Schottky groups acting on homogeneous rational manifolds - Archive ouverte HAL Access content directly
Journal Articles Journal für die reine und angewandte Mathematik Year : 2016

Schottky groups acting on homogeneous rational manifolds

Abstract

We systematically study Schottky group actions on homogeneous rational manifolds and find two new families besides those given by Nori's well-known construction. This yields new examples of non-K\"ahler compact complex manifolds having free fundamental groups. We then investigate their analytic and geometric invariants such as the Kodaira and algebraic dimension, the Picard group and the deformation theory, thus extending results due to L\'arusson and to Seade and Verjovsky. As a byproduct, we see that the Schottky construction allows to recover examples of equivariant compactifications of SL(2,C)/\Gamma for \Gamma a discrete free loxodromic subgroup of SL(2,C), previously obtained by A. Guillot.
Fichier principal
Vignette du fichier
Miebach_Oeljeklaus_Schottky.pdf (605.87 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01255280 , version 1 (13-01-2016)

Licence

Attribution

Identifiers

Cite

Christian Miebach, Karl Oeljeklaus. Schottky groups acting on homogeneous rational manifolds. Journal für die reine und angewandte Mathematik, 2016, ⟨10.1515/crelle-2016-0065⟩. ⟨hal-01255280⟩
109 View
132 Download

Altmetric

Share

Gmail Facebook X LinkedIn More