess sup Ω * a k ≤ max Ω a(•, u(•), ∇u(•)) + from (3.10), while (0 <) Λ Λ -1 k ⇀ 1 in the L ∞ (Ω * ) weak-* sense as k → +∞, it follows that 0 ≤ inf Ω×R×R n a + ≤ min Ω a(•, u(•), ∇u(•)) + ≤ ess inf Ω * a ≤ ess sup Ω * a ≤ max Ω a(•, u(•), ∇u(•)) + ≤ sup Ω×R×R n a + . (3.29)
The main goal of this step is to show that v ∞ is a weak H 1 0 (Ω * ) solution of the limiting equation obtained by passing formally to the limit as k → +∞ in (3.18).

Lemma 3.3. The function v ∞ is a weak H 1 0 (Ω * ) solution of -div Λ∇v ∞ + a e r • ∇v ∞ = f in Ω * , v ∞ = 0 on ∂Ω * , (3.30) in the sense that Ω * Λ ∇v ∞ • ∇ϕ + Ω * ( a e r • ∇v ∞ ) ϕ -Ω * f ϕ = 0 for every ϕ ∈ H 1 0 (Ω * ).
In order to go on the last steps of the proofs of Theorems 1.1 and 1.3, the proof of Lemma 3.3 is postponed in Section 3.2.

The radially symmetric functions Λ ∈ L ∞ + (Ω * ) and a ∈ L ∞ (Ω * ) will be those of the statements of Theorems 1.1 and 1.3. Notice in particular that the properties (1.5) follow from (3.28) and (3.29). Furthermore, we already know from (3.24), (3.25) and (3.26) 

that 0 ≤ u * ≤ v ∞ a.e. in Ω * (respectively 0 ≤ (1+η u ) u * ≤ v ∞ and 0 ≤ (1 + η) u * ≤ v ∞ )
under the assumptions of Theorem 1.1 (respectively Theorem 1.3 when Ω is not a ball, without or with assumption (1.11)), where v ∞ solves (3.30). However, the right-hand side of (3.30) involves a function f which may not be the Schwarz rearrangement f * u of the function f u defined in (1.8), or may even not have the same distribution function as f u . In the remaining four steps of the proofs of Theorems 1.1 and 1.3, one shall then approximate the function v ∞ by some functions w k and z l (different from the v k 's in general) and the functions f k by some functions having the same distribution function as f u = f (•, u(•), ∇u(•)), before finally comparing a function z L for L large enough to the solution v of (1.7) with H and f * u .

Step 8: approximation of v ∞ by some functions w k in Ω * Let ( f k ) k∈N be the sequence of radially symmetric functions defined in Step 3, and remember that the sequence ( f k ) k∈N is bounded in L ∞ (Ω * ) from (3.10) (one could replace f k by g k without any change in the conclusions). Since Λ ∈ L ∞ + (Ω * ) and a ∈ L ∞ (Ω * ), it follows from Theorem 8.3 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] that, for each k ∈ N, there is a unique weak H 1 0 (Ω * ) solution w k of

-div Λ∇w k + a e r • ∇w k = f k in Ω * , w k = 0 on ∂Ω * , (3.31) 
in the sense that

Ω * Λ ∇w k • ∇ϕ + Ω * ( a e r • ∇w k ) ϕ - Ω * f k ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ). (3.32)
Furthermore, the functions w k are all radially symmetric by uniqueness and since all the coefficients Λ, a and f k are radially symmetric. Lastly, as in Step 6 above, the sequence (w k ) k∈N is bounded in H 1 0 (Ω * ) from Corollary 8.7 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. There exists then a function w ∞ ∈ H 1 0 (Ω * ) such that, up to extraction of a subsequence, one has (3.16) and (3.27), it follows by passing to the limit as k → +∞ in (3.32) that

w k ⇀ w ∞ in H 1 0 (Ω * ) weak and w k → w ∞ in L 2 (Ω * ) strong as k → +∞. Since f k = g k -2 -k ⇀ f in L ∞ (Ω * ) weak-* as k → +∞ from
Ω * Λ ∇w ∞ • ∇ϕ + Ω * ( a e r • ∇w ∞ ) ϕ - Ω * f ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ).
In other words, w ∞ is a weak H 1 0 (Ω * ) solution of (3.30). Referring again to Theorem 8.3 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] for the uniqueness of the solution of (3.30), one concludes that w ∞ = v ∞ and that, by uniqueness of the limit, the whole sequence (w k ) k∈N converges to v ∞ in the following sense:

w k ⇀ v ∞ in H 1 0 (Ω * ) weak and w k → v ∞ in L 2 (Ω * ) strong as k → +∞. (3.33)
Step 9: approximation of the function w K for K large by some functions z l in Ω * Let ε > 0 be arbitrary and given until the end of the proofs of Theorems 1.1 and 1.3. From (3.33), there is an integer K ∈ N large enough such that

w K -v ∞ L 2 (Ω * ) ≤ ε 2 . (3.34)
The function w K is the weak H 1 0 (Ω * ) solution of (3.31) with k = K. The radially symmetric function f K ∈ L ∞ (Ω * ) in the right-hand side of (3.31) is given by (2.11) with f Ω (y) = f (y, u(y), ∇u(y)) = f u (y) and ρ = ρ K is given by the function ψ = u j K : namely, with the general notations of Section 2, there holds

f K (x) = Σ ρ -1 K (|x|) f u (y) |∇u j K (y)| -1 dσ ρ -1 K (|x|) Σ ρ -1 K (|x|) |∇u j K (y)| -1 dσ ρ -1 K (|x|)
for all x ∈ E K , where the set E K ⊂ Ω * is given by (3.9) with k = K. As already noticed in the general properties of Section 2, one knows that y ∈ Ω; u j K (y) = a = 0 for every a ∈ [0, max Ω u j K ]. It follows then from the co-area formula that

S ρ K (b),ρ K (a) f K = Ω a,b f u for all 0 ≤ a < b ≤ max Ω u j K ,
where Ω a,b = y ∈ Ω; a < u j K (y) < b . Therefore, one infers from Lemma 5.1 of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] (see also Lemma 1.1 of [START_REF] Alvino | A lower bound for the first eigenvalue of an elliptic operator[END_REF] and Lemma 2.2 of [START_REF] Alvino | Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri[END_REF]) that there is a sequence (h l ) l∈N of L ∞ (Ω * ) radially symmetric functions such that h l ⇀ f K as l → +∞ in L ∞ (Ω * ) weak-* and µ h l = µ fu for all l ∈ N, that is the functions h l have all the same distribution function as the function f u .

On the other hand, as in Step 8, there is for every l ∈ N a unique weak H 1 0 (Ω * ), and radially symmetric, solution z l of -div Λ∇z l + a e r • ∇z l = h l in Ω * , z l = 0 on ∂Ω * (3.35)

and the functions z l converge to w K in H 1 0 (Ω * ) weak and in L 2 (Ω * ) strong as l → +∞. In particular, there is L ∈ N large enough such that z

L -w K L 2 (Ω * ) ≤ ε/2, whence z L -v ∞ L 2 (Ω * ) ≤ ε (3.36)
from (3.34).

Step 10: the inequality z L ≤ z in Ω * Remember that the distributions functions µ h L and µ fu of the functions h L ∈ L ∞ (Ω * ) and f u ∈ L ∞ (Ω) are identical, and let z be the unique weak H 1 0 (Ω * ), and radially symmetric, solution of

-div Λ∇z + a e r • ∇z = f * u in Ω * , z = 0 on ∂Ω * , (3.37) 
where f * u ∈ L ∞ (Ω * ) is the radially symmetric Schwarz rearrangement of the function f u . The key-point of this step is the following lemma. Actually, the same inequality holds with z l for every l ∈ N, but we will only use it with the function z L . Notice also that, from the radial symmetry and the De Giorgi-Moser-Nash regularity theory (see Theorem 8.29 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), both functions z L and z can be assumed to be continuous in Ω * , even if it means redefining them on the negligible subset of Ω * . Therefore, the inequality z L (x) ≤ z(x) holds for all x ∈ Ω * without loss of generality.

The proof of this lemma is postponed in Section 3.2. Let us now conclude the proofs of Theorems 1.1 and 1.3.

Step 11: conclusion of the proofs of Theorems 1.1 and 1.3

Let v be the unique weak H 1 0 (Ω * ) solution of the equation (1.7) of Theorems 1.1 and 1.3, that is

-div Λ∇v -a |∇v| = f * u in Ω * , v = 0 on ∂Ω * .
Remember that the existence and uniqueness of v is guaranteed by Theorem 2.1 of [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF], and that v is actually radially symmetric and continuous in Ω * , with similar arguments as for the functions v and V in the second paragraph of the proof of Corollary 1.2. We also recall that a ≥ 0 a.e. in Ω * from (3.29). In particular, -div( Λ∇v) + a e r • ∇v ≥ -div( Λ∇v) -a |∇v| = f * u in the weak H 1 0 (Ω * ) sense, that is 

Ω * Λ ∇v • ∇ϕ + Ω * ( a e r • ∇v) ϕ -Ω * f * u ϕ ≥ 0 for every ϕ ∈ H 1 0 (Ω * )
(u * -v) + L 2 (Ω * ) ≤ (u * -v ∞ ) + + (v ∞ -z L ) + + (z L -v) + L 2 (Ω * ) ≤ (u * -v ∞ ) + L 2 (Ω * ) + (v ∞ -z L ) + L 2 (Ω * ) + (z L -v) + L 2 (Ω * ) ≤ 0 + ε + 0 = ε, (3.40) 
whereas, under the assumptions of Theorem 1.3, there holds similarly ((1

+ η u )u * -v) + L 2 (Ω * ) ≤ ε if Ω is not a ball and ((1 + η)u * -v) + L 2 (Ω * ) ≤ ε if Ω
is not a ball and assumption (1.11) is made, where η u > 0 (resp. η > 0) only depends on Ω, n and u (resp. on Ω, n and the constant M in (1.11)).

Since ε > 0 can be arbitrary and u * and v do not depend on ε, one concludes that (u * -v) + L 2 (Ω * ) = 0 under the assumptions of Theorem 1.1, that is 

u * ≤ v a.e. in Ω * , (3.41) whereas ((1 + η u )u * -v) + L 2 (Ω * ) = 0 (resp. ((1 + η)u * -v) + L 2 (Ω * ) = 0), that is (1 + η u ) u * ≤ v a.e. in Ω * (resp. (1 + η) u * ≤ v a.e. in Ω * ), if Ω is not a ball (resp. if Ω is
(Ω * ) ∩ L ∞ (Ω *
) is any weak solution of (1.23), provided such a solution v exists. For our problems (1.1) and (1.7), with the notations used in the above proof, it follows from Remark 3.13 of [START_REF] Hamel | Rearrangement inequalities and applications to isoperimetric problems for eigenvalues[END_REF] that

∇u j k L 1 (Ω,R n ) ≤ ∇ ψ k L 1 (Ω * ,R n ) and ∇u j k L 2 (Ω,R n ) ≤ M Λ j k /m Λ j k ∇ ψ k L 2 (Ω * ,R n ) , where M Λ j k = max Ω Λ j k and m Λ j k = min Ω Λ j k (in particular, if Λ is equal to a constant λ > 0 and Λ j k is chosen as the same constant λ, then ∇u j k L 2 (Ω,R n ) ≤ ∇ ψ k L 2 (Ω * ,R n ) )
. One also knows that u j k → u in C 1,α (Ω) for all 0 ≤ α < 1. However, it is not clear whether one could compare integral norms of |∇ ψ k | with those of |∇v k | in Ω * . Furthermore, the functions v k and w k (resp. z l ) are only known to converge to v ∞ (resp. w K ) weakly in H 1 0 (Ω * ), and the inequalities z L ≤ z ≤ v are only pointwise in Ω * . Therefore, deriving a comparison between ∇u L p (Ω,R n ) and ∇v L p (Ω * ,R n ) does not follow straightforwardly from the above proof. We thank the referee for mentioning this interesting question, which remains open in this framework. Lemmas 3.1,3.2,3.3 and 3.4 This section is devoted to the proof of four technical lemmas which have been used for the proofs of Theorems 1.1 and 1.3 in the previous section.

Proofs of

Proof of Lemma 3.1. We first prove uniform L ∞ (Ω) bounds for the function u, from which uniform C 1,1/2 (Ω) estimates will follow. Next, we prove a uniform lower bound on u. These estimates will imply that u ∈ E 1/2,N,β (Ω) for some constants positive N and β which do not depend on u. In the proof, we denote C i some constants which may depend on Ω, n and M > 0 given in (1.11), but which do not depend on the given solution u of (1.1). We recall that (1.3), (1.4) with q = 1 and (3.1) are assumed throughout the proof.

First of all, it follows from (1.4) and (3.1) that -div(A(x)∇u) + q u (x) • ∇u ≤ f u (x) a.e. in Ω (we recall that A ∈ W 1,∞ (Ω, S n (R)) and u ∈ W (Ω)), where f u is given in (1.8) and

q u (x) =    -a(x, u(x), ∇u(x)) ∇u(x) |∇u(x)| if |∇u(x)| = 0, 0 if |∇u(x)| = 0.
It follows then from the maximum principle (Theorem 8.1 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that u ≤ U a.e. in Ω, where U ∈ H 1 0 (Ω) ∩ W (Ω) denotes the solution of

-div(A(x)∇U ) + q u (x) • ∇U = f u (x) in Ω, U = 0 on ∂Ω, Since q u L ∞ (Ω,R n ) ≤ a L ∞ (Ω×R×R n ) ≤ M , f u L ∞ (Ω) ≤ f L ∞ (Ω×R×R n ) ≤ M and A W 1,∞ (Ω) + Λ -1 L ∞ (Ω) ≤ M , it follows from standard elliptic estimates that U L ∞ (Ω) ≤ C 1
for some positive constant C 1 (which depends on Ω, n and M but not on u). Since 0 ≤ u ≤ U , one concludes that

u L ∞ (Ω) ≤ C 1 .
(3.43)

By testing (1.1) against u itself and using (1.3) and (1.11), one gets that

M -1 Ω |∇u(x)| 2 dx ≤ Ω Λ(x) |∇u(x)| 2 dx ≤ Ω A(x)∇u(x) • ∇u(x) = Ω -H(x, u(x), ∇u(x)) u(x)dx. But u ≥ 0 in Ω and -H(x, u, ∇u) ≤ a(x, u, ∇u) |∇u| -b(x, u, ∇u) u + f (x, u, ∇u) ≤ M (1 + |∇u|) from (1.4)
and (1.11). Hence, (3.43) yields

M -1 Ω |∇u| 2 ≤ M Ω (1 + |∇u|) u ≤ M C 1 Ω (1 + |∇u|),
from which one infers that u H 1 0 (Ω) ≤ C 2 for some positive constant C 2 . It follows now from (1.11) and (3.43) that To complete the proof of Lemma 3.1, one just needs to show the existence of a positive constant β, depending on Ω, n and M but not on u, such that u(x) ≥ β d(x, ∂Ω) for all x ∈ Ω.

|H(x, u, ∇u)| ≤ |H(x, u, ∇u) -H(x, 0, 0)| + |H(x, 0, 0)| ≤ M (C 1 + |∇u|) + M (3.44) in Ω, whence H(•, u(•), ∇u(•)) L 2 (Ω) ≤ C 3 for
Assume by contradiction that there is no such constant β > 0. Then there are a sequence (1.4) and (1.11) with the same parameter M > 0, as well as a sequence (u m ) m∈N of W (Ω) solutions of (1.1) satisfying (3.1) and a sequence (x m ) m∈N of points in Ω such that u m (x m ) < 2 -m d(x m , ∂Ω).

(A m ) m∈N of W 1,∞ (Ω, S n (R)) matrix fields, a sequence (Λ m ) m∈N of L ∞ + (Ω) functions and four sequences (H m ) m∈N , (a m ) m∈N , (b m ) m∈N , (f m ) m∈N of continuous functions in Ω × R × R n , satisfying (1.3),
(3.45)

From the previous paragraph, the sequence (u m ) m∈N is actually bounded in W 2,p (Ω) for every 1 ≤ p < +∞. Thus, the sequence (H m (•, u m (•), ∇u m (•))) m∈N is bounded in L ∞ (Ω) from (1.11). As a consequence, there are a symmetric matrix field

A ∞ ∈ W 1,∞ (Ω, S n (R)), a function u ∞ ∈ W (Ω) ∩ H 1 0 (Ω), a point x ∞ ∈ Ω and two functions H ∞ , H 0 ∈ L ∞ (Ω) such that,
up to extraction of a subsequence and as m → +∞,

         A m → A ∞ in L ∞ (Ω, S n (R)) with A ∞ ≥ M -1 Id in Ω, u m → u ∞ in W 2,p (Ω) weak for all 1 ≤ p < +∞ and in C 1,α (Ω) for all 0 ≤ α < 1, x m → x ∞ , H m (•, u m (•), ∇u m (•)) ⇀ H ∞ and H m (•, 0, 0) ⇀ H 0 in L ∞ (Ω) weak-*, (3.46) and u ∞ is a weak H 1 0 (Ω) solution of -div(A ∞ (x)∇u ∞ ) + H ∞ (x) = 0 in Ω, u ∞ = 0 on ∂Ω, (3.47)
The function u ∞ is then a strong W (Ω) solution of the above equation by elliptic regularity. Furthermore, u ∞ ≥ 0 in Ω and it follows from (3.45) that u ∞ (x ∞ ) = 0 and that

either x ∞ ∈ Ω, or x ∞ ∈ ∂Ω and |∇u ∞ (x ∞ )| = 0. (3.48)
For every m ∈ N and x ∈ Ω, one has H m (x, u m (x), ∇u m (x)) ≤ M u m (x) + |∇u m (x)| + H m (x, 0, 0) from (1.11) and the nonnegativity of u m , whence

H ∞ (x) ≤ M u ∞ (x) + |∇u ∞ (x)| + H 0 (x) a.e.
in Ω by passing to the L ∞ (Ω) weak-* limit as m → +∞. Therefore,

-div(A ∞ (x)∇u ∞ ) + M u ∞ + |∇u ∞ | ≥ -H 0 (x) ≥ 0 a.e.
in Ω, (3.49) where the last inequality follows from the nonpositivity of H m (•, 0, 0) by (1.11). Since u ∞ ≥ 0 in Ω, u ∞ (x ∞ ) = 0 and (3.48) holds, it follows from the strong maximum principle and Hopf lemma that u ∞ is identically equal to 0 (see in particular Theorem 9.6 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] -and the discussion there around the Hopf lemma and the strong maximum principle for strong solutions -even if it means changing the function u ∞ into U (x) = -e λx u ∞ (x) for some suitable λ ∈ R). Therefore, (3.49) implies that H 0 (x) = 0 for a.e. x ∈ Ω.

But

Ω H 0 ≤ -M -1 < 0 since Ω H m (•, 0, 0) ≤ -M -1 from (1.11) and H m (•, 0, 0) ⇀ H 0 as m → +∞ in L ∞ (Ω) weak-*.
One has then reached a contradiction. Finally, there is a positive constant β which depends on Ω, n and M but not on u such that u ≥ β d(•, ∂Ω) in Ω. Finally, u ∈ E 1/2,N,β (Ω) for some positive constants N and β only depending on Ω, n and M . The proof of Lemma 3.1 is thereby complete.

Proof of Lemma 3.2. Let k ∈ N be fixed. The proof of the inequality (3.17) consists in integrating the inequality (3.15) satisfied by ψ k in the shells of E k against a nonnegative test function ϕ and then in controlling the boundary terms coming from the critical spheres of ∂E k . First of all, by elementary arguments, it is enough to prove that (3.17) holds for every ϕ ∈ C 1 c (Ω * ) with ϕ ≥ 0 in Ω * , where C 1 c (Ω * ) denotes the set of C 1 (Ω * ) functions with compact support included in Ω * . Let ϕ be any such nonnegative C 1 c (Ω * ) function and call

I = Ω * Λ k ∇ ψ k • ∇ϕ + Ω * a k e r • ∇ ψ k ϕ - Ω * g k ϕ.
From (3.9), one can write

E k ∩ Ω * = S ρ k (a k m k ),ρ k (a k m k -1 ) ∪ • • • ∪ S ρ k (a k 2 ),ρ k (a k 1 ) ∪ S ρ k (a k 1 ),R ,
where ρ k (a k m k ) = 0, the integer m k is the number of the critical values 0 < a k 1 < • • • < a k m k = max Ω u j k of the function u j k in Ω and S σ,σ ′ denotes the spherical shell S σ,σ ′ = x ∈ R n ; σ < |x| < σ ′ for any 0 ≤ σ < σ ′ . For convenience, define a k 0 = 0, so that ρ k (a k 0 ) = R. It follows from Lebesgue's dominated convergence theorem that

I = lim γ→0 + m k -1 i=0 S ρ k (a k i+1 )+γ,ρ k (a k i )-γ Λ k ∇ ψ k • ∇ϕ + a k e r • ∇ ψ k ϕ -g k ϕ =:I i,γ . (3.50)
For every 0 ≤ i ≤ m k -1 and every γ such that 0

< 2γ < γ 0 := min 0≤ι≤m k -1 (ρ k (a k ι ) -ρ k (a k ι+1 )), the functions Λ k and ψ k are of class C 1 (S ρ k (a k i+1 )+γ,ρ k (a k i )-γ ) and C 2 (S ρ k (a k i+1 )+γ,ρ k (a k i )-γ
) respectively, whence Green-Riemann formula implies that

I i,γ = S ρ k (a k i+1 )+γ,ρ k (a k i )-γ -div Λ k ∇ ψ k + a k e r • ∇ ψ k -g k ≤0 ϕ ≥0 + ∂B ρ k (a k i )-γ Λ k ∇ ψ k • e r ϕ dθ ρ k (a k i )-γ - ∂B ρ k (a k i+1 )+γ Λ k ∇ ψ k • e r ϕ dθ ρ k (a k i+1 )+γ ,
where dθ s denotes the surface measure on the sphere ∂B s for s > 0. The first integral in the right-hand side of the above equality is nonpositive because of (3.15) and since ϕ is nonnegative. On the other hand, for all s ∈ [0, R]\ ρ k (a k ι ); 1 ≤ ι ≤ m k and for all x ∈ ∂B s , it follows from (2.5), (2.7), (2.9) and (3.4) that

Λ k (x)∇ ψ k (x)•e r (x) = 1 nα n s n-1 Ω ρ -1 k (s) div(A j k ∇u j k ) = 1 nα n s n-1 Ω ρ -1 k (s) H j k =: J(s).
Remember that H j k is a continuous function in Ω (it is a polynomial function) and that

|Ω ρ -1 k (s) | = |B s | = α n s n and |Σ ρ -1 k (s) | = 0 for each s ∈ [0, R].
Therefore, the function J, which can be defined for all s ∈ (0, R] by the right-hand side of the above displayed equality, is continuous and bounded on (0, R] (the boundedness of J follows from the boundedness of H j k and the fact that

|Ω ρ -1 k (s) | = α n s n
). Therefore, one has

I i,γ ≤ J(ρ k (a k i ) -γ) ∂B ρ k (a k i )-γ ϕ dθ ρ k (a k i )-γ -J(ρ k (a k i+1 ) + γ) ∂B ρ k (a k i+1 )+γ ϕ dθ ρ k (a k i+1 )+γ
for every 0 ≤ i ≤ m k -1 and every γ ∈ (0, γ 0 /2). Finally, using the continuity of J on [0, R] and of ϕ in Ω * , it follows that, for every 0

≤ i ≤ m k -2, lim sup γ→0 + I i,γ ≤ J(ρ k (a k i )) ∂B ρ k (a k i ) ϕ dθ ρ k (a k i ) -J(ρ k (a k i+1 )) ∂B ρ k (a k i+1 ) ϕ dθ ρ k (a k i+1 ) , while, for i = m k -1, lim sup γ→0 + I i,γ ≤ J(ρ k (a k i )) ∂B ρ k (a k i ) ϕ dθ ρ k (a k i )
, since J is bounded on (0, R] and lim ρ→0 + ∂Bρ ϕ dθ ρ = 0. As a conclusion, (3.50) yields

I ≤ J(ρ k (a k 0 )) ∂B ρ k (a k 0 ) ϕ dθ ρ k (a k 0 ) = J(R) ∂Ω * ϕ dθ R = 0
since a k 0 = 0 (by convention), ρ k (a k 0 ) = R and ϕ is compactly supported in Ω * . As already emphasized, (3.17) then holds for every ϕ ∈ H 1 0 (Ω * ) such that ϕ ≥ 0 a.e. in Ω * . The proof of Lemma 3.2 is thereby complete.

Proof of Lemma 3.3. Equation (3.30) is obtained formally by passing to the limit as k → +∞ in (3.18). However, since the convergence of the first-order derivatives of the functions v k is only weak, as is that of the coefficients of (3.18) or some functions of them, one cannot pass directly to the limit in the first two terms of (3.18) and one needs more regularity. This regularity will be guaranteed by the radial symmetry, as shown in the next paragraphs.

Recall first that the sets E k ⊂ Ω * are given in (3.9). For every k ∈ N, since Λ k is of class C 1 in E k ∩ Ω * and the functions a k and g k are continuous in E k , it follows from standard elliptic estimates that the

function v k is in W 2,p loc (E k ∩ Ω * ) for all 1 ≤ p < +∞ whence in C 1,α loc (E k ∩ Ω * ) for all 0 ≤ α < 1. Define I k = (0, R)\ ρ k (a k i ); 1 ≤ i ≤ m k = (0, ρ k (a k m k -1 )) ∪ • • • ∪ (ρ k (a k 1 ), R), where 0 < a k 1 < • • • < a k m k = max Ω u j k are the critical values of the function u j k in Ω.
Let ς be any point in the unit sphere S n-1 and set

     v k (r) = v k (rς), Λ k (r) = Λ k (rς), w k (r) = Λ k (rς) ∇v k (rς) • ς = Λ k (r) v ′ k (r), a k (r) = a k (rς), g k (r) = g k (rς), (3.51) for all r ∈ I k . Denote also        Λ(r) = 1 nα n r n-1 ∂Br Λ dθ r , v ∞ (r) = 1 nα n r n-1 ∂Br v ∞ dθ r , a(r) = 1 nα n r n-1 ∂Br a dθ r , f (r) = 1 nα n r n-1 ∂Br f dθ r . (3.52) 
From Fubini's theorem, the above quantities can be defined for almost every r ∈ (0, R). Furthermore, the function Λ is in L ∞ + (0, R), the functions a and f are in L ∞ (0, R), the function v ∞ is in H 1 loc ((0, R]), and it follows from (3.23), (3.27) and (3.51) that

Λ -1 k ⇀ Λ -1 , Λ -1 k a k ⇀ Λ -1 a and g k ⇀ f , in L ∞ (r 0 , R) weak-*, as k → +∞, for every r 0 ∈ (0, R) (3.53) and v k ⇀ v ∞ in H 1 (r 0 , R) weak and v k → v ∞ in L 2 (r 0 , R) strong, as k → +∞, for every r 0 ∈ (0, R). (3.54)
Let us now pass to the limit as k → +∞ in the elliptic partial differential equation (3.18) and its associated one-dimensional ordinary differential equation. Namely, from the observations of the previous paragraph, there holds

-w ′ k = -Λ k v ′ k ′ = n -1 r Λ k v ′ k -a k v ′ k + g k a.e. in I k (3.55)
for every k ∈ N. Since the right-hand side of (3.55) is continuous in I k , the continuous function

w k = Λ k v ′ k is actually of class C 1 in I k , whence v k is of class C 2 in I k and the above equation (3.55) is satisfied in the classical pointwise sense in I k . Furthermore, the sequence ( v ′ k ) k∈N is bounded in L 2 (r 0 , R) for every r 0 ∈ (0, R) since (v k ) k∈N is bounded in H 1 0 (Ω *
) and the functions v k are radially symmetric. On the other hand, the sequences ( Λ k ) k∈N , ( a k ) k∈N and ( g k ) k∈N are bounded in L ∞ (0, R) from (3.3), (3.10), (3.16) and (3.51). It follows then from (3.51) and (3.55) that the sequence ( w k ) k∈N is bounded in H 1 (r 0 , R) for every r 0 ∈ (0, R). Therefore, there is a function w ∈ H 1 loc ((0, R]) such that, up to extraction of a subsequence,

w k ⇀ k→+∞ w in H 1 (r 0 , R) weak, w k → k→+∞ w in L 2 (
r 0 , R) strong, for every r 0 ∈ (0, R).

(3.56)

By (3.53), one therefore has v ′ k = Λ -1 k w k ⇀ Λ -1 w in L 2 (
r 0 , R) weak as k → +∞, for every r 0 ∈ (0, R). By uniqueness of the weak limit, it follows then from (3.54) that

w = Λ v ′ ∞ a.e. in (0, R). (3.57) 
Finally, we are ready to show that v ∞ is a weak H 1 0 (Ω * ) solution of the limiting equation (3.30), that is

I := Ω * Λ ∇v ∞ • ∇ϕ + Ω * a e r • ∇v ∞ ϕ - Ω * f ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ). Let ϕ ∈ H 1 0 (Ω * ) and ε > 0 be arbitrary. Since the functions Λ, a, f are in L ∞ (Ω * ), since the sequences ( Λ k ) k∈N , ( a k ) k∈N , (g k ) k∈N are bounded in L ∞ (Ω * ), since the function v ∞ is in H 1 0 (Ω * ) and since the sequence (v k ) k∈N is bounded in H 1 0 (Ω * )
, it follows from Cauchy-Schwarz inequality and the fact that ϕ H 1 (Br) → 0 as r → 0 + (from Lebesgue's dominated convergence theorem) that there exists r 0 ∈ (0, R) small enough so that From Fubini's theorem and Cauchy-Schwarz inequality, the functions φ and Φ are defined almost everywhere in (r 0 , R) and they belong to L 2 (r 0 , R). Fubini's theorem also implies that

Br 0 Λ k ∇v k • ∇ϕ + ( a k e r • ∇v k )ϕ -g k ϕ ≤ ε for all k ∈ N (3.58) and Br 0 Λ ∇v ∞ • ∇ϕ + ( a e r • ∇v ∞ )ϕ -f ϕ ≤ ε. Hence, |I| ≤ ε + Ω * \Br 0 =S r 0 ,R Λ ∇v ∞ • ∇ϕ + ( a e r • ∇v ∞ )ϕ -f ϕ =:J . ( 3 
J = R r 0 Λ(r) v ′ ∞ (r) Φ(r) + a(r) v ′ ∞ (r) φ(r) -f (r) φ(r) dr. Observe that Λ k v ′ k = w k → w = Λ v ′ ∞ in L 2 (r 0 , R) strong as k → +∞ (3.61)
from (3.51), (3.56) and (3.57). Furthermore, (3.53). Putting together all this limits leads to

a k v ′ k = ( Λ -1 k a k )×( Λ k v ′ k ) ⇀ ( Λ -1 a)×( Λ v ′ ∞ ) = a v ′ ∞ in L 2 (r 0 , R) weak as k → +∞ from (3.53) and (3.61). Lastly, g k ⇀ f in L ∞ (r 0 , R) weak-* as k → +∞ from
J = lim k→+∞ R r 0 Λ k (r) v ′ k (r) Φ(r) + a k (r) v ′ k (r) φ(r) -g k (r) φ(r) dr =:J k .
Therefore, there is K ∈ N large enough such that

|J| ≤ |J K | + ε. (3.62) But J K = Ω * \Br 0 Λ K ∇v K • ∇ϕ + ( a K e r • ∇v K )ϕ -g K ϕ = - Br 0 Λ K ∇v K • ∇ϕ + ( a K e r • ∇v K )ϕ -g K ϕ because the integral of Λ K ∇v K • ∇ϕ + ( a K e r • ∇v K )ϕ -g K ϕ over Ω * is equal to 0: indeed, ϕ ∈ H 1 0 (Ω *
) and v K is the weak H 1 0 (Ω * ) solution of (3.18) with k = K. Finally, it follows from (3.58) that |J K | ≤ ε, whence |I| ≤ 3ε from (3.59) and (3.62). Since ε > 0 was arbitrary, one concludes that I = 0. Since ϕ ∈ H 1 0 (Ω * ) was arbitrary, this means that v ∞ is the weak H 1 0 (Ω * ) solution of (3.30). The proof of Lemma 3.3 is thereby complete.

Proof of Lemma 3.4. Remember that z L and z are the unique weak H 1 0 (Ω * ) solutions of (3.35) with l = L and (3.37), respectively. Furthermore, z L and z are radially symmetric. In order to get the inequality (3.38), the general strategy is to integrate twice the one-dimensional equations associated to (3.35) and (3.37), with a special care since these equations are only satisfied in the weak H 1 0 (Ω * ) sense. We shall finally use the Hardy-Littlewood inequality to compare some integral terms.

First of all, from the De Giorgi-Moser-Nash regularity theory and the radial symmetry, it follows that, without loss of generality, z L and z can be assumed to be continuous in Ω * , even if it means redefining them on a negligible subset of Ω * . Let ς be any point in the unit sphere S n-1 and define z L (r) = z L (rς) and z(r) = z(rς) for all r ∈ [0, R].

(3.63)

The functions z L and z are continuous on [0, R], they belong to H 1 loc ((0, R]) and, from Fubini's theorem, the integrals

R 0 r n-1 z L (r) 2 dr, R 0 r n-1 z ′ L (r) 2 dr, R 0 r n-1 z(r) 2 dr, R 0 r n-1 z ′ (r) 2 dr converge. (3.64) Let Λ ∈ L ∞ + (0, R
) and a ∈ L ∞ (0, R) be defined as in (3.52) and set

h L (r) = 1 nα n r n-1 ∂Br h L dθ r and f u (r) = 1 nα n r n-1 ∂Br f * u dθ r , (3.65) 
where we recall that h L (resp. f * u ) is the right-hand side of (3.35) (resp. (3.37)). These quantities can be defined for almost every r ∈ (0, R) ( f u is actually defined for all 0 < r < R) from Fubini's theorem, and h L and f u are in L ∞ (0, R).

Consider now the equation (3.35) with l = L. It follows from the definitions of z L , Λ, a and h L that

R 0 Λ(r) z ′ L (r) ϕ ′ (r) r n-1 dr + R 0 a(r) z ′ L (r) ϕ(r) r n-1 dr = R 0 h L (r) ϕ(r) r n-1 dr for all ϕ ∈ C 1 c (0, R). Define ζ L (r) = r n-1 Λ(r) z ′ L (r) (3.66) for almost every r ∈ (0, R). Since r → r (n-1)/2 Λ(r) is in L ∞ (0, R), it follows from (3.64) that ζ L is in L 2 (0, R). There holds R 0 ζ L (r) ϕ ′ (r) dr + R 0 Λ -1 (r) a(r) ζ L (r) ϕ(r) dr = R 0 h L (r) ϕ(r) r n-1 dr for all ϕ ∈ C 1 c (0, R). Furthermore, Λ -1 a ζ L ∈ L 2 (0, R) and the function r → h L (r) r n-1 is in L ∞ (0, R) ⊂ L 2 (0, R). Therefore, the function ζ L is actually in H 1 (0, R) and ζ ′ L (r) = Λ -1 (r) a(r) ζ L (r) -h L (r) r n-1 a.e. in (0, R). (3.67) 
Even if it means redefining ζ L on a negligible subset of [0, R], one can assume without loss of generality that ζ L is then continuous on [0, R]. Define Θ(r) = e -r 0 Λ -1 (s) a(s) ds for all r ∈ [0, R]. The function Θ, which does not depend on L, is continuous on [0, R] and it belongs to W 1,∞ (0, R). Define also

ω L = Θ ζ L on [0, R]. (3.68) 
The function ω L is continuous on [0, R] and it belongs to H 1 (0, R). It follows from (3.67) that ω ′ L (r) = -Θ(r) h L (r) r n-1 a.e. in (0, R). As a consequence,

ω L (r) = - r 0 Θ(s) h L (s) s n-1 ds + ω L (0) for all r ∈ [0, R].
(3.69)

Let us now prove in this paragraph that ω L (0) = 0 (remember that ω L is continuous on [0, R]). One has ω L (0) = ζ L (0) since Θ(0) = 1. Consider first the case where the dimension n is such that n ≥ 2. If ζ L (0) = 0, then there would exist r 0 ∈ (0, R) and γ > 0 such that |ζ L (r)| ≥ γ > 0 for all r ∈ [0, r 0 ], whence r n-1 Λ(r) z ′ L (r) ≥ γ > 0 for a.e. r ∈ (0, r 0 ). Since Λ ∈ L ∞ + (0, R) and Λ ≤ M Λ := ess sup Ω Λ from (3.28) and (3.52), it would then follow that

r n-1 z ′ L (r) 2 ≥ γ 2 M 2
Λ r n-1 for a.e. r ∈ (0, r 0 ), are in H 1 0 (Ω * )) and are in H 1 loc ((0, R]), one gets that z L

(r) = R r -z ′ L (s) ds ≤ R r -z ′ (s) ds = z(r) for all r ∈ [0, R].
As a conclusion, remembering the definitions (3.63) and the radial symmetry and continuity of z L and z in Ω * , one concludes that z L (x) ≤ z(x) for all x ∈ Ω * . The proof of Lemma 3.4 is thereby complete.

4 General growth with respect to the gradient This section is devoted to the proofs of Theorems 1.5 and 1.7. Throughout this section, we assume (1.3), (1.4) and (1.13) with Λ ∈ L ∞ + (Ω) and 1 < q ≤ 2, that is the nonlinear function H is bounded from below by an at most quadratic function of |p|. Furthermore, u ∈ W (Ω) denotes a solution of (1.1) satisfying (3.1), that is u > 0 in Ω and |∇u| = 0 on ∂Ω. We recall that, even if it means redefining u on a negligible subset of Ω, one can assume without loss of generality that u ∈ C 1,α (Ω) for all α ∈ [0, 1).

Our goal is to establish the inequalities (1.15) and (1.18) and the quantified ones (1.24), (1.25), (1.27) and (1.28), that is to compare the Schwarz rearrangement u * of u with the unique solutions v and v ε of (1. [START_REF] Boccardo | Existence of bounded solutions for non linear elliptic unilateral problems[END_REF]) and (1.19). The strategy follows a similar scheme to that used in the previous section for the proofs of Theorems 1.1 and 1.3. Namely, after establishing some uniform bounds on u under assumption (1.26), we first approximate u by some smooth solutions u j of some regularized equations in Ω. Next, we apply the general rearrangement inequalities of Section 2 and we compare some u * j k with the solutions v k of some symmetrized equations in Ω * . Lastly, we approximate the functions v k by some solutions of equations of the type (1.16) and (1.19) in Ω * .

The proofs of Theorems 1.5 and 1.7 are done in Section 4.1 and the proofs of two auxiliary technical lemmas are carried out in Section 4.2.

4.1 Proofs of Theorems 1.5 and 1.7

Step 1: uniform bounds on u under assumption (1.26) In this step, some uniform pointwise and smoothness estimates are established under assumption (1.26). Actually, these quantified estimates will only be needed for Theorem 1.7, in which Ω is not a ball. We recall that the sets E α,N,β (Ω) have been defined in Section 2.4. Lemma 4.1. Under assumption (1.26) with n ≥ 2, there are some real numbers N > 0 and β > 0, which depend only on Ω, n, q, M and r, such that u ∈ E 1/2,N,β (Ω).

The proof of Lemma 4.1, which is a version of Lemma 3.1 adapted to the case where 1 < q ≤ 2, can be found in Section 4.2 below

Step 2: approximated coefficients and approximated solutions u j in Ω This step is the same as Step 2 of the proofs of Theorems 1.1 and 1.3. Namely, the sequences (H j ) j∈N , (A j ) j∈N = ((A j;i,i ′ ) 1≤i,i ′ ≤n ) j∈N , (Λ j ) j∈N and (u j ) j∈N satisfy (3.2) and (3.4), as well as (3.3), that is for all j ∈ N. Since the sequence (u j ) j∈N converges to u in W 2,p (Ω) weak for all 1 ≤ p < +∞ and in C 1,α (Ω) for all 0 ≤ α < 1, and since u ∈ E 1/2,Nu,βu (Ω) for some parameters N u > 0 and β u > 0 depending on u (from (3.1) and the smoothness of u), one can assume without loss of generality that (3.5) holds for all j ∈ N, that is |∇u j | = 0 on ∂Ω, u j > 0 in Ω and u j ∈ E 1/2,2Nu,βu/2 (Ω). (

           A j;i,i ′ -→ j→+∞ A i,i ′ uniformly in Ω for all 1 ≤ i, i ′ ≤ n, sup j∈N A j W 1,∞ (Ω) < +∞, A j ≥ Λ j Id in Ω and Λ -1 j L 1 (Ω) = Λ -1 L 1 (Ω) for all j ∈ N, 0 < ess inf Ω Λ ≤ lim inf
Furthermore, if Ω is not a ball (in which case n ≥ 2) and if (1.26) holds, Lemma 4.1 implies that u ∈ E 1/2,N,β (Ω) for some positive constants N > 0 and β > 0 only depending on Ω, n, q, M and r. One can therefore assume, without loss of generality, that, in that case, |∇u j | = 0 on ∂Ω, u j > 0 in Ω and u j ∈ E 1/2,2N,β/2 (Ω) for all j ∈ N.

(4.4)

Step 3: symmetrized coefficients and the inequalities u

* j k ≤ ψ k , (1+η u )u * j k ≤ ψ k and (1+η)u * j k ≤ ψ k in Ω *
Let now k ∈ N be fixed in this step and in the next two ones. For all j ∈ N and x ∈ Ω, denote

B j (x) = -div(A j ∇u j )(x)-a(x, u(x), ∇u(x))|∇u j (x)| q +b(x, u(x), ∇u(x)) u j (x)-f (x, u(x), ∇u(x))-2 -k = -H j (x) -a(x, u(x), ∇u(x)) |∇u j (x)| q + b(x, u(x), ∇u(x)) u j (x) -f (x, u(x), ∇u(x)) -2 -k .
Due to (1.4), (3.2) and the fact that u j → u in (at least) C 1 (Ω) as j → +∞, it follows that lim sup j→+∞ sup x∈Ω B j (x) ≤ -2 -k < 0. Therefore, there is an integer

j k ≥ k such that B j k (x) ≤ 0 for all x ∈ Ω, that is -div(A j k ∇u j k )(x) -a(x, u(x), ∇u(x)) |∇u j k (x)| q + b(x, u(x), ∇u(x)) u j k (x) -f (x, u(x), ∇u(x)) ≤ 2 -k (≤ 1) for all x ∈ Ω. ( 4.5) 
As in Step 3 of the proofs of Theorems 1.1 and 1.3, one can then apply the general results of Section 2 to the coefficients A Ω , Λ Ω , ψ, a Ω , b Ω and f Ω as in (3.8), that is

     A Ω (x) = A j k (x), Λ Ω (x) = Λ j k (x), ψ(x) = u j k (x),
a Ω (x) = a(x, u(x), ∇u(x)), b Ω (x) = b(x, u(x), ∇u(x)),

f Ω (x) = f (x, u(x), ∇u(x)) = f u (x),
and to our given power q

∈ (1, 2]. Call ρ k : [0, max Ω u j k ] → [0, R], E k , Λ k ∈ L ∞ + (Ω * ), ψ k ∈ W 1,∞ (Ω * ) ∩ H 1 0 (Ω * ), a k ∈ L ∞ (Ω * ) and f k ∈ L ∞ (Ω *
) the symmetrized quantities defined as in (2.2), (2.3), (2.5), (2.9), (2.10) and (2.11). In particular, the set E k is given as (3.9) and (0 where η > 0 only depends on Ω, n, N and β, that is on Ω, n and M . Lastly, remember that the functions u j k satisfy (4.3) for some positive constants N u and β u independent of k, that the functions Λ j k satisfy (4.2), that min

<) a k 1 < • • • < a k m k = max Ω u j k denote the m k critical values of the function u j k in Ω. All functions Λ k , ψ k ,
                          0 < min Ω Λ j k ≤ ess inf Ω * Λ k ≤ ess sup Ω * Λ k ≤ max Ω Λ j k , Λ -1 k L 1 (Ω * ) = Λ -1 j k L 1 (Ω) = Λ -1 L 1 (Ω) , inf Ω×R×R n a + ≤ min Ω a(•, u(•), ∇u(•)) + ≤ ess inf Ω * a k ≤ ess sup Ω * a k ≤ • • • • • • ≤ max Ω a(•, u(•), ∇u(•)) + × max Ω Λ j k min Ω Λ j k q-1 ≤ sup Ω×R×R n a + × max Ω Λ j k min Ω Λ j k q-1 , inf Ω×R×R n f ≤ min Ω f u ≤ ess inf Ω * f k ≤ ess sup Ω * f k ≤ max Ω f u ≤ sup Ω×R×R n f, Ω * f k = Ω f u . ( 4 
Ω b Ω ≥ inf Ω×R×R n b =: m b > 0 from (1.13), that a + Ω L ∞ (Ω) ≤ a L ∞ (Ω×R×R n ) and that f + Ω L ∞ (Ω) ≤ f L ∞ (Ω×R×R n ) .
Therefore, it follows from (4.5) and Proposition 2.4 with κ = 1 that there exists a constant δ > 0, which depends on Ω, n, m b , m Λ , a L ∞ (Ω×R×R n ) , f L ∞ (Ω×R×R n ) , N u and β u , but which does not depend on k, such that, for all x ∈ E k ∩Ω * , there exists a point y

∈ Σ ρ -1 k (|x|) satisfying -div Λ k ∇ ψ k (x) -a k (x)|∇ ψ k (x)| q + δ ψ k (x) -f k (x)
≤ -div(A j k ∇u j k )(y) -a(y, u(y), ∇u(y)) |∇u j k (y)| q +b(y, u(y), ∇u(y))u j k (y)-f (y, u(y), ∇u(y)) ≤ 2 -k .

In other words,

-div Λ k ∇ ψ k (x) -a k (x) |∇ ψ k (x)| q + δ ψ k (x) ≤ g k (x) for all x ∈ E k ∩ Ω * , (4.10) 
where g k is defined as in (3.16), that is

g k (x) = f k (x) + 2 -k for all x ∈ E k . (4.11) 
The constant δ > 0 will be that of the conclusion of Theorem 1.5.

Step 4: the functions ψ k are H 1 0 (Ω * ) ∩ L ∞ (Ω * ) weak subsolutions of (4.10)

We know that, for every k ∈ N, the function ψ k is in W 1,∞ (Ω * ) ∩ H 1 0 (Ω * ), and that the inequality (4.10) holds in E k ∩ Ω * , whence almost everywhere in Ω * . We now claim that ψ k is a weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) subsolution of (4.10), in the sense that

Ω * Λ k ∇ ψ k • ∇ϕ - Ω * a k |∇ ψ k | q ϕ + Ω * δ ψ k ϕ - Ω * g k ϕ ≤ 0 (4.12)
for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that ϕ ≥ 0 a.e. in Ω * . The proof of this claim follows exactly the same scheme as that of Lemma 3.2 given in Section 3.2. Indeed, one first notices that, given any test function

ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) with ϕ ≥ 0 a.e. in Ω * , there is a sequence (ϕ m ) m∈N of nonnegative C 1 c (Ω * ) functions such that ϕ m → ϕ as m → +∞ in H 1 0 (Ω * ) (but the convergence does not hold in L ∞ (Ω * ) in general). Next, since Λ k ∈ L ∞ + (Ω * ), ψ k ∈ W 1,∞ (Ω * ), a k ∈ L ∞ (Ω * ) and g k ∈ L ∞ (Ω *
), it follows that the left-hand side of (4.12) is equal to the limit as m → +∞ of the same quantities with ϕ m instead of ϕ. It is therefore sufficient to show (4.12) when the test function ϕ belongs to C 1 c (Ω * ) and is nonnegative. Finally, one can repeat the proof of Lemma 3.2 and one just needs to replace the quantities a k e r • ∇ ψ k and -g k by, respectively, -a k |∇ ψ k | q (∈ L ∞ (Ω * )) and δ ψ k -g k (∈ L ∞ (Ω * )), without any other modification in the proof.

As a conclusion, the claim (4.12) holds.

Step 5: the inequalities u

* j k ≤ v k , (1 + η u )u * j k ≤ v k and (1 + η)u * j k ≤ v k in Ω *
For every k ∈ N, let v k be the unique weak

H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of -div Λ k ∇v k -a k |∇v k | q + δ v k = g k in Ω * , v k = 0 on ∂Ω * , (4.13) 
in the sense that

Ω * Λ k ∇v k • ∇ϕ -Ω * a k |∇v k | q ϕ + Ω * δ v k ϕ = Ω * g k ϕ for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ).
As recalled in Section 1 after the proof of Corollary 1.6, the existence and uniqueness of v k ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) is guaranteed by Théorème 2.1 and the following comments of [START_REF] Boccardo | Résultats d'exitence pour certains problèmes elliptiques quasilinéaires[END_REF] and by Theorem 2.1 of [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF]

, since Λ k ∈ L ∞ + (Ω * ), a k ∈ L ∞ (Ω * ), g k ∈ L ∞ (Ω * ), δ > 0 and q ∈ (1, 2]
. Furthermore, the function v k is radially symmetric in Ω * by the uniqueness, since all coefficients of (4.13) are so, and, without loss of generality, v k is continuous in Ω * from the local continuity (Corollary 4.23 of [START_REF] Han | Elliptic Partial Differential Equations[END_REF]), the radial symmetry and the fact that v k ∈ H 1 0 (Ω * ). Lastly, it follows from (4.12) and Theorem 2.1 of [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF] that ψ k ≤ v k a.e. in Ω * (actually, the inequality can be assumed to hold everywhere in Ω * since both functions ψ k and v k can be assumed to be continuous in Ω * without loss of generality). One concludes from (4.7) that

0 ≤ u * j k ≤ v k a.e. in Ω * . (4.14)
If Ω is not a ball, inequality (4.8) therefore yields

0 ≤ (1 + η u ) u * j k (x) ≤ v k a.e. in Ω * . (4.15)
Furthermore, if Ω is not a ball and the assumption (1.26) of Theorem 1.7 is made, it follows from (4.9) that 0

≤ (1 + η) u * j k (x) ≤ v k a.e. in Ω * . (4.16) 
Step 6: the limiting inequalities u

* ≤ v, (1 + η u )u * ≤ v and (1 + η)u * ≤ v in Ω *
As in the beginning of Step 6 of the proofs of Theorems 1.1 and 1.3, one can assume that, up to extraction of a subsequence, u * j k (x) → u * (x) a.e. in Ω * as k → +∞. (4.17)

On the other hand, the sequences ( Λ k ) k∈N , ( Λ -1 k ) k∈N , ( a k ) k∈N and (g k ) k∈N are bounded in L ∞ (Ω * ) from (4.1), (4.6) and (4.11). Furthermore, δ is positive. It follows then from Theorem 2.1 of [START_REF] Boccardo | Quelques propriétés des opérateurs elliptiques quasi-linéaires[END_REF] and Theorem 1 of [START_REF] Boccardo | L ∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result[END_REF] (see also Theorem 3.1 of [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF]) that the sequence (v k ) k∈N is bounded in H 1 0 (Ω * ) ∩ L ∞ (Ω * ) and relatively compact in H 1 0 (Ω * ). Therefore, there exists a radially symmetric function v ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that, up to extraction of a subsequence, The function v will be that of the conclusion of Theorem 1.5. One shall identify in the following steps the equation (1.16) satisfied by v and one also gets the inequality (1.18) involving the solution v ε of (1.19).

v k → v in H 1 0 (Ω * )
Step 7: a limiting equation satisfied by v in Ω * Let us now pass to the limit in the coefficients Λ k , a k and g k of (4.13). From (4.1), (4.6) and (4.11), there exist some radially symmetric functions Λ ∈ L ∞ + (Ω * ), a ∈ L ∞ (Ω * ) and f ∈ L ∞ (Ω * ) such that, up to extraction of some subsequence,

Λ -1 k ⇀ Λ -1 , Λ -q k a k ⇀ Λ -q a and g k ⇀ f in L ∞ (Ω * ) weak-* as k → +∞, (4.22) whence 0 < ess inf Ω Λ ≤ ess inf Ω * Λ ≤ ess sup Ω * Λ ≤ ess sup Ω Λ and Λ -1 L 1 (Ω * ) = Λ -1 L 1 (Ω) . (4.23) Furthermore,      inf Ω×R×R n f ≤ ess inf Ω * f ≤ ess sup Ω * f ≤ sup Ω×R×R n f, Ω * f = lim k→+∞ Ω * g k = lim k→+∞ Ω * f k = Ω f u . (4.24) 
In (4.22), the function a = Λ q Λ -q a is defined as Λ q times the L ∞ (Ω * ) weak-* limit of the functions Λ -q k a k . The functions Λ, a and f will be those of the conclusion of Theorem 1.5. Notice first that, from (4.23) and (4.24), the functions Λ and f fulfill (1.14). Let us now establish in this paragraph the bounds (1.14) for the function a. It follows from (4.6) that

       0 ≤ inf Ω×R×R n a + ≤ ess inf Ω * a k ≤ ess sup Ω * a k ≤ sup Ω×R×R n a + × max Ω Λ j k min Ω Λ j k q-1 , ess sup Ω * Λ -q+1 k a k ≤ 1 min Ω Λ j k q-1 × sup Ω×R×R n a + × max Ω Λ j k min Ω Λ j k q-1 .
Therefore, lim sup k→+∞ ess sup

Ω * Λ -q+1 k a k ≤ ess sup Ω Λ q-1 ess inf Ω Λ 2(q-1) × sup Ω×R×R n a +
from (4.1). Since, by (4.22),

Λ q Λ -1 k ⇀ Λ q-1 and Λ q Λ -1 k × Λ -q+1 k a k = Λ q × Λ -q k a k ⇀ Λ q × Λ -q a = a in L ∞ (Ω * ) weak-* (4.25) as k → +∞, one gets that a ≤ Λ q-1 × ess sup Ω Λ q-1 ess inf Ω Λ 2(q-1) × sup Ω×R×R n a + ≤ ess sup Ω Λ ess inf Ω Λ 2(q-1) × sup Ω×R×R n a + a.e. in Ω * ,
where the last inequality follows from (4.23). On the other hand, it follows again from (4.6) that ess inf

Ω * Λ -q+1 k a k ≥ 1 max Ω Λ j k q-1 × inf Ω×R×R n a + , whence lim inf k→+∞ ess inf Ω * Λ -q+1 k a k ≥ 1 ess sup Ω Λ q-1

× inf

Ω×R×R n a + from (4.1). Using again (4.23) and (4.25), one gets that

a ≥ Λ q-1 × 1 ess sup Ω Λ q-1 × inf Ω×R×R n a + ≥ ess inf Ω Λ ess sup Ω Λ q-1 × inf Ω×R×R n a + ≥ 0 a.e. in Ω * .
Finally, the radially symmetric function a ∈ L ∞ (Ω * ) satisfies the properties (1.14) of the statement of Theorem 1.5.

The main goal of this step is to show that v is a weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of the limiting equation

-div Λ∇v -a |∇v| q + δ v = f in Ω * , v = 0 on ∂Ω * (4.26)
obtained by passing formally to the limit as k → +∞ in (4.13), in the sense that

Ω * Λ∇v•∇ϕ-Ω * a |∇v| q ϕ+ Ω * δ v ϕ -Ω * f ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω *
) (notice that all integrals in the above formula converge since v and ϕ belong to H 1 0 (Ω * ) ∩ L ∞ (Ω * ), q ∈ (1, 2] and Λ, a and f are in L ∞ (Ω * )). The proof of (4.26) will actually be a consequence of the following lemma. Lemma 4.2. Let (δ k ) k∈N be a sequence of positive real numbers, let (λ k ) k∈N be a sequence of radially symmetric L ∞ + (Ω * ) functions and let (α k ) k∈N and (γ k ) k∈N be two sequences of radially symmetric L ∞ (Ω * ) functions. Assume that the sequences (λ k ) k∈N , (λ -1 k ) k∈N , (α k ) k∈N and (γ k ) k∈N are bounded in L ∞ (Ω * ) and that there are δ ∞ ∈ (0, +∞) and some functions λ

∞ ∈ L ∞ + (Ω * ), α ∞ ∈ L ∞ (Ω * ) and γ ∞ ∈ L ∞ (Ω * ) such that δ k → δ ∞ as k → +∞ and λ -1 k ⇀ λ -1 ∞ , λ -q k α k ⇀ λ -q ∞ α ∞ and γ k ⇀ γ ∞ in L ∞ (Ω * ) weak-* as k → +∞. (4.27) Let (V k ) k∈N be the sequence of weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solutions of -div λ k ∇V k -α k |∇V k | q + δ k V k = γ k in Ω * , V k = 0 on ∂Ω * . (4.28) 
Then there is a radially symmetric function

V ∞ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that V k → V ∞ in H 1 0 (Ω * ) strong as k → +∞, (4.29) 
where V ∞ denotes the unique weak

H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of -div λ ∞ ∇V ∞ -α ∞ |∇V ∞ | q + δ ∞ V ∞ = γ ∞ in Ω * , V ∞ = 0 on ∂Ω * , (4.30) 
in the sense that

I ϕ := Ω * λ ∞ ∇V ∞ • ∇ϕ - Ω * α ∞ |∇V ∞ | q ϕ + Ω * δ ∞ V ∞ ϕ - Ω * γ ∞ ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ). (4.31)
In order to finish the proof of Theorem 1.5, the proof of Lemma 4.2 is postponed in Section 4.2. Notice that, together with (4.19), Lemma 4.2 already provides the first part of the conclusion of Theorem 1.5, that is (1.15) with v satisfying (1.16) and (1.17). It only remains to show the comparison (1.18) of u * with the solution v ε of the equation (1.19) involving a function f ε having the same distribution function as the function f u defined in (1.8). To do so, we follow the same scheme as in last steps of the proofs of Theorems 1.1 and 1.3 in Section 3.1. Namely, having in hand that 0 ≤ u * ≤ v (or the inequalities 0 ≤ (1 + η u )u * ≤ v and 0 ≤ (1 + η)u * ≤ v) a.e. in Ω * where v is the weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of equation (4.26), we shall approximate v by the solutions of some approximating equations where f in (4.26) is replaced by some right-hand sides having the same distribution function as the function f u .

Proofs of Lemmas 4.1 and 4.2

This section is devoted to the proofs of the technical lemmas 4.1 and 4.2 which were stated and used in Steps 1, 7, 8 and 9 of the proofs of Theorems 1.5 and 1.7.

Proof of Lemma 4.1. The proof follows the same lines as the one of Lemma 3.1.

Step 1: a uniform bound on u L ∞ (Ω) . By the conditions on q and r contained in assumption (1.26) and Theorem 5.5 of [START_REF] Hamel | Comparison results for semilinear elliptic equations using a new symmetrization method[END_REF], it follows that u ∈ W (Ω), and in particular u is qualitatively bounded. Furthermore, u ∈ H 1 0 (Ω) and (1.1), (1.4) and (1.26) show that -div(A∇u) + M -1 u ≤ M (|∇u| q + 1) in the weak H 1 0 (Ω) ∩ L ∞ (Ω) sense. Thus, Theorem 3.1 in [START_REF] Porretta | Elliptic Equations with First-order Terms[END_REF] ensures that

u L ∞ (Ω) ≤ C 1 (4.37)
where

C 1 = M 2 .
Step 2: a uniform bound on u H 1 0 (Ω) . Arguing as in the proof of Lemma 3.1, one has

M -1 Ω |∇u(x)| 2 dx ≤ Ω -H(x, u(x), ∇u(x))u(x)dx. Since |H(x, u(x), ∇u(x))| ≤ M (1 + |u(x)| r + |∇u(x)| q ) ≤ M (1 + C r 1 ) + M |∇u(x)| q , using the fact that q < 1 + 2/n ≤ 2 (recall that n ≥ 2), one derives M -1 Ω |∇u| 2 ≤ M C 1 Ω 1 + C r 1 + |∇u| q , whence u H 1 0 (Ω) ≤ C 2 ,
where C 2 > 0 only depends on Ω, q, M and r.

Step 3: a uniform estimate of u W 2,p (Ω) . Since q < 2, the proof of Theorem 5.5 of [START_REF] Hamel | Comparison results for semilinear elliptic equations using a new symmetrization method[END_REF] and the quantitative assumption (1.26) show that, for all 1 ≤ p < ∞,

u W 2,p (Ω) ≤ K p , (4.38) 
where K p > 0 only depends on Ω, n, q, M , r and p. In particular, u C 1,1/2 (Ω) ≤ C 3 , where C 3 > 0 only depends on Ω, n, q, M and r.

Step 4: conclusion. What remains to be proved is the existence of a positive constant β, depending only on Ω, n, q, M and r such that u(x) ≥ β d(x, ∂Ω) for all x ∈ Ω. As in the proof of Lemma 3.1, one argues by contradiction, assuming that this conclusion does not hold. Then there are a sequence (4.38) and the nonnegativity of u m . Here, C 4 > 0 only depends on Ω, n, q, M and r. Finally, one concludes as for the proof of Lemma 3.1.

(A m ) m∈N of W 1,∞ (Ω, S n (R)) matrix fields, a sequence (Λ m ) m∈N of L ∞ + ( 
Proof of Lemma 4.2. We first remember that the existence and uniqueness of the weak solutions V k ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) of (4.28) is guaranteed by [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF][START_REF] Boccardo | Résultats d'exitence pour certains problèmes elliptiques quasilinéaires[END_REF]. By uniqueness of V k and radial symmetry of all coefficients, the functions V k are all radially symmetric. Furthermore, from the boundedness assumptions made in Lemma 4.2 and from [START_REF] Boccardo | Quelques propriétés des opérateurs elliptiques quasi-linéaires[END_REF][START_REF] Boccardo | L ∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result[END_REF], the sequence (V k ) k∈N is bounded in H 1 0 (Ω * ) and in L ∞ (Ω * ), and it is relatively compact in H 1 0 (Ω * ). Therefore, there exists a radially symmetric function V ∞ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that the limit (4.29) holds, at least for a subsequence.

The goal is to show that the function V ∞ solves the limiting equation (4.30) in the weak H 1 0 (Ω * )∩L ∞ (Ω * ) sense. Notice that, once this is done, then by uniqueness of the H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of this limiting equation (4.30), it follows immediately that the whole sequence (V k ) k∈N converges to V ∞ in the sense of (4.29).

In order to show (4.30), as for the proof of Lemma 3.3, the strategy is to work with the one-dimensional equations satisfied by the functions V k , to derive additional bounds and to pass to the limit in a certain sense. Comparing to Lemma 3.3, the additional difficulty will be to pass to the limit in the terms α k |∇V k | q , for which only L 1 bounds are available (in particular, estimates similar to (3.58) with -α k |∇V k | q instead of a k e r •∇v k may not be true). For the proof of (4.30), we consider separately the cases where the dimension n is such that n ≥ 2, and the case n = 1.

First case:

n ≥ 2. Call                                  λ k (r) = 1 nα n r n-1 ∂Br λ k dθ r , λ ∞ (r) = 1 nα n r n-1 ∂Br λ ∞ dθ r , α k (r) = 1 nα n r n-1 ∂Br α k dθ r , α ∞ (r) = 1 nα n r n-1 ∂Br α ∞ dθ r , γ k (r) = 1 nα n r n-1 ∂Br γ k dθ r , γ ∞ (r) = 1 nα n r n-1 ∂Br γ ∞ dθ r , V k (r) = 1 nα n r n-1 ∂Br V k dθ r , V ∞ (r) = 1 nα n r n-1 ∂Br V ∞ dθ r , W k (r) = 1 nα n r n-1 ∂Br λ k ∇V k • e r dθ r . (4.39) 
From Fubini's theorem, these quantities can be defined for almost every r ∈ (0, R). The functions λ k and λ ∞ are in L ∞ + (0, R) and the functions α k , α ∞ , γ k and γ ∞ are in L ∞ (0, R). Furthermore, it follows from (4.27) that λ -1 k ⇀ λ -1 ∞ , λ -q k α k ⇀ λ -q ∞ α ∞ and γ k ⇀ γ ∞ in L ∞ (r 0 , R) weak-* as k → +∞ (4.40)

for every r 0 ∈ (0, R). On the other hand, the functions V k and V ∞ belong to the space L ∞ (0, R)∩H 1 loc ((0, R]), the sequence ( V k ) k∈N is bounded in L ∞ (0, R) and in H 1 (r 0 , R) for every r 0 ∈ (0, R), and

V k → V ∞ in H 1 (r 0 , R) strong as k → +∞ (4.41)
for every r 0 ∈ (0, R), from (4.29). Lastly, the sequence ( W k ) k∈N is bounded in L 2 (r 0 , R) for every r 0 ∈ (0, R) and it is straightforward to check that

W k = λ k V ′ k a.e. in (0, R) (4.42)
for every k ∈ N.

By testing (4.28) against radially symmetric functions ϕ ∈ C 1 c (Ω * ) which vanish in a neighborhood of 0, it follows that, for every k ∈ N, the function W k is in W 1,1 (r 0 , R) for every r 0 ∈ (0, R), and that

-W ′ k (r) = n -1 r λ k (r) V ′ k (r) + α k (r) | V ′ k (r)| q -δ k V k (r) + γ k (r)
a.e. in (0, R).

Therefore, the sequence ( W ′ k ) k∈N is bounded in L 1 (r 0 , R) for every r 0 ∈ (0, R), whence ( W k ) k∈N is bounded in W 1,1 (r 0 , R) for every r 0 ∈ (0, R). As a consequence, there is a function W ∞ ∈ L ∞ loc ((0, R]) such that, up to extraction of a subsequence,

   W k ⇀ k→+∞ W ∞ in L ∞ (r 0 , R) weak-*, W k → k→+∞ W ∞ in L p (
r 0 , R) strong for every 1 ≤ p < +∞, for every r 0 ∈ (0, R). (4.43)

Together with (4.40) and (4.42), one gets that

V ′ k = λ -1 k W k ⇀ λ -1
∞ W ∞ as k → +∞ in, say, L 2 (r 0 , R) weak, for every r 0 ∈ (0, R). Remembering (4.41), one concludes that

W ∞ = λ ∞ V ′
∞ a.e. in (0, R). (4.44)

We shall now show that V ∞ is a weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of (4.30), that is I ϕ = 0 for every ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ), where I ϕ is defined in (4.31). Let us fix such a function ϕ. Since n ≥ 2, there is a sequence (φ m ) m∈N of C 1 c (Ω * ) functions such that, for every m ∈ N,

0 ≤ φ m ≤ 1 in Ω * , φ m = 1 in B 2 -m-2 R , φ m = 0 in Ω * \B 2 -m-1 R
and the sequence (φ m ) m∈N is bounded in H 1 0 (Ω * ). Call ϕ m = ϕ (1 -φ m ). The functions ϕ m are all in H 1 0 (Ω * ) ∩ L ∞ (Ω * ) and they are such that ϕ m = 0 a.e. in B 2 -m-2 R and ϕ m -ϕ = -ϕ φ m = 0 a.e. in Ω * \B 2 -m-1 R . One has [START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF] for every m ∈ N. The last three integrals converge to 0 as m → +∞ from Lebesgue's dominated convergence theorem, since α ∞ ∈ L ∞ (Ω * ), V ∞ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) and ϕ ∈ L ∞ (Ω * ) (∩H 1 0 (Ω * )) and since the sequence (φ m ) m∈N is bounded in L ∞ (Ω * ). The first integral of (4.45) also converges to 0 as m → +∞ by Cauchy-Schwarz inequality and Lebesgue's dominated convergence theorem, since λ ∞ |∇V ∞ | is in L 2 (Ω * ), ϕ is in H 1 0 (Ω * )∩L ∞ (Ω * ) and the sequence (φ m ) m∈N is bounded in H 1 0 (Ω * ). Finally, I ϕm -I ϕ → 0 as m → +∞. So, in order to show that I ϕ = 0 for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ), it is sufficient to show it for all ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that ϕ = 0 almost everywhere in a ball with positive radius centered at the origin.

I ϕm -I ϕ = - B 2 -m-1 R λ ∞ ∇V ∞ • ∇(ϕ φ m ) + B 2 -m-1 R α ∞ |∇V ∞ | q ϕ φ m - B 2 -m-1 R δ ∞ V ∞ ϕ φ m + B 2 -m-1 R γ ∞ ϕ φ m (4.
Let then ϕ be a fixed function in H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that ϕ = 0 almost everywhere in B r 0 for some r 0 ∈ (0, R), and let us show that I ϕ = 0. It follows from Fubini's theorem and the definitions (4.39) that

I ϕ = R r 0 λ ∞ (r) V ′ ∞ (r) Φ(r) -α ∞ (r) | V ′ ∞ (r)| q φ(r) + δ ∞ V ∞ (r) φ(r) -γ ∞ (r) φ(r) dr, (4.46) 
where the functions φ and Φ are defined as in (3.60) and are in L 2 (r 0 , R). Furthermore, φ ∈ L ∞ (r 0 , R). Furthermore,

Since λ k V ′ k = W k ⇀ W ∞ = λ ∞ V ′ ∞ as k → +∞ in L ∞ (
α k | V ′ k | q = λ -q k α k × λ q k | V ′ k | q (4.48)
and λ -q k α k ⇀ k→+∞ λ -q ∞ α ∞ in L ∞ (r 0 , R) weak-* (4.49) from (4.40). On the other hand,

λ q k | V ′ k | q = | W k | q → k→+∞ | W ∞ | q = λ q ∞ | V ′ ∞ | q in, say, L 1 (r 0 , R) strong, (4.50) 
from (4.43) and (4.44): indeed, since the sequence (W k ) k∈N is bounded in L ∞ (r 0 , R) from (4.43), it follows that, for every ε > 0, there is a constant C ε > 0 such that

| W k (r)| q -| W ∞ (r)| q ≤ C ε W k (r)
-W ∞ (r) + ε for every k ∈ N and a.e. r ∈ (r 0 , R), and the L 1 (r 0 , R) convergence of | W k | q to | W ∞ | q follows then from the L 1 (r 0 , R) convergence of W k to W ∞ by (4.43). Putting together (4.48), (4.49) and (4.50) leads to as k → +∞. But it follows from Fubini's theorem, the definitions (4.39) and the fact that ϕ = 0 in B r 0 , that

α k | V ′ k | q ⇀ λ -q ∞ α ∞ × λ q ∞ | V ′ ∞ | q = α ∞ | V ′ ∞ | q in L 1 (r 0 , R) weak as k → +∞, whence R r 0 α k (r) | V ′ k (r)| q φ(r) dr → R r 0 α ∞ (r) | V ′ ∞ (r)| q φ(
I ϕ k = Ω * λ k ∇V k • ∇ϕ - Ω * α k |∇V k | q ϕ + Ω * δ k V k ϕ - Ω * γ k ϕ
for every k ∈ N. Hence, I ϕ k = 0 for every k ∈ N, owing to the definition of V k in (4.28). As a conclusion, I ϕ = 0 for every ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) such that ϕ = 0 almost everywhere in a neighborhood of 0. As already emphasized, this implies that I ϕ = 0 for every ϕ ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) in this case n ≥ 2. Second case: n = 1. In this case, we work directly with the functions λ k , λ ∞ , α k , α ∞ , γ k , γ ∞ , V k and V ∞ defined in Ω * = (-R, R) and satisfying (4.27) and (4.29). Call W k = λ k V ′ k . The sequence (W k ) k∈N is bounded in L 2 (-R, R). Furthermore, it follows from (4.28) that each function W k is in W 1,1 (-R, R) and that -W ′ k (r) = α k (r) |V ′ k (r)| q -δ k V k (r) + γ k (r) a.e. in (-R, R). Hence, the sequence (W k ) k∈N is bounded in W 1,1 (-R, R) and there exists a function W ∞ ∈ L ∞ (-R, R) such that W k ⇀ W ∞ as k → +∞ in L ∞ (-R, R) weak-*, W k → W ∞ as k → +∞ in L p (-R, R) strong for every 1 ≤ p < +∞.

One then infers as in the case n ≥ 2 that W ∞ = λ ∞ V ′ ∞ a.e. in (-R, R). The same arguments as the ones used in the last part of the proof in the case n ≥ 2 then imply that, for every ϕ ∈ H 1 0 (-R, R) (⊂ L ∞ (-R, R)),

0 = R -R λ k (r) V ′ k (r) ϕ ′ (r) dr - R -R α k (r) |V ′ k (r)| q ϕ(r) dr + R -R δ k V k (r) ϕ(r) dr - R -R
γ k (r) ϕ(r) dr

→ k→+∞ R -R λ ∞ (r)V ′ ∞ (r)ϕ ′ (r)dr - R -R α ∞ (r) |V ′ ∞ (r)| q ϕ(r)dr + R -R δ ∞ V ∞ (r)ϕ(r)dr - R -R
γ ∞ (r)ϕ(r)dr.

As a consequence, the limiting integral is equal to 0 for every ϕ ∈ H 1 0 (-R, R) (⊂ L ∞ (-R, R)), which means that V ∞ is the weak solution of (4.30).

The proof of Lemma 4.2 is thereby complete in both cases n ≥ 2 and n = 1.

Lemma 3 . 4 .

 34 There holds z L ≤ z a.e. in Ω * . (3.38)

  r and Φ(r) = ∂Br e r • ∇ϕ dθ r for r ∈ (r 0 , R).(3.60)

(4. 1 )

 1 Due to (4.1), one can assume without loss of generality that minΩ Λ j ≥ ess inf Ω Λ 2 =: m Λ > 0 (4.2)

  Ω) functions and four sequences (H m ) m∈N , (a m ) m∈N , (b m ) m∈N , (f m ) m∈N of continuous functions in Ω × R × R n , satisfying (1.3),(1.4) and(1.26) with the same parameter M > 0, as well as a sequence (u m ) m∈N of W (Ω) solutions of (1.1) satisfying (3.1), and a sequence (x m ) m∈N of points in Ω such that (3.45) holds. Observe first that the sequence(H m (•, u m (•), ∇u m (•))) m∈N is bounded in L ∞ (Ω). Indeed, by (1.26), for all x ∈ Ω, |H m (x, u m (x), ∇u m (x))| ≤ M (1 + |u m (x)| r + |∇u m (x)| q ) ,and u m and ∇u m are uniformly bounded in L ∞ (Ω) by(4.38). As a consequence, there are a symmetric matrix fieldA ∞ ∈ W 1,∞ (Ω, S n (R)), a function u ∞ ∈ W (Ω) ∩ H 1 0 (Ω), a point x ∞ ∈ Ω and two functions H ∞ , H 0 ∈ L ∞(Ω) satisfying (3.46), (3.47) and (3.48) as in the proof of Lemma 3.1. For every m ∈ N and x ∈ Ω, one has, by (1.26), H m (x, u m (x), ∇u m (x)) ≤ M (u m (x)) r + |∇u m (x)| q + H m (x, 0, 0) ≤ C 4 u m (x) + |∇u m (x)| + H m (x, 0, 0), from (1.26),

  r 0 , R) weak-* from (4.42), (4.43) and (4.44), one infers thatR r 0 λ k (r) V ′ k (r) Φ(r) dr → R r 0 λ ∞ (r) V ′ ∞ (r) Φ(r) dr as k → +∞. (4.47)

  r) dr as k → +∞ (4.51) since φ ∈ L ∞ (r 0 , R). Similarly, it follows from (4.40), (4.41) and the convergence ofδ k to δ ∞ , that R r 0 δ k V k (r) φ(r) -γ k (r) φ(r) dr → k→+∞ R r 0 δ ∞ V ∞ (r) φ(r) -γ ∞ (r) φ(r) dr. (4.52) Finally, it follows from (4.46), (4.47), (4.51) and (4.52) that R r 0λ k (r) V ′ k (r) Φ(r) -α k (r) | V ′ k (r)| q φ(r) + δ k V k (r) φ(r) -γ k (r) φ(r) dr =:I ϕ k → I ϕ

  1) and (2.2) with φ instead of ψ. Indeed, for φ ∈ E N,β (Ω), one has |Ω a | ≥ |{y ∈ Ω; d(y, ∂Ω) > a/β}| ≥ |Ω| -γa, using the fact that Ω is of class C 1 . This yields the claim.Let us now prove that there exists η > 0 only depending on Ω, N and β such that, for all φ ∈ E N,β (Ω), all x ∈ Ω * and all y ∈ Σ (ρ φ ) -1 (|x|) ,

d(y, ∂Ω) ≥ η d(x, ∂Ω * ).

(2.23) 

Let us assume by contradiction that this is not true. Then, there exist a sequence of functions (φ k ) k≥1 ∈ E N,β (Ω) and two sequences of points (x k ) k≥1 ∈ Ω * and (y k ) k≥1 ∈ Ω with

  [START_REF] Ferone | Comparison results for nonlinear elliptic equations with lower-order terms[END_REF] for all x ∈ Ω * . The conclusion of Lemma 2.5 then readily follows from (2.25) and (2.26). of Proposition 2.4. Let x ∈ E ∩ Ω * . Proposition 2.2 provides the existence of a point y ∈ Σ ρ -1 (|x|) such that

	Proof

  a k and f k are radially symmetric. It follows from (2.6), (2.13), (2.14) and (3.3) that 

  strong and a.e. in Ω * as k → +∞.

		(3.23)
	Together with (3.19), (3.20), (3.21) and (3.22), one gets that	
	0 ≤ u * ≤ v ∞ a.e. in Ω *	(3.24)

  not a ball and assumption(1.11) is made). They are the desired conclusions. The proofs of Theorems 1.1 and 1.3 are thereby complete. Remark 3.6. In Theorems 1.1 and 1.3, if we further assume that inf Ω×R×R n b > 0, then similar comparison results as in Theorems 1.5 and 1.7 can be obtained. We refer to Remark 4.3 below for more details. Remark 3.7. In Theorem 4 of[START_REF] Alvino | Comparison results for elliptic and parabolic equations via Schwarz symmetrization[END_REF], some integral comparisons of |∇u| in Ω and |∇v| in Ω * (in particular, ∇u L p (Ω,R n ) ≤ ∇v L p (Ω * ,R n ) for 1 ≤ p ≤ 2) are established under assumptions of the type(1.22), where v ∈ H 1 0

	Remark 3.5. By replacing v by z in (3.40) and by using directly (3.38) instead of (3.39), it also follows
	that	
	u * ≤ z a.e. in Ω *	(3.42)
	under the assumptions of Theorem 1.1, whereas (1 + η	

u ) u * ≤ z a.e. in Ω * (resp. (1 + η) u * ≤ z a.e. in Ω * )

if Ω is not a ball (resp. if Ω is not a ball and assumption (1.11) is made).

  some positive constant C 3 . Standard elliptic estimates, together with(1.11), then yield the existence of a positive constantC 4 such that u H 2 (Ω) ≤ C 4 , whence u W 1,2 * (Ω) ≤ C 5 for some positive constant C 5 with 2 * = 2n/(n -2) if n ≥ 3 (2 * = ∞ if n = 1,and 2* denotes an arbitrarily fixed real number larger than 2 if n = 2). Using again (3.44) and a standard bootstrap argument, it follows that u W 2,p (Ω) ≤ C p for every 1 ≤ p < +∞ where C p depends only on Ω, n, M and p. In particular, one gets that u C 1,1/2 (Ω) ≤ C 6 for some positive constant C 6 .

  a k and f k are radially symmetric. It follows from (2.6), (2.13), (2.14) and (4.1) that 

  .6) Proposition 2.1 then implies that (3.11) and (3.12) hold, that is0 ≤ u * j k (x) ≤ ψ k (x) for all x ∈ Ω * . (4.7)Furthermore, if Ω is not a ball, it follows from (4.3) and Proposition 2.6 that0 ≤ (1 + η u ) u * j k (x) ≤ ψ k (x) for all x ∈ Ω * . (4.8)where η u > 0 only depends on Ω, n, N u and β u , that is on Ω, n and u.

	If Ω is not a ball and the
	assumption (1.26) of Theorem 1.7 is made, it follows from (4.4) and Proposition 2.6 that	
	0 ≤ (1 + η) u * j k (x) ≤ ψ k (x) for all x ∈ Ω *	(4.9)
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which contradicts the integrability of the integral R 0 r n-1 z ′ L (r) 2 dr given in (3.64). Hence, ζ L (0) = 0 and ω L (0) = 0.

Consider now the case n = 1. We work directly in the interval Ω * = (-R, R). With similar arguments as in the previous paragraph, the L 2 (-R, R) function ζ 1 L := Λ z ′ L is actually in H 1 (-R, R), whence continuous on [-R, R] without loss of generality, and ζ 1 L (x) = ζ L (x) for all x ∈ [0, R]. But since the H 1 (-R, R) function z L is even, the L 2 (-R, R) function z ′ L is odd, in the sense that z ′ L (-x) = -z ′ L (x) for a.e. x ∈ (-R, R). Since Λ is even, the (continuous) function

In particular, it vanishes at 0. Hence, ω L (0) = ζ L (0) = ζ 1 L (0) = 0. To sum up, there holds ω L (0) = 0 in all dimensions n ≥ 1. From (3.69), one then infers that ω L (r) = -r 0 Θ(s) h L (s) s n-1 ds for all r ∈ [0, R], whence (3.52). In particular, the function Θ is equal to its Schwarz rearrangement Θ * in the ball Ω * . For every r ∈ (0, R], it follows then from Fubini's theorem and Hardy-Littlewood inequality that

where (h r L ) * denotes the Schwarz rearrangement, in the ball B r , of the restriction h r L := (h L ) |Br of the function h L in the ball B r (notice that the Hardy-Littlewood inequality is usually stated for nonnegative functions; here, the function Θ is nonnegative, but the function h L may not be nonnegative in general; however, due to the definition of the Schwarz rearrangement given in Section 1 for general L 1 functions with no sign, the inequality Br Θ h L ≤ Br Θ * (h r L ) * holds immediately from the standard Hardy-Littlewood inequality, since (h + λ) * = h * + λ for any L 1 function h and any constant λ ∈ R). On the other hand, elementary arguments imply that (h r L ) * ≤ (h * L ) |Br in B r , where (h * L ) |Br denotes the restriction in B r of the Schwarz rearrangement h * L of the function h L in Ω * . Hence

have indeed the same distribution functions µ h L = µ fu and thus the same Schwarz rearrangements in Ω * ). Since Θ ≥ 0 in Ω * , one infers from (3.72), (3.73) and Fubini's theorem that, for all r ∈ (0, R],

Together with (3.70) and (3.71), it follows that -Θ(r)

and Θ is continuous and positive on [0, R]. Finally, since both functions z L and z are continuous on [0, R], vanish at R (z L and z

Step 8: approximation of v by some functions w k in Ω * Let ( f k ) k∈N be the sequence of radially symmetric functions defined in Step 3, and remember that the sequence (

) and δ > 0, it follows from [START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF][START_REF] Boccardo | Résultats d'exitence pour certains problèmes elliptiques quasilinéaires[END_REF] that, for each k ∈ N, there is a unique weak

in the sense that

). Furthermore, the functions w k are all radially symmetric by uniqueness and since all coefficients Λ, a and f k are radially symmetric. Lastly, as in Step 6 above, the sequence (w k ) k∈N is bounded in [START_REF] Boccardo | Quelques propriétés des opérateurs elliptiques quasi-linéaires[END_REF][START_REF] Boccardo | L ∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result[END_REF]. There exists then a function 

) solution of the limiting equation (4.26), that is w ∞ = v by uniqueness. By uniqueness of the limit, the whole sequence (w k ) k∈N converges to v, that is

Step 9: approximation of the function w K for K large by some functions z l in Ω * Let ε > 0 be an arbitrary positive real number. From (4.33) and Sobolev embeddings, there is an integer

where w K is the unique weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ) solution of (4.32) with k = K and where the Sobolev exponant 2 * is defined as in Theorem 1.5. Now, as in Step 9 of the proofs of Theorems 1.1 and 1.3, there is a sequence (h l ) l∈N of L ∞ (Ω * ) radially symmetric functions such that h l ⇀ f K as l → +∞ in L ∞ (Ω * ) weak-* and µ h l = µ fu for all l ∈ N. As in the previous step of the proof of the present Theorems 1.5 and 1.7, for every l ∈ N, there is a unique weak H 1 0 (Ω * ) ∩ L ∞ (Ω * ), and radially symmetric, solution z l of

and, from Lemma 4.2 again, the functions z l converge to w K in H 1 0 (Ω * ) strong as l → +∞. In particular, there is

from (4.34).

Step 10: conclusion of the proofs of Theorems 1.5 and 1.7 

This is the desired conclusion (1.18). Under the assumptions of Theorem 1.7, one obtains similarly that

≤ ε when Ω is not a ball and (1.26) is assumed. The proofs of Theorems 1.5 and 1.7 are thereby complete. Remark 4.3. In Theorems 1.1 and 1.3 with linear growth q = 1, some further comparison results similar to those of Theorems 1.5 and 1.7 can be obtained when

Let us briefly explain how to get these further comparisons. In Step 3 of the proof of Theorems 1.1 and 1.3, it follows as in Step 3 of the proof of Theorems 1.5 and 1.7 that there exists δ > 0 depending on Ω, n, m b , m Λ , a L ∞ (Ω×R×R n ) , f L ∞ (Ω×R×R n ) , N u and β u such that (3.15) still holds with the additional term δ ψ k (x) in the left-hand side. Let then v k , v ∞ , w k and z l be the solutions of equations similar to (3.18), (3.30), (3.31) and (3.35) with additional left-hand sides δ v k , δ v ∞ , δ w k and δ z l , respectively (the coefficients Λ k , Λ, a k , a, f k , f , g k and h l being unchanged). Since ψ k is still a weak subsolution for the new equation satisfied by v k and since the maximum principle still holds, it follows that ψ k ≤ v k a.e. in Ω * , whence 0 < u j k ≤ ψ k ≤ v k a.e. in Ω * . The positive function v k is then a strict weak subsolution of the equation (3.18) satisfied by the function v k used in the proof, whence v k ≤ v k a.e. in Ω * and v k = v k in H 1 0 (Ω * ). The arguments up to Step 9 of the proof of Theorems 1.1 and 1.3 hold similarly for the new functions v k , v ∞ , w k and z l . In particular, one gets u * ≤ v ∞ a.e. in Ω * . As in Step 11, from the maximum principle again, one can also say that

(together with some quantitatively improved inequalities when Ω is not a ball), where v is the unique weak

the weak sense, it follows that v ♭ -v ≥ φ a.e. in Ω * , where the nonnegative function φ is the unique H 1 0 (Ω * ) solution of -div( Λ∇φ) + a |∇φ| = δ u * (the function φ depends on u * and δ and thus on some bounds on the coefficients). Now, if z denotes the solution of (3.37) with left-hand side δ z, we do not know how to compare z L and z (one cannot immediately repeat the arguments used in Lemma 3.4 since integrating the one-dimensional equation satisfied by the radial profile obtained from z L is not possible in general). However, one can still argue as in Step 10 of the proof of Theorems 1.5 and 1.7 to get the following result: for any ε > 0, there is a solution v ε of (1. [START_REF] Bramanti | Simmetrizzazione di Schwarz di funzioni e applicazioni a problemi variazionali ed equazioni a derivate parziali[END_REF]) and (1.20) with q = 1, such that (u * -v ε ) + L 2 * (Ω * ) ≤ ε, and v ε ≤ v ♭ ε a.e. in Ω * where v ♭ ε obeys the same equation as v ε without δ. Quantitatively improved inequalities with (1 + η u )u * and (1 + η)u * instead of u * also hold when Ω is not a ball and assumption (1.11) is made. Under the assumptions of Theorems 1.1, and assuming furthermore that inf Ω×R×R n b > 0, obtaining a pointwise comparison between u * and the solution v ∈ H 1 0 (Ω * ) of (1.7) with H(x, p) = -a(x)|p| + δs -f * u (x), as well as an improved inequality in the context of Theorem 1.3, is an open question.

In Theorems 1.5 and 1.7 with superlinear growth 1 < q ≤ 2, let us now drop the assumption (1.13) (that is, b is only assumed to be nonnegative). If we follow the above proof, the zero order term δ ψ k is not present in (4.10) anymore and the solutions v k ∈ H 1 0 (Ω * ) ∩ L ∞ (Ω * ) of (4.13) without δ may not exist or be unique. However, if we assume the existence for this new problem in Ω * , as well as for problems (4.26), (4.28), (4.30), (4.32) and (4.35) with δ = 0, and if we also assume the validity of comparison principles (which lead to uniqueness and thus radial symmetry) together with uniform bounds in H 1 0 (Ω * )∩L ∞ (Ω * ) and compactness in H 1 0 (Ω * ) for sequences of solutions of these new equations, then the proof remains unchanged and the same conclusions hold. Lastly, we mention that comparing u * with the solution of an equation of the type (1.7) with H(x, p) = -a(x) |p| q -f * u (x) is still open since getting a comparison result similar to Lemma 3.4 is not clear in the nonlinear case (1 < q ≤ 2).