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SCHOTTKY GROUPS ACTING ON HOMOGENEOUS RATIONAL
MANIFOLDS

CHRISTIAN MIEBACH AND KARL OELJEKLAUS

Abstract. We systematically study Schottky group actions on homogeneous rational ma-
nifolds and find two new families besides those given by Nori’s well-known construction.
This yields new examples of non-Kähler compact complex manifolds having free fundamental
groups. We then investigate their analytic and geometric invariants such as the Kodaira and
algebraic dimension, the Picard group and the deformation theory, thus extending results
due to Lárusson and to Seade and Verjovsky. As a byproduct, we find previously unknown
examples of equivariant compactifications of SL(2,C)/Γ for Γ a discrete free loxodromic
subgroup of SL(2,C).

1. Introduction

A classical Schottky group acting on the Riemann sphere P1 is given as follows. Choose
2r open discs U1, V1, . . . , Ur, Vr ⊂ P1 having pairwise disjoint closures as well as r loxodromic
automorphisms γ1, . . . , γr of P1 satisfying γj(Uj) = P1\Vj . The group Γ ⊂ Aut(P1) generated
by γ1, . . . , γr is a free group of rank r acting freely and properly on the open subset UΓ := Γ·FΓ
where

FΓ := P1 \
r⋃
j=1

(Uj ∪ Vj).

Moreover, the quotient UΓ /Γ is a compact Riemann surface of genus r. One can relax the
notion of a classical Schottky group by considering 2r pairwise disjoint open subsets of P1

that are bounded by arbitrary Jordan curves instead of circles. In this case Koebe showed
that every compact Riemann surface can be obtained as quotient of an open subset of P1 by a
Schottky group. We refer the reader to [CNS13, Chapter 1.2.5] for an account on the history
of Schottky groups.

In [Nor86] Nori extended the construction of Schottky groups to higher dimensions in or-
der to obtain compact complex manifolds having free fundamental group of any rank. Let us
recall his construction. Let z, w ∈ Cn+1 and consider the smooth function on P2n+1 given by
ϕ[z : w] = ‖w‖2

‖z‖2+‖w‖2 . The fibers Ca = ϕ−1(a) for a = 0, 1 are isomorphic to Pn. For 0 < ε < 1
2

we have the open neighborhoods Uε = {ϕ < ε} and Vε = {ϕ > 1 − ε} of C0 and C1, respec-
tively. For λ ∈ C∗ define an automorphism of P2n+1 by gλ[z : w] := [λ−1z : λw]. A direct
calculation shows that gλ maps Uε biholomorphically to P2n+1 \ V ε if |λ|2 = 1−ε

ε > 1. Now
let f2, . . . , fr be r > 2 automorphisms such that C0, C1, f2(C0), f2(C1), . . . , fr(C0), fr(C1) are
pairwise disjoint and take ε > 0 sufficiently small such that
Uε, Vε, f2(Uε), f2(Vε), . . . , fr(Uε), fr(Vε) have pairwise disjoint closures. The automorphisms
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2 CHRISTIAN MIEBACH AND KARL OELJEKLAUS

f2, . . . , fr exist since Aut(P2n+1) acts transitively on the set of disjoint pairs of linearly em-
bedded Pn’s. Fix λ ∈ C∗ with |λ|2 = 1−ε

ε and define r automorphisms of P2n+1 by γ1 := gλ
and γj := fj ◦ γ1 ◦ f−1

j for 2 6 j 6 r. The group Γ ⊂ Aut(P2n+1) generated by γ1, . . . , γr
is an example of a Schottky group acting on P2n+1. As in the one-dimensional case, there is
the analogously defined open subset UΓ on which Γ acts freely and properly such that the
quotient QΓ := UΓ /Γ is a compact complex manifold. The quotient manifolds QΓ obtained
by Nori’s construction were studied in a more general framework by Lárusson in [Lár98]. He
showed that, under a technical assumption on the generators of the Schottky group Γ which
guarantees that the 4n-dimensional Hausdorff measure of P2n+1 \ UΓ is zero, the manifold
QΓ has Kodaira dimension −∞, is rationally connected, and is not Moishezon. For Schottky
groups acting on P3 he proved furthermore that QΓ has algebraic dimension zero. In [SV03]
Seade and Verjovsky proved for arbitrary n that QΓ is diffeomorphic to a smooth fiber bundle
over Pn with fiber the connected sum of r − 1 copies of S1 × S2n+1 and, furthermore, they
studied the deformation theory of QΓ .

So far the only known examples of Schottky transformation groups are discrete subgroups
of the automorphism group of P2n+1. Under the hypothesis that the 2-dimensional Hausdorff
measure of P2 \ UΓ is zero, Lárusson proved that there do not exist Schottky groups acting
on P2. In [Can08] Cano generalized this result to P2n.

This leads naturally to the main purpose of the present paper, namely the construction of
Schottky group actions on homogeneous rational manifolds different from P2n+1.

In order to state the results we have to introduce some terminology. A Schottky pair in
a connected compact complex manifold X is a pair of disjoint connected compact complex
submanifolds C0 and C1 such that there is a holomorphic C∗-action on X that is free and
proper on X \ (C0 ∪ C1) and has fixed point set XC∗ = C0 ∪ C1. The first ingredient for
the construction of new Schottky groups acting on homogeneous rational manifolds is the
following observation.
Proposition 3.2. Let G be a connected semisimple complex Lie group, let Q be a parabolic
subgroup of G, and let G0 be a non-compact real form of G. If the minimal G0-orbit in the
homogeneous rational manifold X = G/Q is a real hypersurface, then X admits a Schottky
pair.

Its proof is based on [Akh77] and Matsuki duality. In fact, the Schottky pairs (C0, C1) in
X = G/Q given by Proposition 3.2 are the compact orbits of K = KC

0 where K0 is a maximal
compact subgroup of G0.

This proposition strongly demands to classify all triplets (G,G0, Q) such that the minimal
G0-orbit in X = G/Q is a hypersurface. Since we did not find this classification, which is
of independent interest, in the literature, it is carried out in an appendix of this paper. As
a consequence, the homogeneous rational manifolds admitting Schottky pairs coming from
a minimal hypersurface orbit are P2n+1, the Graßmannians Grn(C2n), the quadrics Q2n and
the Graßmannians IGrn(C2n+1) of subspaces of C2n+1 that are isotropic with respect to a
non-degenerate quadratic form on C2n+1. We proceed to determine all the cases in which the
Schottky pairs can be moved by automorphisms of X in order to actually produce Schottky
groups. Our main result is the following
Theorem 4.2. Let G be a connected semisimple complex Lie group, let Q be a parabolic sub-
group of G, and let G0 be a non-compact real form of G whose minimal orbit is a hypersurface
in X = G/Q. The Schottky pairs giving rise to Schottky group actions on X of arbitrary rank
r are precisely the ones on P2n+1, Q4n+2 and IGrn(C2n+1).

In addition, we construct Schottky groups acting on Q2n+1 and on certain singular subva-
rieties of P2n+1 which are not directly related to minimal hypersurface orbits.
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Associated with a Schottky group Γ acting on X we have the quotient manifold QΓ . We
prove that the compact complex manifold QΓ is non-Kähler, rationally connected, and has Ko-
daira dimension kodQΓ = −∞, see Proposition 6.1. Furthermore, we give a criterion for the
algebraic dimension a(QΓ ) to be zero (cf. Theorem 6.2) and construct examples of QΓ having
strictly positive algebraic dimension, see Examples 6.4, 6.6 and 6.7. Their algebraic reduc-
tion leads to previously unknown almost-homogeneous compact complex manifolds, namely
equivariant compactifications of H/Γ where H is the Zariski closure of Γ in Aut(X). In partic-
ular, we obtain equivariant compactifications of SL(2,C)/Γ for every discrete free loxodromic
subgroup Γ ⊂ SL(2,C) (cf. Example 6.5), which, as we hope, will lead to new insight in the
theory of almost homogeneous 3-folds. These examples show that the statements of [CNS13,
Proposition 9.3.12] respectively [SV03, Proposition 3.5] as well as of [CNS13, Theorem 9.3.17]
respectively [SV03, Theorem 3.10] cannot be true in general.

We also determine the Picard group of QΓ (cf. Theorem 6.9) and establish the dimension
and smoothness of its Kuranishi space of versal deformations (cf. Theorem 6.12). We note
that several of these results are new even in the case X = P2n+1. Others have been obtained
by Lárusson as well as Seade and Verjovsky under conditions on the Hausdorff dimension of
X \ UΓ , which allowed them to apply extension theorems for holomorphic and meromorphic
functions due to Shiffman and for cohomology classes due to Harvey. Replacing Shiffman’s
and Harvey’s techniques by results of Andreotti-Grauert, Scheja and Merker-Porten, we are
able to remove these assumptions on the Hausdorff dimension of X \ UΓ .

Let us outline the structure of the paper. In Section 2 we review the basic facts about
Schottky groups in a generality suitable for our purpose. Sections 3 and 4 contain the proofs
of Proposition 3.2 and Theorem 4.2, respectively. In Section 5 we present the technical tools
needed to determine various cohomology groups of the quotient manifolds QΓ . These are
then applied in the final Section 6 in order to obtain analytic and geometric invariants of QΓ
as well as their deformation theory. The classification of the triplets (G,G0, Q) such that the
minimal G0-orbit in X = G/Q is a hypersurface is carried out in the appendix.

2. Complex Schottky groups

In this section we define Schottky group actions on a connected compact complex manifold
X in a way that is suitable for the context of this paper.

2.1. Schottky pairs. LetX be a connected compact complex manifold of complex dimension
d. A Schottky pair inX is given by a pair (C0, C1) of connected compact complex submanifolds
of X and a holomorphic C∗-action on X with fixed point set XC∗ = C0 ∪ C1 that is free
and proper on X \ (C0 ∪ C1). This C∗-action corresponds to a holomorphic homomorphism
C∗ → Aut(X) denoted by λ 7→ gλ.

Remark 2.1. Since the C∗-action on Ω := X \ (C0 ∪C1) is free and proper, we get the trivial
smooth principal R>0-bundle Ω/S1 → Ω/C∗, i.e., differentiably one has Ω/S1 ' (Ω/C∗)×R>0.
Therefore we can define an S1-invariant smooth auxiliary function ϕ : Ω → (0, 1) as the
composition of the projection onto the second factor with the identification R>0 → (0, 1),
t 7→ t2

1+t2
. Since XC∗ = C0 ∪ C1, we may extend ϕ continuously to a function ϕ : X → [0, 1]

such that C0 = ϕ−1(0) and C1 = ϕ−1(1). One verifies directly

(2.1) ϕ
(
gλ(x)

)
=

|λ|4ϕ(x)

1 +
(
|λ|4 − 1

)
ϕ(x)

=: λ · ϕ(x).

In particular, ϕ is a submersion on Ω.
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Remark 2.2. Later on we will choose the function ϕ : X → [0, 1] in a special way in order to
have properties analogous to Nori’s construction mentioned in the introduction.

For 0 < ε < 1
2 we set Uε := {ϕ < ε}. Note that the family of these open sets forms a

neighborhood basis of C0. Similarly, the open sets Vε := {ϕ > 1 − ε} give a neighborhood
basis of C1.

Lemma 2.3. Suppose that X admits a Schottky pair. Then
(a) the C∗-action on X maps fibers of ϕ to fibers of ϕ,
(b) for every x ∈ X \ (C0 ∪ C1) we have limλ→0 gλ(x) ∈ C0 and limλ→∞ gλ(x) ∈ C1, and
(c) if 0 < ε < 1/2 and |λ|2 = 1−ε

ε , then gλ(Uε) = U1−ε = X \ Vε.

Proof. The first two statements follow directly from the equivariance condition (2.1).
To show the third one, we calculate as follows. For a ∈ R>0 we have

(1−ε)2
ε2

a

1 +
(

(1−ε)2
ε2
− 1
)
a

=
(1− ε)2a

ε2 +(1− 2 ε)a
,

and this quantity is less than 1− ε if and only if a < ε. This shows gλ(Uε) ⊂ U1−ε. In order
to prove g−1

λ (U1−ε) ⊂ Uε, let a ∈ [0, 1− ε) and consider
ε2

(1−ε)2a

1 +
(

ε2

(1−ε)2 − 1
)
a

=
ε2 a

(1− ε)2 + (2 ε−1)a
<

ε2(1− ε)
(1− ε)2 + (2 ε−1)(1− ε)

= ε,

as was to be shown. �

Remark 2.4. Suppose that X admits a Schottky pair (C0, C1). Often, there exists in addition
a holomorphic involution s : X → X such that
(1) ϕ ◦ s = 1− ϕ and
(2) s ◦ gλ = gλ−1 ◦ s for all λ ∈ C∗.
In this case s(C0) = C1, hence C0 and C1 are biholomorphic. Moreover, the hypersurface
H := {ϕ = 1/2} is s-stable. Since s yields a biholomorphism between U1/2 and V1/2, the
hypersurface H must be Levi-symmetric.

2.2. Movable Schottky pairs and Schottky groups. Let X be a connected compact
manifold with dimCX = d that admits a Schottky pair (C0, C1). We say that this Schottky
pair can be moved or is movable if for every integer r > 2 there exist automorphisms f2, . . . , fr
of X such that C0, C1, f2(C0), f2(C1), . . . , fr(C0), fr(C1) are pairwise disjoint.

Example 2.5. As shown in the introduction, Nori’s construction produces movable Schottky
pairs in X = P2n+1.

Example 2.6. While X = P2 contains many Schottky pairs, see Proposition 3.2 and Theo-
rem A.1, none of them is movable. To see this, suppose on the contrary that (C0, C1) is a
movable Schottky pair in P2. Since any two curves in P2 intersect, C0 and C1 must be points.
Choose ε > 0 sufficiently small so that Uε is contained in a ball. Consequently, Vε contains
a domain biholomorphic to P2 \ B2. But this is impossible since such domains cannot form a
neighborhood basis of a point. We refer the reader to [Can08] for a related observation.

Suppose that (C0, C1) is movable and fix f1, . . . , fr ∈ Aut(X) as above where f1 := idX . For
all 1 6 j 6 r choose εj ∈ (0, 1/2) and λj ∈ C∗ with |λj |2 =

1−εj
εj

> 1. Set γj := fj ◦ gλj ◦ f
−1
j

and Uj := fj(Uεj ) and Vj := fj(Vεj ). We always choose εj sufficiently small such that the
open sets U1, . . . , Ur, V1, . . . , Vr have pairwise disjoint closures.
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The group Γ ⊂ Aut(X) generated by γ1, . . . , γr is called a Schottky group associated with
the movable Schottky pair (C0, C1). For such a group Γ we define

FΓ := X \
r⋃
j=1

(Uj ∪ Vj) and UΓ :=
⋃
γ∈Γ

γ(FΓ ).

It is clear that UΓ is a Γ-invariant domain in X.
Moreover, if X is simply-connected and if codimC0, codimC1 > 2, then UΓ is likewise

simply-connected. This follows from the fact that UΓ is an increasing union of open subsets
which are homotopy equivalent toX\C where C is the disjoint union ofN copies of C0∪C1, see
Subsection 6.2. If codimC0, codimC1 > 2, then each of these open sets is simply-connected,
hence the same holds for UΓ .

The proof of [CNS13, Proposition 9.2.8] extends literally to give the following.

Proposition 2.7. The Schottky group Γ is the free group generated by γ1, . . . , γr and acts
freely and properly on UΓ . The connected set FΓ is a fundamental domain for the Γ-action
on UΓ . Consequently the quotient QΓ := UΓ /Γ is a connected compact complex manifold. If
X is simply-connected and if codimCj > 2 for j = 0, 1, then the fundamental group of QΓ is
isomorphic to Γ.

Remark 2.8. If we take r = 1, then we have Γ ' Z and UΓ = X \ (C0 ∪C1) = Ω. In this case
QΓ is a holomorphic fiber bundle over Ω/C∗ with an elliptic curve as fiber.

3. Schottky pairs associated with compact hypersurface orbits

In this section we prove Proposition 3.2 which provides a general method to construct
Schottky pairs in homogeneous rational manifolds.

3.1. Nori’s construction. We start by reformulating Nori’s construction of Schottky groups
in group-theoretical terms. Recall that on X = P2n+1 we have the function

ϕ[z : w] :=
‖w‖2

‖z‖2 + ‖w‖2
,

where (z, w) ∈ (Cn+1 ×Cn+1) \ {0}. The hypersurface H = {ϕ = 1/2} =
{
‖z‖2 − ‖w‖2 = 0

}
is an orbit of the real form G0 := SU(n + 1, n + 1) of G = SL(2n + 2,C). Note that
X = {ϕ < 1/2} ∪H ∪ {ϕ > 1/2} gives the decomposition of X into G0-orbits. Let K be the
complexification of the maximal compact subgroup

K0 :=

{(
A 0
0 B

)
; A,B ∈ U(n+ 1), det(A) det(B) = 1

}
' S

(
U(n+ 1)×U(n+ 1)

)
of G0. One sees directly that K has likewise precisely three orbits in X, namely the compact
orbits C0 =

{
[z : 0]

}
and C1 =

{
[0 : w]

}
, and the open orbit Ω = K · H = X \ (C0 ∪ C1).

Moreover, for every λ ∈ C∗ the automorphism gλ ∈ Aut(X) belongs to the center of K.

Remark 3.1. Note that the symplectic group G̃ := Sp(n + 1,C) ⊂ G acts transitively on
X = P2n+1, too, see [Oni62] or [Ste82]. Moreover, the automorphism gλ is contained in G̃ for
any λ ∈ C∗. Since G̃ has a Zariski-open orbit in Grn+1(C2n+1), we can construct Schottky
groups acting on X also inside the symplectic group. In particular, the Zariski closure of such
a Schottky group is contained in Sp(n+ 1,C).

If n+1 = 2k, the hypersurface H is an orbit of the real form G̃0 := Sp(k, k) of Sp(n+1,C)

and C0, C1 ' P2k−1 are orbits of K̃ := Sp(k,C) × Sp(k,C). In other words, in this case we
have again a real form having a compact hypersurface orbit.
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This observation leads to a systematic way to construct Schottky group actions on homo-
geneous rational manifolds described in the next subsection.

3.2. Schottky pairs associated with compact hypersurface orbits. The following pro-
position allows to associate a Schottky pair with a compact hypersurface orbit of a real form
G0 of G acting on a homogeneous rational manifold X = G/Q. Its proof is based on Matsuki
duality and on Akhiezer’s paper [Akh77].

Proposition 3.2. Let G be a connected complex semisimple group, let Q be a parabolic sub-
group of G, and let X = G/Q be the corresponding homogeneous rational manifold. Let G0

be a non-compact real form of G such that the minimal G0-orbit in X is a real hypersurface.
Then X admits a Schottky pair.

Before giving the proof let us review the basic ideas of Matsuki duality. Let G0 be a
non-compact real form of G and let K0 be a maximal compact subgroup of G0. We assume
that the groups G0 and K0 are connected. We consider the complexification K := KC

0 as
a subgroup of G and call it a Matsuki partner of G0. Matsuki duality provides a bijection
between the G0-orbits and the K-orbits in X = G/Q, under which open G0-orbits correspond
to compact K-orbits and compact G0-orbits to open K-orbits, see e.g. [BL02]. This implies
in particular that G0 has exactly one compact orbit in X = G/Q. This compact orbit has
minimal dimension among all G0-orbits and will be called the minimal G0-orbit in X.

Suppose from now on that the compact G0-orbit in X = G/Q is a hypersurface. In the
appendix we will determine all triplets (G,Q,G0) for which this is the case. First we shall
deduce some information about the orbits of G0 and K in X.

Lemma 3.3. Suppose that the minimal G0-orbit in X = G/Q is a hypersurface. Then X
contains exactly three G0-orbits, the minimal one and two open ones. Moreover, the generic
K0-orbit in X is a hypersurface as well.

Proof. Since X = G/Q is simply connected, the complement of the minimal G0-orbit has
exactly two connected components by the Jordan-Brouwer separation theorem. The first
claim follows from the fact that G0 must act transitively on these connected components. For
the second one, it is sufficient to note that K0 acts transitively on the minimal G0-orbit. �

Using Matsuki duality we see that the group K has likewise exactly three orbits in X: two
compact ones which lie in the open G0-orbits and one open orbit that contains the compact
G0-orbit. We denote the two compact K-orbits by C0 and C1.

Proof of Proposition 3.2. We only have to prove the existence of a holomorphic C∗-action
on X = G/Q that verifies the definition of a Schottky pair. Let Ω ' K/Kx be the open
K-orbit in X. According to [Akh77, Theorem 1] its isotropy group is of the form Kx = Pχ
where P ⊂ K is a parabolic subgroup and Pχ denotes the kernel of a non-trivial character
χ : P → C∗ on P . In other words, the fibration Ω ' K/Kx → K/P is a C∗-principal bundle.
Hence, there is a free and proper holomorphic C∗-action on Ω.

It follows from [Akh77, Theorem 2] that this C∗-action extends to all of X in such a way
that the two compact K-orbits C0 and C1 are fixed pointwise. �

4. Homogeneous rational manifolds admitting movable Schottky pairs

Let X = G/Q be a homogeneous rational manifold where G is a connected semisimple
complex Lie group and let G0 be a real form of G. In this section we discuss in detail all
the examples of compact hypersurface orbits of G0 that give rise to movable Schottky pairs.
As shown in the appendix, the only cases where the minimal G0-orbit is a hypersurface in
X = G/Q are the following, see Theorem A.1.
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(1) G0 = SU(p, q) acting on X = Pp+q−1;
(2) G0 = Sp(p, q) acting on X = P2(p+q)−1;
(3) G0 = SU(1, n) acting on X = Grk(Cn+1);
(4) G0 = SO∗(2n) acting on X = Q2n−2;
(5) G0 = SO(1, 2n) acting on X = IGrn(C2n+1);
(6) G0 = SO(2, 2n) acting on X = IGrn+1(C2n+2)0.

Here IGrk(Cn) is the set of all k-dimensional subspaces of Cn which are isotropic with
respect to a non-degenerate symmetric bilinear form. The homogeneous rational manifold
IGrk(C2k) has two isomorphic connected components, see [GH78, Proposition,p. 735]. We
denote by IGrk(C2k)0 one of these components.

Remark 4.1. It is well-known that there exists an SO(2n+ 1,C)-equivariant biholomorphism
between IGrn(C2n+1) and IGrn+1(C2n+2)0. This corresponds to the fact that the automor-
phism group of IGrn(C2n+1) is isomorphic to SO(2n+ 2,C), see [Oni62] and [Ste82].

Important assumption. In all cases in which we obtain a Schottky group action associated
with a compact hypersurface orbit as described in Proposition 3.2, we may and will choose
the function ϕ introduced in Remark 2.1 to be K0-invariant, as it was done in Subsection 3.1
for X = P2n+1. This important assumption will assure the existence of subvarieties of UΓ , and
therefore of QΓ , which are biholomorphic to the Schottky pair varieties C0 and C1. This fact
can be easily verified in each of the examples discussed in this section and will be crucial for
several arguments in the proofs of complex analytic and geometric properties of the quotient
varieties QΓ .

The main result of this section is

Theorem 4.2. Let G be a connected semisimple complex Lie group, let Q be a parabolic sub-
group of G, and let G0 be a non-compact real form of G whose minimal orbit is a hypersurface
in X = G/Q. The Schottky pairs giving rise to Schottky group actions on X of arbitrary rank
r are precisely the ones on the odd-dimensional projective space P2n+1, the quadric Q4n+2 and
the isotropic Graßmannian Xn := IGrn(C2n+1). Furthermore, if (C0, C1) denotes a Schottky
pair, then C0 ' C1 is a linear Pn in the case X = P2n+1, a linear P2n+1 in the case X = Q4n+2

and an equivariantly embedded copy of Xn−1 = IGrn−1(C2n−1) in the case of Xn. In each of
these three cases the automorphism group of X acts transitively on the set of Schottky pairs.

The proof is given by considering separately all of the above six cases.

4.1. The case of projective space. The Schottky pairs coming from the first two entries
in the above list are only movable if p = q: In both cases we have C0 ' Pp−1 and C1 ' Pq−1.
If p < q, then dimC1 > 1

2 dimX. Hence, C1 cannot be moved away from itself unless p = q
in which case we get back Nori’s construction, see Subsection 3.1.

It is not hard to see that G = SL(2n,C) acts transitively on the set of Schottky pairs in
X = P2n−1, i.e., that the set{

(C0, C1) ∈ Grn(C2n)×Grn(C2n); C0 ∩ C1 = {0}
}

is an SL(2n,C)-orbit with respect to the diagonal action on Grn(C2n)×Grn(C2n).

4.2. The case of complex Graßmannians. Let us consider the action of G0 = SU(1, n)
on X = Grk(Cn+1) for 1 6 k 6 n. Here we have K = GL(n,C) and the K-action on X is
induced from the K-representation on Cn+1 = Ce1 ⊕ ({0} × Cn) where e1 = (1, 0, . . . , 0).
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The compact K-orbits in X are

C0 =
{
V ∈ X; V ⊂ {z1 = 0}

}
' Grk(Cn) and

C1 = {V ∈ X; e1 ∈ V } ' Grk−1(Cn).

We claim that C0 can only be moved away by an automorphism of X if k = n. Indeed,
suppose that C0∩f(C0) = ∅ for some f ∈ Aut(X). Then f(C0) is the set of all k-dimensional
subspaces of Cn+1 that are contained in a fixed hyperplane H of Cn+1. Since dim

(
({0}×Cn)∩

H
)
> n− 1, the subsets C0 and f(C0) cannot be disjoint for k 6 n− 1. A similar argument

shows that C1 and f(C1) can only be disjoint for k = 1. Consequently, this Schottky pair in
X = Grk(Cn+1) is only movable for k = n = 1. In this case we obtain Schottky groups acting
on P1.

4.3. Schottky groups acting on Q2n−2. Let us consider the symmetric bilinear form b
on C2n given by the matrix

(
0 In
In 0

)
and let G be the group of its linear isometries hav-

ing determinant 1. Then G ' SO(2n,C) acts transitively on the even-dimensional quadric
Q2n−2 :=

{
[z : w] ∈ P2n−1; q(z, w) = 0

}
where

q(z, w) = 〈z, w〉 = z1w1 + · · ·+ znwn

is the quadratic form associated with b.
Due to Theorem A.1 the real form G0 = SO∗(2n) = G∩ SU(n, n) has a compact hypersur-

face orbit in X = Q2n−2. One verifies directly that the Lie algebra of G has the form

g =

{(
A B
C −At

)
; A ∈ Cn×n, B,C ∈ so(n,C)

}
and that a Matsuki partner of G0 is given by K =

{(
A 0
0 (At)−1

)
; A ∈ GL(n,C)

}
. The two

compact K-orbits in X are

C0 =
{

[z : 0]; z ∈ Cn
}
' Pn−1 and C1 =

{
[0 : w]; w ∈ Cn

}
' Pn−1,

and they form a Schottky pair. The function ϕ will always be chosen as

ϕ[z : w] :=
‖w‖2

‖z‖2 + ‖w‖2
.

We claim that this Schottky pair is movable if and only if n is even. Suppose first that n is
odd. Since G is connected, for every f ∈ G the subvarieties C0 and f(C0) belong to the same
connected component of the set of (n− 1)-planes in Q2n−2 which we identify with IGrn(C2n).
According to [GH78, Proposition,p. 735] this implies for their intersection in Q2n−2 that

dim
(
C0 ∩ f(C0)

)
≡ n− 1 (mod 2) = 0.

Thus C0 ∩ f(C0) is at least 0-dimensional, i.e., C0 and f(C0) cannot be disjoint in X.

Remark 4.3. For n = 3 we have Q4 ' Gr2(C4) where we have already seen that the Schottky
pairs are not movable.

Now suppose that n is even. We will show that for a generic choice of B,C ∈ so(n,C) the
automorphism

fB,C := fB ◦ fC :=

(
In B
0 In

)(
In 0
C In

)
∈ G

is such that C0, C1, fB,C(C0) and fB,C(C1) are pairwise disjoint. This follows essentially from
the fact that for n even generic matrices in so(n,C) are invertible. More precisely, note that
for invertible B,C ∈ so(n,C) the subspaces C0, C1 and fB(C1) (resp. C0, C1, fC(C0)) are
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pairwise disjoint. Since fB,C(C0) =
{

[(In + BC)z : Cz]; z ∈ Pn
}
, the claim follows once we

choose B and C invertible such that In +BC is likewise invertible.
In conclusion, we obtain movable Schottky pairs and therefore Schottky group actions only

on X = Q4k−2. Note that in this case the Schottky pairs are given by Schottky pairs in
P4k−1 lying in Q4k−2. Consequently, there exist Schottky groups acting on P4k−1 that leave
Q4k−2 invariant. This means that the quotient manifolds QΓ obtained from P4k−1 contain a
hypersurface.

Remark 4.4. Lárusson already observed the existence of Schottky groups acting on P3 leaving
the quadric Q2 ' P1 × P1 invariant, see [Lár98, Proposition 2.2].

In closing we note that G ' SO(4k,C) acts transitively on the set of Schottky pairs in
X = Q4k−2, i.e., that the set{

(C0, C1) ∈ IGr2k(C4k)0 × IGr2k(C4k)0; C0 ∩ C1 = {0}
}

is a G-orbit with respect to the diagonal action. To prove this, we will show that we can map
any Schottky pair (C ′0, C

′
1) to (C0, C1) by some element of G where C0 =

{
[z : 0] ∈ X; z ∈

C2k
}
and C1 =

{
[0 : w] ∈ X; w ∈ C2k

}
. There exists g ∈ G with g(C ′0) = C0. Since g(C ′1) is

an isotropic subspace of C4k complementary to C0, it projects surjectively onto the subspace
{z ∈ C4k; z1 = · · · = z2k = 0}. Therefore we find a basis of g(C ′1) consisting of the vectors

(v1, e1), . . . , (v2k, e2k)

where vi ∈ C2k and (e1, . . . , e2k) denotes the standard basis of C2k. The fact that g(C ′1) is
isotropic means that the matrix B := (vij) ∈ C2k×2k is skew-symmetric. Hence, the element

g′ :=

(
I2k B
0 I2k

)
∈ G

fixes C0 and maps C1 onto g(C ′1), which concludes the argument.

4.4. Schottky groups acting on isotropic Graßmannians. Let Xn = IGrn(C2n+1) be
the set of n-dimensional complex subspaces of C2n+1 that are isotropic with respect to the
quadratic form q(u, z, w) = u2 + 2〈z, w〉, where u ∈ C, z, w ∈ Cn. Then Xn is a homogeneous
rational manifold of dimension dimCXn = n(n+1)

2 . The connected isometry group G '
SO(2n + 1,C) of q acts transitively on Xn. A Matsuki partner of G0 = SO(1, 2n) is the
complex Lie group K ⊂ G having Lie algebra

k =


0 0 0

0 A B
0 C −At

 ; A ∈ Cn×n, B,C ∈ so(n,C)

 ' so(2n,C).

The group K ' SO(2n,C) has three orbits in Xn: the open one consists of all isotropic
subspaces of C2n+1 that are not contained in {0}×C2n, while the set of isotropic n-dimensional
complex subspaces of {0}×C2n has two connected components C0 and C1, both homogeneous
under K, see [GH78, Proposition, p. 735]. Remark that C0 ∪ C1 is homogeneous under
K̂ ' O(2n,C). Theorem A.1 and Proposition 3.2 show that (C0, C1) is a Schottky pair in
Xn. This can also be seen directly as follows.

First we claim that the pair (C0, C1) is movable. Let g ∈ G and note that g(C0) and
g(C1) are the connected components of the space of isotropic n-dimensional subspaces of
g
(
{0} × C2n

)
. If C0, C1, g(C0) and g(C1) are not pairwise disjoint, then there exists an

isotropic n-dimensional subspace ofWg :=
(
{0}×C2n

)
∩g
(
{0}×C2n

)
. However, for a generic

choice of g we have dimWg = 2n − 1 and Wg ∩W⊥g = {0}. Therefore the dimension of an
isotropic subspace of Wg is at most n− 1, which proves the claim.
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We consider now the analogous situation in C2n+2 with linear coordinates (u, z, w) where
u = (u1, u2) ∈ C2 and z = (z1, . . . , zn) ∈ Cn and w = (w1, . . . , wn) ∈ Cn. Let q be the
quadratic form given q(u, z, w) = u2

1 + u2
2 + 2〈z, w〉. The Lie algebra of its isometry group

Ĝ ' SO(2n+ 2,C) is given by

ĝ =


 D E F
−F t A B
−Et C −At

 ; D ∈ so(2,C), E, F ∈ C2×n, A ∈ Cn×n, B,C ∈ so(n,C)

 .

Take the (n + 1)-dimensional isotropic subspace V̂0 :=
{

(u, iu, z, 0); u ∈ C, z ∈ Cn
}

and
set X̂n := Ĝ · V̂0. Note that X̂n is one of the two connected components of the manifold of
isotropic (n+ 1)-dimensional complex subspaces of C2n+2 and dimC X̂n = n(n+1)

2 .
Let G be the subgroup of Ĝ having Lie algebra

g =


 D E F
−F t A B
−Et C −At

 ∈ ĝ; D = 0, e1j = f1j = 0 for all 1 6 j 6 n

 ' so(2n+ 1,C).

Calculating the dimension of the isotropy groupG
V̂0
, we see thatG·V̂0 is open in X̂n. SinceGV̂0

is parabolic, it follows that G acts in fact transitively on X̂n. It turns out that GV̂0 = QΠ\{αn},
which implies that X̂n is G-equivariantly isomorphic to the set Xn of isotropic n-dimensional
complex subspaces of C2n+1, compare Remark A.4. In other words, the group of holomorphic
automorphisms of Xn is isomorphic to Ĝ ' SO(2n+ 2,C) (cf. [Oni62] or [Ste82]).

Thus the manifoldsXn and X̂n are the same. The pair of disjoint compactK-orbits (C0, C1)

constructed above in Xn for K ' SO(2n,C), can be seen in X̂n as the pair of compact orbits
of the subgroup (also called) K of SO(2n+ 2,C) with Lie algebra

k =


 D E F
−F t A B
−Et C −At

 ∈ ĝ ; D = 0, E = F = 0

 .

This pair is movable already under the smaller group G as proved before. In X̂n we can
now see explicitly the C∗-action which makes (C0, C1) a Schottky pair. The one-dimensional
complex Lie group has Lie algebra

Zĝ(k) =


D 0 0

0 0 0
0 0 0

 ; D ∈ so(2,C)

 ' C,

and it is given (as indicated in the preceding formula) by the centralizer of K in Ĝ.

Remark 4.5. These Schottky pairs are closely related to Schottky groups acting by conformal
automorphisms on the sphere S2n as follows, see [CNS13, Chapter 10]. Consider the following
real SO(2n+ 1)-equivariant fibration

Xn = X̂n = SO(2n+ 2)/U(n+ 1)
' // SO(2n+ 1)/U(n)

π

��
SO(2n+ 1)/SO(2n) = S2n.

This is the so called twistor fibration of Xn. The fibers of π are complex manifolds isomorphic
to Xn−1, but the foliation is not holomorphic. The Möbius group Möb+(S2n) = Conf+(S2n)



SCHOTTKY GROUPS ACTING ON HOMOGENEOUS RATIONAL MANIFOLDS 11

' SO(1, 2n+1) of conformal orientation-preserving diffeomorphisms of S2n lifts to a holomor-
phic action of SO(1, 2n+ 1) ⊂ SO(2n+ 2,C) ' Aut(X), see [CNS13, p.235–239]. This implies
that real Schottky group actions on the manifold S2n induce via lifting by π holomorphic
Schottky group actions on Xn.

Let us be more precise. The natural action of the group L := R>0 as homotheties S2n

has two fix points, p and q, say. Lifting with π and complexifying the lifted group to LC :=
π∗(L)C ' C∗, gives us a Schottky pair

(4.1)
(
C0 = π−1(p), C1 = π−1(q)

)
in Xn with the property that C0 and C1 are biholomorphic to Xn−1. This Schottky pair is
movable since pairs of points are movable in S2n under the action of SO(1, 2n + 1). Fur-
thermore, one can take the function ϕ to be the pull-back of the standard SO(2n)-invariant
exhaustion function on S2n.

In closing we show that Aut(Xn) acts transitively on the set of Schottky pairs in Xn.
Since two subgroups of SO(2n+ 2,C) isomorphic to SO(2n,C) are conjugate, for two copies
C0, C1 of Xn−1 in Xn there is h ∈ SO(2n + 2,C) such that h(C0) = C1. It is then easy
to see that the variety of all Xn−1’s in Xn is isomorphic to the even-dimensional quadric
Q2n = SO(2n + 2,C)/P . Now let (C0, C1) be the Schottky pair from (4.1) and denote by
LC ⊂ Aut(Xn) the group isomorphic to C∗ corresponding to it. In order to prove transitivity
on Schottky pairs, it is sufficient to prove that for a Schottky component C ′1 such that C ′1∩C0 =
∅ there is an automorphism g ∈ P such that g(C1) = C ′1, i.e., g stabilizes C0 and maps C1

to C ′1. In other words, one has to show that P acts transitively on the set of Xn−1’s in Xn

which are disjoint from C0. It is well known that P has an open orbit in Q2n. The isotropy
group in SO(1, 2n + 1) of p ∈ S2n acts transitively on S2n \ {q}. This implies directly that
P ·C1 is the open P -orbit in Q2n. Furthermore, since C ′1 ∩C0 = ∅, for every arbitrarily small
open neighborhood U of C1 in Xn there is an element gu ∈ LC ⊂ P such that gu(C ′1) ⊂ U .
Thus gu(C ′1) is in a small open neighborhood of C1 contained in the open orbit of P in the
irreducible cycle space component isomorphic to Q2n. The claim is proved.

4.5. Schottky groups acting on Q2n−1. Let us discuss an example of Schottky group
actions that are not directly related to minimal hypersurface orbits. For z = (z1, . . . , zn) and
w = (w1, . . . , wn) let

X = Q2n−1 =
{

[u : z : w] ∈ P2n; u2 + 2〈z, w〉 = 0
}
.

On X we define ϕ[u : z : w] = ‖w‖2
‖z‖2+‖w‖2 and gλ[u : z : w] := [u : λ−1z : λw]. One verifies

directly that this yields a Schottky pair in X. This Schottky pair is movable by an argument
similar to the one given in Subsection 4.3.

Remark 4.6. The map p : Q2n−1 → P2n−1 given by p[u : z : w] = [z : w] is a 2 : 1 covering
with branch locus

{
〈z, w〉 = 0

}
' Q2n−2. This covering is equivariant with respect to

G = SO(2n,C).

Let us show that SO(2n+1,C) acts transitively on the set of Schottky pairs in X = Q2n−1.
If (C ′0, C

′
1) is any Schottky pair in X, then there is g ∈ SO(2n + 1,C) such that g(C ′0) =

C0 :=
{

(0, z, 0); z ∈ Cn
}
. Then g(C ′1) is an n-dimensional isotropic subspace of C2n+1

complementary to C0. In fact, g(C ′1) must be complementary to
{

(u, z, 0); u ∈ C, z ∈ Cn
}
,

for (u, z, 0) ∈ g(C ′1) implies u2 = 0. Now we may finish the proof in the same way as in the
case of even-dimensional quadrics.
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5. Extension of cohomology groups and q-completeness

5.1. Some extension theorems. In this subsection we collect some technical tools which
allow us to study meromorphic functions, differential forms and cohomology groups of the
Schottky quotients QΓ .

Theorem 5.1 ([Sch61]). Let X be a d-dimensional complex manifold, A ⊂ X a closed analytic
subset of pure dimension m − 1, and F a locally free sheaf on X. Then, for every 0 6 k 6
d−m− 1, the restriction map

Hk(X,F)→ Hk(X \A,F)

is bijective.

Following Andreotti and Grauert we say that a complex manifold M of dimension d is
q-complete ifM admits a smooth exhaustion function ρ whose Levi form has at least d−q+1
strictly positive eigenvalues at each point of M . Under this convention Stein manifolds are
precisely the 1-complete manifolds.

Theorem 5.2 ([AG62, Théorème 15]). Let Ω be a q-complete complex manifold of dimension d
with exhaustion function ρ and F be a locally free sheaf on Ω. Then, for every 0 6 k 6 d−q−1,
the restriction map

Hk(Ω,F)→ Hk(Ω \ {ρ < ε},F)

is bijective.

We also need an extension theorem for meromorphic functions and a q-completeness crite-
rion.

Theorem 5.3 ([MP09]). Let Ω be a q-complete complex manifold of dimension d with q 6 d−1
and K ⊂ Ω a compact subset. Then every meromorphic function f ∈ M(Ω \ K) extends
uniquely as a meromorphic function to Ω.

Proposition 5.4 ([AN71, Proposition 8]). Let X ⊂ Pn be a projective manifold and let
s1, . . . , sq be holomorphic sections in the hyperplane line bundle of Pn. Then Ω := X \ {s1 =
· · · = sq = 0} is q-complete.

5.2. Cohomology groups of QΓ . Our goal here is to determine certain cohomology groups
of QΓ and for this we prove the following lemma.

Lemma 5.5. Let X be either P2n+1 or Q2n or Q2n+1 and let (C0, C1) be one of the movable
Schottky pairs in X described in Section 4. Then X \ C0 is (n+ 1)-complete. For n > 4, the
complex manifold Xn \ C, C := π−1(q), q ∈ S2n, see Subsection 4.4, is (d− 3)-complete with
d := dimCXn.

Proof. We apply Proposition 5.4 to each of the first three cases separately.
For C0 =

{
[z : 0] ∈ P2n+1; z ∈ Pn

}
in X = P2n+1 the criterion of Andreotti and Norguet

immediately yields that X \ C0 is (n+ 1)-complete.
If C0 =

{
[z : 0] ∈ Q2n; z ∈ Pn

}
in X = Q2n, then X \ C0 is again (n+ 1)-complete.

Consider C0 =
{

[0 : 0 : w] ∈ Q2n+1; w ∈ Pn
}
in X = Q2n+1 =

{
[u : z : w]; u2 + 2〈z, w〉 =

0
}
. Then we have C0 = {z1 = · · · = zn+1 = 0}, so that X \ C0 is (n+ 1)-complete.
In order to prove the claim for X4 we use the spinor embedding X4 ↪→ P15. The image of

X4 in P15 is the closure of the set of homogeneous coordinates

[1 : x12 : · · · : x45 : y1 : · · · : y5] ∈ P15

where xkl, 1 6 k < l 6 5 are the upper triangular entries of a skew-symmetric matrix
A ∈ C5×5 and y1, . . . , y5 are the one-codimensional Pfaffians of A.
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In [IM04, p. 291] one finds explicit equations for the image of X4 in P15. Using these, it is
not hard to see that the Schottky pair (C0, C1) in P15 with

C0 = {x12 = · · · = x15 = y2 = · · · = y5 = 0}
C1 = {u = x23 = · · · = x45 = y1 = 0}

intersects X4 in the two connected components of IGr3(C6) ⊂ X4. Consequently, we have
an explicit formula for Nori’s function ϕ ∈ C∞(P15) as well as for the tangent space of
{ϕ = 1/2} ∩X4 at p = [1 : 1 : 0 · · · : 0]. This allows us to see by a direct calculation that the
Levi form of the restriction ϕ|X4 at p has four strictly positive eigenvalues. Since the generic
fiber of ϕ|X4 coincides with the hypersurface orbit of K0 = SO(2)× SO(8), we conclude that
the Levi form of every K0-invariant exhaustion function on X4 \ (C0 ∩X4) has at least four
strictly positive eigenvalues at each point. Hence, X4 \ (C0 ∩X4) is 7-complete, as claimed.

For n > 5, we consider the twistor fibration

Xn = SO(2n+ 1)/U(n)

π
��

S2n = SO(2n+ 1)/SO(2n),

and let p, q the two fixed points of the action of the isotropy group SO(2n) on S2n. Then
S2n \ {q} is conformally isomorphic to Rn = {x = (x1, ..., xn)}. We identify the point p with
the origin in Rn and define the function ρ(x) :=

∑
x2
i on Rn. The functions ρ and ρ̃ := ρ ◦ π

are invariant under the left action of SO(2n) on S2n \ {q} and Xn \ C and are exhaustion
functions.

It is easy to check that there is a commutative diagram

X4 = SO(9)/U(4)

π|X4
��

ι1 // SO(2n+ 1)/U(n)

π
��

S8 = SO(9)/SO(8)
ι2 // SO(2n+ 1)/SO(2n) = S2n,

such that X4 is equivariantly and holomorphically embedded in Xn for n > 4. As we have
seen above, the Levi form of the restriction of ρ̃ to X4 \ (X4 ∩ C0) has four strictly positive
eigenvalues everywhere. Since ρ̃ is SO(2n)-invariant, the same is true for ρ̃ on Xn. Therefore
Xn \ C is (d− 3)-complete. �

Combining Lemma 5.5 with the extension theorems of Andreotti-Grauert and Scheja yields
some information about cohomology groups of the Schottky quotient manifolds QΓ . For the
following proposition it is crucial that the neighborhoods of the Schottky pair (C0, C1) are
defined via the K0-invariant function ϕ, compare the important assumption.

Proposition 5.6. Let X be either P2n+1 with n > 3 or Q4n+2 with n > 2 or Q2n+1 with
n > 3 or Xn with n > 4. Let (C0, C1) be a movable Schottky pair in X and let Γ be an
associated Schottky group of rank r > 2. Let F be a locally free analytic sheaf on QΓ such
that π∗F extends to a locally free sheaf on X with Hp(X,π∗F) = 0 for p = 1, 2. Then, for
0 6 k 6 2, we have isomorphisms

Hk(QΓ ,F) ' Hk
(
Γ, H0(X,π∗F)

)
.

Moreover,M(QΓ ) can be identified with the set of Γ-invariant rational functions on X.
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Proof. In the first step we will show Hk(UΓ , π∗F) ' Hk(X,π∗F) for 0 6 k 6 2. To see
this, note first that the fundamental domain FΓ contains the submanifold C = f(C0) for
some f ∈ Aut(X). This follows from the fact that the neighborhoods Uj and Vj are defined
by the K0-invariant function ϕ. Due to Theorem 5.1 the restriction map Hk(UΓ , π∗F) →
Hk(UΓ \C, π∗F) is bijective for 0 6 k 6 2. Since UΓ \C is a domain in the q-complete manifold
Ω = X \ C with compact complement, an application of Theorem 5.2 and Lemma 5.5 yields
that the restriction map Hk(X \ C, π∗F)→ Hk(UΓ \ C, π∗F) is also bijective for 0 6 k 6 2.
Another application of Theorem 5.1 gives the result.

Consequently we get H1(UΓ , π∗F) = 0 = H2(UΓ , π∗F). This allows us to apply [Mum08,
Appendix to §2, formula (c)] to obtain

Hk(QΓ ,F) ' Hk
(
Γ, H0(UΓ , π∗F)

)
= Hk

(
Γ, H0(X,π∗F)

)
for k = 0, 1, 2. �

Remark 5.7. Let X be any homogeneous rational manifold, let F be either the structure sheaf
O or the tangent sheaf Θ. Then the Bott-Borel-Weil theorem shows Hk(X,F) = 0 for all
k > 1.

Remark 5.8. For X = P3 or X = Q3 our method only yields H0(QΓ ,F) ' H0(X,π∗F)Γ. In
addition, for X = P5, Q5, Q6 we have H1(QΓ ,F) ' H1

(
Γ, H0(π∗F)

)
.

6. Geometric properties and deformations of Schottky quotients

In this section we apply Proposition 5.6 in order to describe analytic and geometric invari-
ants as well as the deformation theory of Schottky quotient manifolds. In the whole section
X will denote a homogeneous rational manifold admitting a movable Schottky pair (C0, C1)
and Γ an associated Schottky group of rank r > 2 with quotient QΓ = UΓ /Γ.

6.1. Analytic and geometric invariants. The following proposition was shown in [Lár98]
for X = Pn under an additional assumption on the Hausdorff dimension of X \ UΓ .

Proposition 6.1. The quotient manifold QΓ is rationally connected and has Kodaira dimen-
sion −∞. If codimC0 > 2, then QΓ is not Kähler.

Proof. The first claim follows again from the fact that we define the open neighborhoods Uj
and Vj via a K0-invariant function ϕ : X → [0, 1]. In this situation we find enough rational
curves in the fundamental domain FΓ so that we can connect any two points by a chain of
rational curves.

In order to show kod(QΓ ) = −∞ we apply Proposition 5.6 to the canonical sheaf KQΓ .
Then the claim follows from H0(X,K⊗mX ) = 0 for every m > 1 since X is rational.

The last claim is a consequence of the fact that the fundamental group of a compact Kähler
manifold cannot be free. This can be seen as follows, compare [ABCKT96, Example 1.19].
Since the rank of the free fundamental group of a compact complex manifold Y coincides
with the first Betti number of Y , we see that no compact Kähler manifold can have free
fundamental of odd rank. However, any free group of rank r contains normal subgroups of
any finite index k which are free of rank k(r − 1) + 1 due to the Nielsen-Schreier theorem.
If a compact Kähler manifold Y had free fundamental group of even rank, we could choose
a normal subgroup of even index k and thus would obtain a finite covering of Y having free
fundamental group of odd rank k(r−1)+1, a contradiction to the previous observation. This
proves the last claim since UΓ is simply-connected if codimC0 > 2. �

Next we give a criterion for the algebraic dimension of QΓ to be zero.
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Theorem 6.2. The algebraic dimension a(QΓ ) coincides with the codimension of a generic
H-orbit in X where H denotes the Zariski closure of Γ in Aut(X). In particular, a(QΓ ) = 0
if and only of H has an open orbit in X.

Proof. Due to Theorem 5.3 and Lemma 5.5 every meromorphic function on QΓ is induced
by a Γ-invariant rational function f on X. Consequently, f must be invariant under the
Zariski closure H of Γ in Aut(X). It follows from Rosenlicht’s theorem [Ro56, Theorem 2]
that the field of H-invariant rational functions on X has transcendence degree equal to the
codimension of a generic H-orbit in X. �

Remark 6.3. It is not difficult to produce examples of Schottky groups Γ acting on P2n+1 such
that a(QΓ ) = 0: choose r = 2n + 1 pairwise disjoint Schottky pairs such that in some point
of P2n+1 the corresponding C∗-orbits meet transversally.

It is shown in [Lár98, Proposition 2.1] that Nori’s Schottky groups acting on X = P3 yield
quotient manifolds of algebraic dimension zero, provided that the Hausdorff dimension of their
limit set is sufficiently small. It can be deduced from Theorem 6.2 that this assumption on
the Hausdorff dimension is superfluous. In [CNS13, Proposition 9.3.12] and [SV03, Proposi-
tion 3.5] the same result is claimed to hold for Schottky groups acting on X = P2n+1. This,
however, is not correct as the following example shows.

Example 6.4. Let us fix two integers k > 1 and n > 2k + 1. Applying Nori’s construction to
X = P(C(2k)×n) ' P2kn−1 gives the Schottky pair

C0 :=
{

[Z] ∈ X; zij = 0 for all k + 1 6 i 6 2k
}
' Pkn−1 and

C1 :=
{

[Z] ∈ X; zij = 0 for all 1 6 i 6 k
}
' Pkn−1.

The corresponding C∗-action is given by gλ ∈ Aut(X),

gλ[Z] = gλ

[(
Z0

Z1

)]
:=

[(
λ−1Z0

λZ1

)]
where Z0, Z1 ∈ Ck×n. Let the group H = SL(2k,C) act on X by left multiplication. We have
gλ ∈ H for all λ ∈ C∗. Moreover, a direct calculation shows that the Schottky pair (C0, C1)
can be moved by elements of H. Consequently, there are Schottky groups Γ acting on X with
Γ ⊂ H.

Due to the First Fundamental Theorem (see e.g. [Pro07, p. 387]) for H the invariant ring

C[C(2k)×n]H is generated by the
(
n
2k

)
homogeneous (2k)×(2k) minors of A. Since n > 2k+1,

there are non-constant H-invariant rational functions on X. Thus the algebraic dimension of
QΓ is bounded from below by 2k(n− 2k) for every Schottky group Γ ⊂ H.

Note that C0 and C1 are contained in the H-invariant subvariety Yk where Yk :=
{

[Z] ∈
X; rk(Z) = k

}
. Therefore we can view Yk as another projective variety (of dimension

k(k+ n)− 1) which admits actions of Schottky groups. For k > 2 the projective variety Yk is
singular and C0 and C1 meet its singular set Yk \ Yk. In contrast, Y1 = Y1 is H-equivariantly
isomorphic to P1 × Pn−1 where H = SL(2,C) acts on P1 × Pn−1 by h ·

(
[v], [z]

)
:=
(
[hv], [z]

)
.

Hence, the Schottky groups acting on Y1 are obtained as products of Schottky groups acting
on P1 and the trivial action on Pn−1.

In the next example we study in detail a fiber of the algebraic reduction map obtained in
the setting of Example 6.4.

Example 6.5. Take now in the setting of the previous example n = 2k. In this case the natural
right action of SL(2k,C) on X = P(C(2k)×(2k)) ' P4k2−1 commutes with the left action and
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therefore descends to an action on QΓ which is constructed as the quotient of the left action
of Γ. In particular, the limit set X \ UΓ must be contained in the complement of the open
SL(2k,C)-orbit. Hence QΓ is an almost homogeneous SL(2k,C)-manifold with open orbit
Γ\SL(2k,C).

This gives in the case k = 1 interesting SL(2,C)-equivariant compactifications of Γ\SL(2,C)
that to the best of our knowledge are new. We describe them here in a little more detail.

Consider X = P3 ' P(C2×2) as an almost-homogeneous complex manifold under the action
of the complex Lie group SL(2,C) × SL(2,C), given by left and right matrix multiplication.
Then X = PSL(2,C) ∪D, where D is the 1-codimensional orbit isomorphic to P1 × P1. As
above construct now a (left) Schottky group action on X of Γ ⊂ SL(2,C). Restricted to D this
action is trivial on one P1-factor and just a classical Schottky action on the other. Therefore
the quotient manifold QΓ is an equivariant holomorphic compactification of Γ \SL(2,C) by a
hypersurface D′ ' R×P1, where R is the compact Riemann surface associated to the classical
Schottky action of Γ on P1. By a theorem of Maskit ([Ma67]), it follows that for every finitely
generated free, discrete and loxodromic subgroup Γ ⊂ SL(2,C) the above construction gives
such an equivariant compactification.

A similar construction is also possible for the case of Schottky group actions on quadrics
as well as on isotropic Graßmannians as the following two examples show.

Example 6.6. As in Subsection 4.3 we equip C4k with the symmetric bilinear form b(z, w) :=

ztSw where S =
(

0 I2k
I2k 0

)
. Let H be the group of linear isometries of b and note that

H ' SO(4k,C). On C4k×m for m > 1 we define a symmetric bilinear form B by the formula
B(Z,W ) := Tr(ZtSW ). Then any two different columns of Z ∈ C4k×m are orthogonal
with respect to B and, when restricted to one column, B coincides with b. The group H ×
SO(m,C) acts on C4k×m by left and right multiplication and this action leaves B invariant.
Consequently, H × SO(m,C) acts on the (4k − 2)-dimensional quadric

X :=
{

[Z] ∈ P(C4k×m); Tr(ZtSZ) = 0
}

in P(C4k×m) ' P4km−1. In contrast with the previous example, SO(m,C) does not have an
open orbit in X.

An argument analogous to the one given in Subsection 4.3 shows that the Schottky pair

C0 =

{[(
Z0

0

)]
∈ X; Z0 ∈ C2k×m

}
' P2km−1

C1 =

{[(
0
Z1

)]
∈ X; Z1 ∈ C2k×m

}
' P2km−1

in X is movable by elements of the group H. Therefore there are Schottky groups Γ acting
on X with Zariski closure Γ contained in H.

Due to the First Fundamental Theorem for SO(4k,C) the algebra of H-invariant polyno-
mials on C4k×m is generated by

pij(Z) = b(zi, zj) for m > 1, 1 6 i 6 j 6 m,

where z1, . . . , zm are the columns of Z ∈ C4k×m, and by

di1···i4k(Z) = det(zi1 · · · zi4k) for m > 4k, 1 6 i1 < i2 < · · · < i4k 6 m.

Hence, for eachm > 2 and every Schottky group Γ ⊂ H the quotient manifold QΓ has positive
algebraic dimension.

Concretely, suppose that k = 1 and m = 2 and let Γ be Zariski dense in H. Then we have

X =
{[

(z1 z2)
]
∈ P(C4×2); b(z1, z1) + b(z2, z2) = 0

}
.
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The algebraic reduction map of QΓ is induced by the rational mapping

X 99K P2, [Z] 7→
[
b(z1, z1) : b(z1, z2) : b(z2, z2)

]
,

whose image is contained in
{

[x0 : x1 : x2] ∈ P2; x0 = −x2

}
' P1. Note that this reduction

map is SO(2,C)-equivariant.

Example 6.7. Here we construct Schottky groups acting onXn = IGrn(C2n+1) with sufficiently
small Zariski closures in SO(2n+2,C) in order to have Γ-invariant non-constant meromorphic
functions. Then these functions induce meromorphic functions on the associated quotient
manifolds which will be hence of strictly positive algebraic dimension, compare Theorem 6.2.

To this end we use the twistor fibration, see Remark 4.5. Let M := Sm be a round sphere
in S2n. Its stabilizer is a subgroup of SO(1, 2n+ 1) isomorphic to Möb+(Sm) ' SO(1,m+ 1).
Construct a Schottky group action on S2n by allowing the pairs of points (p, q) to move
only in M . Then the lifted Schottky group has a Zariski closure H contained in a subgroup
of SO(2n + 2,C) isomorphic to SO(m + 2,C). Finally, if m is sufficiently small, there are
H-invariant meromorphic functions on Xn and the quotient manifold has strictly positive
algebraic dimension.

6.2. The Picard group of QΓ . Let X be a homogeneous rational manifold verifying the
hypotheses of Proposition 5.6. Applying this proposition to the structure sheaf F = O
we obtain H1(QΓ ,O) ' H1(Γ,C) ' Hom(Γab,C) ' Cr, see [HilSt97, p. 193], as well as
H2(QΓ ,O) ' H2(Γ,C) = 0, see [HilSt97, Corollary VI.5.6]. Hence, the long exact cohomology
sequence associated with the exponential sequence 0→ Z→ O → O∗ → 0 yields

H1(QΓ ,Z)
'Zr

↪→ H1(QΓ ,O)
'Cr

→ H1(QΓ ,O∗)→ H2(QΓ ,Z)→ 0.

In order to obtain the Picard group H1(QΓ ,O∗) we have to determine H2(QΓ ,Z).

Remark 6.8. The subgroupH1(QΓ ,O)/H1(QΓ ,Z) ' (C∗)r of the Picard group of QΓ consists
of the topologically trivial line bundles on QΓ , given by representations of Γ in C∗.

In a first step we will determine H2(UΓ ) := H2(UΓ ,Z). For this, we note that UΓ is the
increasing union of the open sets

Ωl := X \


r⋃
j=1

⋃
γ∈Γl
γjl
6=γj

γ(U j)

 ∪


r⋃
j=1

⋃
γ∈Γl

γjl
6=γ−1
j

γ(V j)


where Γl denotes the set of all reduced words of length l > 1 in Γ. Since Ωl is homotopy
equivalent to X \C where C is the union of Nl = 2r(2r− 1)l−1 pairwise disjoint copies of C0,
we have Hk(Ωl) ∼= Hk(X \ C). Let U be a tubular neighborhood of C having Nl connected
components homeomorphic to C0 ×B where B is the unit ball in RdimRX−dimR C0 . Then the
Mayer-Vietoris sequence of the open cover X = U ∪ (X \C) with U ∩ (X \C) = U \C reads

· · · → Hk+1(X)→ Hk(U \ C)→ Hk(U)⊕Hk(X \ C)→
→ Hk(X)→ Hk−1(U \ C)→ · · · → H0(X)→ 0.

Note that U is homotopy equivalent to the disjoint union of Nl copies of C0 while U \ C is
homotopy equivalent to the disjoint union of Nl copies of C0 × SdimRX−dimR C0−1 where Sd
is the unit sphere in Rd+1. Since C0 is homogeneous rational, its homology H∗(C0) is free
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Abelian. Therefore the Künneth formula yields

Hk(C0 × Sd) '
k⊕
j=0

Hj(C0)⊗Hk−j(S
d).

Consider the case k = 2 and suppose that d > 3. Then we have H2(C0 × Sd) ' H2(C0).
Furthermore, the Mayer-Vietoris sequence starting at H3(X) = 0 looks like

0→ H2(U \ C)
'H2(C0)Nl

→ H2(U)
'H2(C0)Nl

⊕H2(X \ C)→ H2(X)→ H1(U \ C) = 0.

From this we obtain H2(Ωl) ' H2(X \ C) ' H2(X) for all l > 1. Since every singular chain
in UΓ lies in Ωl for some l > 1, we conclude H2(UΓ ) ' H2(X).

In order to deduce H2(QΓ ,Z), we will use in the second step the Cartan-Leray spectral
sequence. More precisely, there exists a first quadrant spectral sequence of homology type
with

Ep,q2 ' Hp

(
Γ, Hq(UΓ )

)
and strongly converging to H∗(QΓ ), see [McCl01, Theorem 8bis.9].

Since Γ is free, we have Ep,q2 = 0 for p > 2, see [HilSt97, Corollary VI.5.6]. Since the
differential d2 is of bidegree (−2, 1) we obtain

∗ ∗ 0 0

H0

(
Γ, H2(X)

)
H1

(
Γ, H2(X)

)
0

kk

0

jj

0 0 0

kk

0

jj

H0(Γ,Z) H1(Γ,Z) 0

kk

0.

jj

Consequently, this spectral sequence collapses at r = 2 and we have Ep,q2 = Ep,q∞ for all p, q.
In other words, there is an increasing filtration F ∗ on H∗(QΓ ) such that

0 = E2,0
2 ' F 2H2(QΓ )/F 1H2(QΓ )

0 = E1,1
2 ' F 1H2(QΓ )/F 0H2(QΓ )

E0,2
2 ' F 0H2(QΓ ).

Since Γ is contained in a connected complex Lie group, the induced action of Γ on Hq(UΓ ) is
trivial. Hence, we have E0,2

2 ' H0

(
Γ, H2(X)

)
' H2(X), see [HilSt97, Proposition VI.3.1].

In summary, we have shown H2(QΓ ) ' H2(X). It follows from [CS09, Theorem 3.2.20]
that H2(X) ' Z for every homogeneous rational manifold verifying the hypotheses of Propo-
sition 5.6. From this we obtain the following.

Theorem 6.9. Let X be a homogeneous rational manifold verifying the hypotheses of Propo-
sition 5.6. Let Γ be a Schottky group of rank r acting on X with associated quotient π : UΓ →
QΓ . Then the Picard group H1(QΓ ,O∗) of QΓ is isomorphic to (C∗)r × Z.
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6.3. Deformation theory of QΓ . It is possible to embed a Schottky quotient manifold QΓ
into a complex analytic family in the following way. Fix a movable Schottky pair (C0, C1) inX
and automorphisms f2, . . . , fr ∈ Aut(X) such that C0, C1, f2(C0), f2(C1), . . . , fr(C0), fr(C1)
are pairwise disjoint. Then, as above, we may choose elements λ1, . . . , λr ∈ C∗ with |λj |2 =
1−εj
εj

> 1. Let D ⊂ Cr be the domain of all possible such λ := (λ1, . . . , λr). Set f1 := idX

and write Γ(λ) for the Schottky group generated by γj := fj ◦ gλj ◦ f
−1
j for 1 6 j 6 r. Let

Fr = 〈s1, . . . , sr〉 be the abstract free group of rank r. We have an action of the free group
Fr of rank r on X ×D given by the formula

sj · (x, λ) :=
(
fj ◦ gλj ◦ f

−1
j (x), λ

)
.

Let Uj(λ) and Vj(λ) be the open neighborhoods of fj(C0) and fj(C1), respectively, defined
for the Γ(λ)-action on X. Then set Ûj :=

{
(x, λ) ∈ X ×D; x ∈ Uj(λ)

}
and similarly V̂j for

1 6 j 6 r. In the same way we define F̂ and Û in X ×D.

Proposition 6.10. The free group Fr acts freely and properly on Û so that we obtain the
commutative diagram

Û

��

// Û/Fr
π

��
D // D.

The map π : Û/Fr → D is a complex analytic family in the sense of Kodaira with fibers QΓ (λ).
In particular, all Schottky quotient manifolds are diffeomorphic.

Proof. Since we have sj(Ûj) = (X ×D) \ V̂j for all 1 6 j 6 r, we may literally copy the proof
of the corresponding fact without the parameters λ. �

Proposition 6.11. Two Schottky quotient manifolds QΓ and QΓ ′ are biholomorphic if and
only if Γ and Γ′ are conjugate in Aut(X).

Proof. Suppose that there exists a biholomorphic map f : QΓ → QΓ ′ . Then there exist a
biholomorphic map F : UΓ → UΓ ′ as well as a group homomorphism ϕ : Γ → Γ′ such that
F ◦γ = ϕ(γ)◦F for all γ ∈ Γ. Since X is projective, F is given by finitely many meromorphic
functions f1, . . . , fN on UΓ . Due to Theorem 5.3 and Lemma 5.5 we may thus extend F as
a meromorphic map to X. It is not hard to show that this extended map is biholomorphic,
see [Iva92], hence an element of Aut(X). Consequently, Γ and Γ′ are conjugate in Aut(X). �

In the rest of this subsection we assume in addition that X verifies the hypotheses of Propo-
sition 5.6. In this case, Proposition 5.6 applied to the tangent sheaf Θ gives Hk(QΓ ,Θ) '
Hk(Γ, g) for 0 6 k 6 2 where Γ acts on g via the adjoint representation. Explicitly, we
get H0(Γ, g) ' gΓ where gΓ denotes the subspace of Γ-fixed points. Let H be the Zariski
closure of Γ in G. Then we have gΓ = gH which in turn coincides with the centralizer Zg(h)
if H is connected. Moreover, the group of biholomorphic automorphisms Aut(QΓ) is a com-
plex Lie group with Lie algebra gH . As noted in [HilSt97, p. 195], H1(Γ, g) is isomorphic
to the quotient of HomΓ(IΓ, g), where IΓ denotes the augmentation ideal of Γ, by the sub-
module of homomorphisms of the form ϕξ : γ − e 7→ Ad(γ)ξ − ξ. Under the identification
HomΓ(IΓ, g) ' gr this submodule corresponds to the image of the map ψ : g → gr given by
the formula

ψ(ξ) =
(
Ad(γ1)ξ − ξ, . . . ,Ad(γr)ξ − ξ

)
,

i.e., H1(Γ, g) ' gr/ψ(g). Note that the kernel of ψ is gΓ. Finally, H2(Γ, g) = 0, see [HilSt97,
Corollary VI.5.6]. In summary, we have the following.
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Theorem 6.12. Suppose that X verifies the hypotheses of Proposition 5.6. The Kuranishi
space of versal deformations of QΓ is smooth at QΓ and of complex dimension (r−1) dim g+
dim gΓ Moreover, the automorphism group Aut(QΓ) admits as Lie algebra gΓ.

Remark 6.13. (a) If X is either P5 or Q5 or Q6, then we can still compute the dimension of
the Kuranishi space. However, we do not know whether the Kuranishi space is smooth or
not.

(b) In [CNS13, Theorem 9.3.17] (see also [SV03]), the authors claim that the Kuranishi space
is of dimension (r − 1) dim g. But in general the above mapping ψ is not injective, i.e.,
it is possible that QΓ has strictly positive dimensional automorphism group or is even
almost homogeneous, see our examples 6.4 and 6.5.

Appendix A. Minimal orbits of hypersurface type

LetG be a simply-connected semisimple complex Lie group, letQ be a parabolic subgroup of
G, and let G0 be a non-compact simple real form of G. We say that two triplets (G,G0, Q) and
(G, G̃0, Q̃) are equivalent if there exist g1, g2 ∈ G such that G̃0 = g1G0g

−1
1 and Q̃ = g2Qg

−1
2 .

In this appendix we outline the classification (up to equivalence) of all triplets (G,G0, Q) such
that the minimal G0-orbit is a real hypersurface in X = G/Q.

Throughout we write σ : g→ g for conjugation with respect to g0. Let θ : g→ g be a Cartan
involution that commutes with σ. Then we have the corresponding Cartan decomposition
g0 = k0 ⊕ p0. The analytic subgroup K0 of G0 having Lie algebra k0 is a maximal compact
subgroup of G0.

The following theorem summarizes the outcome of the appendix.

Theorem A.1. Up to equivalence, the homogeneous rational manifolds X = G/Q and the
real forms G0 having a compact hypersurface orbit in X are the following:
(1) G0 = SU(p, q) acting on X = Pp+q−1;
(2) G0 = Sp(p, q) acting on X = P2(p+q)−1;
(3) G0 = SU(1, n) acting on X = Grk(Cn+1);
(4) G0 = SO∗(2n) acting on X = Q2n−2;
(5) G0 = SO(1, 2n) acting on X = IGrn(C2n+1);
(6) G0 = SO(2, 2n) acting on X = IGrn+1(C2n+2)0.

A.1. Root-theoretic description of the minimal G0-orbit in X = G/Q. Let a0 be a
maximal Abelian subspace of p0 and let

g0 = m0 ⊕ a0 ⊕
⊕
λ∈Λ

(g0)λ

be the corresponding restricted root space decomposition of g0 where m0 = Zk0(a0) and
where Λ = Λ(g0, a0) ⊂ a∗0 \ {0} is the restricted root system. Choosing a system Λ+ of
positive restricted roots we obtain the nilpotent subalgebra n0 :=

⊕
λ∈Λ+ gλ. From this we

get the Iwasawa decomposition G0 = K0A0N0 where A0 and N0 are the analytic subgroups
of G0 having Lie algebras a0 and n0, respectively.

Let t0 be a maximal torus in m0. Then h0 := t0 ⊕ a0 is a maximally non-compact Cartan
subalgebra of g0. Let

g = h⊕
⊕
α∈∆

gα

be the root space decomposition of g with respect to the Cartan subalgebra h := hC0 with
root system ∆ = ∆(g, h) ⊂ h∗R \ {0} where hR := it0 ⊕ a0. Let R : h∗R → a∗0 be the restriction
operator and let ∆i :=

{
α ∈ ∆; R(α) = 0

}
be the set of imaginary roots.
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Remark A.2. We have mC
0 = tC0 ⊕

⊕
α∈∆i

gα, i.e., ∆i is the root system of mC
0 with respect to

its Cartan subalgebra tC0 .

Let us define a system ∆+ of positive roots with respect to the lexicographic ordering given
by a basis of hR whose first r elements form a basis of a0. Then, for every α ∈ ∆ \ ∆i, we
have α ∈ ∆+ if and only if R(α) ∈ Λ+ and R(∆+ \∆i) = Λ+, see [Vin94, p.156].

Since the anti-involution σ stabilizes hR, we obtain an induced involution on h∗R which
we denote again by σ. One checks directly that σ leaves ∆ invariant and that ∆i =

{
α ∈

∆; σ(α) = −α
}
. A root α ∈ ∆ is called real if σ(α) = α, and ∆r is the set of real roots.

Since R(α) = R
(
σ(α)

)
for all α ∈ ∆, we get

σ(∆+ \∆i) = ∆+ \∆i.

In other words, ∆+ is a σ-order in the terminology of [Ara62].
Before we can state the main result of this subsection, we have to review the description of

parabolic subalgebras of g in terms of the root system ∆. Recall that a root α ∈ ∆+ is called
simple if it cannot be written as the sum of two positive roots. Let Π ⊂ ∆+ be the subset of
simple roots. The elements of Π form a basis of h∗R and every positive root can be uniquely
written as a linear combination of simple roots with non-negative integer coefficients.

For an arbitrary subset Γ of Π we set Γr := 〈Γ〉Z ∩∆ and Γn := ∆+ \ Γr. Then

qΓ := h⊕
⊕
α∈Γr

gα ⊕
⊕
α∈Γn

gα

is a parabolic subalgebra of g. The subalgebra
⊕

α∈Γn gα is the nilradical of qΓ, while the
reductive subalgebra h⊕

⊕
α∈Γr gα is a Levi subalgebra of qΓ. Let QΓ be the analytic subgroup

of G having Lie algebra qΓ. Then QΓ is a parabolic subgroup of G and every parabolic
subgroup of G is conjugate to QΓ for a suitable choice of Γ ⊂ Π.

After replacing the triplet (G,G0, Q) by an equivalent one we may assume that G0 · eQ
is compact in G/Q. Due to [Wol69, Lemma 3.1] this means that there exist a maximally
non-compact Cartan subalgebra h0 of g0 and a σ-order ∆+ of ∆ = ∆(g, h) such that Q = QΓ
for a suitable subset Γ ⊂ Π. By [Wol69, Theorem 2.12] the real codimension of G0 · eQ in
X is given by

∣∣Γn ∩ σ(Γn)
∣∣. Therefore the minimal G0-orbit is a hypersurface if and only if

Γn ∩ σ(Γn) = {α0} for some α0 ∈ ∆+.
Suppose that the minimal G0-orbit in X = G/Q is a hypersurface. Then we have σ(α0) =

α0, i.e., ∆+
r cannot be empty. This implies that the Lie algebra g must be simple, too, and

that there are at least two conjugacy classes of Cartan subalgebras in g0. Furthermore, it is
not hard to see that, if g0 is a split real form, then G0 ' SL(2,R) and X ' P1.

The strategy of the classification is as follows. For every complex simple Lie algebra g
and for every real form g0 we determine explicitly the corresponding involution σ of h∗R and
a σ-order ∆+ of ∆ = ∆(g, h). Then we enumerate all subsets Γ ⊂ Π ⊂ ∆+ such that
Γn ∩ σ(Γn) = {α0}. This procedure will result in the list given in the beginning of Section 4.

In closing let us note that, if the compact G0-orbit in X = G/Q is a hypersurface, then X
is K-spherical. Since the triplets (G,G0, Q) such that X = G/Q is K-spherical are classified
in [HONO13, Table 2], the number of possibilities of Γ that have to be checked is further
reduced.

The necessary information about root systems and Satake diagrams can be found in [Hel01,
Chapter X.3.3 and Table VI].

A.2. The series An. Let g = sl(n+ 1,C) with n > 1. The root system of g is given by

∆ = {±(ek − el); 1 6 k < l 6 n+ 1}
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where (e1, . . . , en+1) is the standard basis of Rn+1 and ∆ is contained in the hypersurface
{x ∈ Rn+1; x1 + · · ·+ xn+1 = 0}. For ∆+ := {ek − el; 1 6 k < l 6 n+ 1} we have

Π = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn = en − en+1}.

A direct calculation shows
ek − el = αk + · · ·+ αl−1

for all 1 6 k < l 6 n+ 1.
The non-compact real forms of g are sl(n + 1,R), sl

(
(n + 1)/2,H

)
if n + 1 is even, and

su(p, q) with 1 6 p 6 q and p + q = n + 1. Since sl(n,R) is a split real form and since
sl(n,H) contains only one Cartan subalgebra up to conjugation, see [Kna02, Appendix C.3],
we can restrict attention to g0 := su(p, q). The real rank of g0 is rkR g0 := dim a0 = p and the
restricted root system Λ is (BC)p for p < q and Cp for p = q. The action of σ on ∆ is given
by

σ(ek) =

{
−en+2−k : 1 6 k 6 p or q + 1 6 k 6 n+ 1

−ek : p+ 1 6 k 6 q
.

This follows from the fact that h0 = t0⊕ a0 is conjugate to the Abelian Lie algebra consisting
of all matrices of the form

diag(itp + s1, itp−1 + s2, . . . , it1 + sp, ir1, . . . , irq−p, it1 − sp, . . . , itp − s1)

where tk, sl, rm ∈ R such that 2(t1 + · · ·+ tp) + r1 + · · ·+ rq−p = 0. One verifies directly that
∆+ is a σ-order.

Remark A.3. Let Γk := Π \ {αk} for 1 6 k 6 n. Then we have Γn
k = {e1 − ek+1, . . . , e1 −

en+1, . . . , ek − ek+1, . . . , ek − en+1}. The cardinality of Γn
k is k(n+ 1− k). The corresponding

homogeneous rational manifold is X = G/QΓk ' Grk(Cn+1).

Claim. If the minimal G0-orbit in X = G/Q is a hypersurface, then Q is a maximal parabolic
subgroup of G, i.e., Q = QΓk for some 1 6 k 6 n.

Proof. Exclude the trivial case p = q = 1 and suppose that QΓ is not maximal, i.e., that
Γ ⊂ Π \ {αk, αl} for some 1 6 k < l 6 n. Then Γn contains

Γn
k ∪ Γn

l = {e1 − ek+1, . . . , e1 − en+1, . . . , ek − ek+1, . . . , ek − en+1,

ek+1 − el+1, . . . , ek+1 − en+1, . . . , el − el+1, . . . , el − en+1}.

If p is arbitrary and l = n, then Γn contains e1 − ej and ej − en+1 for all k + 1 6 j 6 n.
Since we have excluded p = q = 1, either we have 1 = p < q or 2 6 p 6 q. In the first case
Γn ∩ σ(Γn) contains e1 − ep+1 and ep+1 − en+1, while in the second case Γn ∩ σ(Γn) contains
e1 − e2 and en − en+1. Hence, in both cases the minimal G0-orbit is not a hypersurface.

If p = 1 and 1 6 k < l 6 n − 1, then Γn ∩ σ(Γn) contains again e1 − e2 and e2 − en+1 so
that the minimal G0-orbit is not a hypersurface.

Suppose finally that p > 2 and 1 6 k < l 6 n− 1. Then Γn ∩ σ(Γn) contains e1− en+1 and
e2 − en, which finishes the proof of the claim. �

Claim. The minimal orbit of G0 = SU(1, n) is a hypersurface in X = G/QΓk for every
1 6 k 6 n.

Proof. Since p = 1, we have σ(ej) = −ej for all 2 6 j 6 n. Therefore, the only roots in Γn
k

which are not imaginary are e1 − ek+1, . . . , e1 − en+1 and e2 − en+1, . . . , ek − en+1. But for
2 6 j 6 n only one of the roots e1 − ej and σ(e1 − ej) = ej − en+1 can belong to Γn

k, which
proves Γn

k ∩ σ(Γn
k) = {e1 − en+1}. �
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Claim. The minimal G0-orbit in X = G/QΓ1 ' Pn and X = G/QΓn ' Pn is a hypersurface
for any G0 = SU(p, q).

Proof. If Γ = Π \ {α1}, then Γn = {e1 − e2, . . . , e1 − en+1}. For every 2 6 j 6 n + 1 we
have σ(e1 − ej) = −σ(ej) − en+1 and σ(ej) = −e1 occurs only for j = n + 1, which proves
Γn ∩ σ(Γn) = {e1 − en+1}.

The case Γ = Π \ {αn} can be treated similarly. �

In order to take care of the remaining cases we show

Claim. Suppose that p > 2 and 2 6 k 6 n− 1. Then the minimal G0-orbit in X = G/QΓk is
not a hypersurface.

Proof. Since 2 6 k 6 n−1, the set Γn
k contains the two roots e1−en+1 and e2−en. Moreover,

due to p > 2, these roots are real, hence the claim follows. �

In summary, we have established the first and third entry in the list given in the beginning
of Section 4.

A.3. The series Bn. Let g = so(2n+ 1,C). The root system of g is given by

∆ = {±ek; 1 6 k 6 n} ∪ {±ek ± el; 1 6 k < l 6 n}
where (e1, . . . , en) is the standard basis of Rn. For ∆+ := {ek, ek ± el; 1 6 k < l 6 n} we
have

Π = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en}.
A direct calculation shows

ek = αk + · · ·+ αn

ek − el = αk + · · ·+ αl−1

ek + el = αk + · · ·+ αl−1 + 2(αl + · · ·+ αn)

for all 1 6 k < l 6 n.
The only non-compact real forms of g are g0 := so(p, q) with 1 6 p 6 q and p+ q = 2n+ 1.

The real rank of g0 is rkR g0 = p and the restricted root system Λ coincides with Bp. The
action of σ on ∆ is given by

σ(ek) =

{
ek : 1 6 k 6 p

−ek : p+ 1 6 k 6 p+
[ q−p

2

]
= n

.

Therefore the simple roots α1, . . . , αp−1 are real and αp+1, . . . , αn are imaginary, while σ(αp) =
ep + ep+1.

According to [HONO13, Table 2] the only Γ ⊂ Π such that the minimal G0-orbit in X =
G/QΓ might be a hypersurface are the following: if p = 1, then Γ ⊂ Π is arbitrary; if p = 2,
then Γ = Π \ {αj} for 1 6 j 6 n; if p > 3, then Γ is either Π \ {α1} or Π \ {αn}.

Let us assume first p > 2. If Γ = Π \ {α1}, then Γn contains the real roots e1 and e1 ± e2

so that the minimal G0-orbit cannot be a hypersurface. If 2 6 j 6 n and Γ = Π \ {αj}, then
Γn contains the real roots e1 and e2 so that the minimal G0-orbit cannot be a hypersurface.

Assume now that p = 1. If Γ does not contain αj for some 1 6 j 6 n− 1, then Γn contains
e1 ± en, so that the minimal G0-orbit cannot be a hypersurface. On the other hand, for
Γ = Π \ {αn} we have Γn = {e1, . . . , en, ek + el; 1 6 k < l 6 n}, hence Γn ∩ σ(Γn) = {e1}. In
this case the minimal G0-orbit is a hypersurface.

Remark A.4. Let Γ = Π \ {αn}. Then G0 = SO(1, 2n) has a compact hypersurface orbit in
X = G/QΓ. We have dimCX = |Γn| = n(n+ 1)/2. Note that X ' IGrn(C2n+1).
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A.4. The series Cn. Let g = sp(n,C) with n > 2. The root system of g is given by

∆ = {2ek; 1 6 k 6 n} ∪ {±ek ± el; 1 6 k < l 6 n}
where (e1, . . . , en) is the standard basis of Rn. For ∆+ := {2ek, ek ± el; 1 6 k < l 6 n} we
have

Π = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = 2en}.
A direct calculation shows that

2ek = 2(αk + · · ·+ αn−1) + αn

ek − el = αk + · · ·+ αl−1

ek + el = αk + · · ·+ αl−1 + 2(αl + · · ·+ αn−1) + αn

for all 1 6 k < l 6 n.
The non-compact real forms of g are sp(n,R) and sp(p, q) with 1 6 p 6 q and p + q = n.

Since sp(n,R) is a split real form, it is sufficient to consider g0 := sp(p, q). The real rank of
g0 is p and the restricted root system coincides with (BC)p for p < q and Cp for p = q. The
action of σ on ∆ is given by

σ(ek) =


ek+1 : if 1 6 k 6 2p is odd
ek−1 : if 1 6 k 6 2p is even
−ek : 2p+ 1 6 k 6 n

.

According to [HONO13, Table 2] the only Γ ⊂ Π such that the minimal G0-orbit in X =
G/QΓ might be a hypersurface are the following: if p = 1, then Γ = Π \ {αk, αl} for all
1 6 k 6 l 6 n (with k = l allowed); if p = 2, then Γ = Π \ {αk} for all 1 6 k 6 n; if p > 3,
then the only possibilities for Γ are Π \ {αk} for k = 1, 2, 3, n or Π \ {α1, α2}.

Let p be arbitrary. For Γ = Π \ {α1} we have Γn = {e1 ± e2, . . . , e1 ± en, 2e1} and
thus Γn ∩ σ(Γn) = {e1 + e2}. Hence, G0 = Sp(p, q) has a compact hypersurface orbit in
X = G/QΓ ' P2n−1. Now suppose that Γ does not contain the root αk for some k > 2. Then
Γn contains 2e1 and 2e2 = σ(2e1), so that the minimal G0-orbit in X is not a hypersurface.

A.5. The series Dn. Let g = so(2n,C) with n > 4.1 The root system of g is given by

∆ = {±ek ± el; 1 6 k < l 6 n}
where (e1, . . . , en) is the standard basis of Rn. For ∆+ := {ek ± el; 1 6 k < l 6 n} we have

Π = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en−1 + en}.

Remark A.5. There exists an automorphism of Π that exchanges αn−1 and αn. Consequently,
there exists an outer automorphism of G = SO(2n,C) that maps QΠ\{αn−1} onto QΠ\{αn}
although these parabolic groups are not conjugate in G. In particular, the corresponding
homogeneous rational manifolds are isomorphic. As hermitian symmetric spaces they are
isomorphic to SO(2n)/U(n).

A direct calculation shows that

ek − el = αk + · · ·+ αl−1

ek + en−1 = αk + · · ·+ αn for all 1 6 k 6 n− 2

ek + en = αk + · · ·+ αn−2 + αn for all 1 6 k 6 n− 2

ek + el = αk + · · ·+ αl−1 + 2(αl + · · ·+ αn−2) + αn−1 + αn for all 1 6 k < l 6 n− 2.

The non-compact real forms of g are so∗(2n) and so(p, q) with 1 6 p 6 q and p+ q = 2n.

1Recall that so(6,C) ' sl(4,C).
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Consider first g0 = so∗(2n). The real rank of g0 is [n/2] and the restricted root system is
(BC)m for n = 2m+ 1 and Cm if n = 2m.

We start with the case that n = 2m is even. The corresponding involution of ∆ is induced
by

σ(ek) =

{
ek+1 : 1 6 k 6 n is odd
ek−1 : 1 6 k 6 n is even

.

One verifies directly that ∆+ is a σ-order.
For Γ = Π \ {α1} we have Γn = {e1 ± e2, . . . , e1 ± en} and hence Γn ∩ σ(Γn) = {e1 + e2}.

Consequently, the minimal G0-orbit in X = G/QΓ is a hypersurface. If Γ does not contain α2,
then Γn contains e1 − e3 and e2 − e4 = σ(e1 − e3), i.e., the minimal G0-orbit in X = G/QΓ is
not a hypersurface. If n > 6 and if Γ does not contain αk for 3 6 k 6 n, then Γn contains the
two real roots e1 + e2 and e3 + e4. On the other hand, for n = 4 and Γ = Π \ {α3} we obtain
Γn ∩ σ(Γn) = {e1 + e2}, hence the minimal orbit of SO∗(8) in X = G/QΓ is a hypersurface in
this case. One checks directly that in the remaining cases SO∗(8) does not have a compact
hypersurface orbit.

Suppose now that n = 2m+ 1 > 5 is odd. In this case the involution of ∆ is given by

σ(ek) =


ek+1 : 1 6 k 6 n− 1 is odd
ek−1 : 1 6 k 6 n− 1 is even
−ek : k = n

.

As above we see that for Γ = Π \ {α1} we have Γn ∩ σ(Γn) = {e1 + e2}, while the minimal
G0-orbit in X = G/QΓ is not a hypersurface if Γ does not contain αk for 2 6 k 6 n.

In summary, the only cases in which the minimal orbit of G0 = SO∗(2n) in X = G/QΓ is
a hypersurface are Γ = Π \ {α1} as well as n = 4 and Γ = Π \ {α3}.
Remark A.6. The exceptional case n = 4 is explained by so∗(8) ' so(6, 2) which corresponds
to the fact that SO(8)/U(4) is isomorphic to the 3-dimensional quadric.

In the rest of this subsection we treat the case g0 = so(p, q) with 1 6 p 6 q and p+ q = 2n.
The real rank of g0 is p and the restricted root system is Bp for p < q and Dp for p = q.

Remark A.7. The Lie algebra so(n, n) is a split real form of g. The Lie algebra so(1, 2n− 1)
contains only one conjugacy class of Cartan subalgebras, see [Kna02, Appendix C.3].

The involution of ∆ is induced by

σ(ek) =

{
ek : 1 6 k 6 p

−ek : p+ 1 6 k 6 p+
[ q−p

2

]
= n

.

According to [HONO13] the minimal G0-orbit in X = G/QΓ may be a hypersurface only
in the following cases. If p = 1, then Γ ⊂ Π is arbitrary; if p = 2, then Γ coincides with
Π \ {αk} or Π \ {αk, αn−1} or Π \ {αk, αn} for any k; if p > 3, then the only possibilities for
Γ are Π \ {α1} or Π \ {αn−1} or Π \ {αn}.

Let us begin with the case p > 3. If Γ = Π \ {αk} for k = 1, n − 1, n, then Γn contains
the real roots e1 + e2 and e2 + e3 so that the minimal G0-orbit in X = G/QΓ cannot be a
hypersurface.

Suppose now that p = 2. If Γ does not contain αk for some 1 6 k 6 n−2, then Γn contains
e1 ± en. Since σ(e1 − en) = e1 + en, the minimal G0-orbit is not a hypersurface in this case.
If Γ = Π \ {αn−1}, then we have Γn =

{
e1 − en, . . . , en−1 − en, ek + el (1 6 k < l 6 n − 1)

}
and one verifies Γn ∩ σ(Γn) = {e1 + e2}. Hence, the minimal G0-orbit in X = G/QΓ is a
hypersurface. For Γ = Π \ {αn} we have Γn = {ek + el : 1 6 k < l 6 n} and obtain again
Γn ∩ σ(Γn) = {e1 + e2}, which leads to the same conclusion as above.
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Remark A.8. For p = 1 the above considerations show that G0 acts transitively on X = G/QΓ

for Γ = Π \ {αk} where k = n− 1, n.

In summary, the only cases in which the minimal orbit of G0 = SO(p, q) in X = G/QΓ is
a hypersurface are p = 2 and Γ = Π \ {αk} for k = n− 1, n.

A.6. The exceptional Lie algebra g = E6. Combined with the general remarks in [Ara62],
the Satake diagrams yield explicit formulas of the involutions corresponding to the non-split
non-compact real forms of the exceptional Lie algebras E6, E7, E8 and F4.

Let g = E6. Identifying h∗R with V = {x ∈ R8; x6 = x7 = −x8} a system of simple roots
is given by

Π =
{
α1 = 1/2(e1−e2−e3−e4−e5−e6−e7 +e8, α2 = e1 +e2, αj = ej−1−ej−2(3 6 j 6 6)

}
.

The Lie algebra g = E6 has two non-split non-compact real forms, namely EII and EIII.
Suppose first that g0 = EII. Since there is no imaginary simple root, the Satake diagram

of g0 determines directly the involution σ : ∆+ → ∆+. More precisely, we have

σ(α1) = α6, σ(α3) = α5, σ(α2) = α2, σ(α4) = α4.

According to [HONO13] we must only check Π \ {α1} and Π \ {α6}.
Let Γ = Π \ {αj} for j = 1, 6. In both cases Γn ∩ σ(Γn) contains the two real roots

α1 + α3 + α4 + α5 + α6 and α1 + α2 + α3 + α4 + α5 + α6. Hence the minimal G0-orbit in
X = G/QΓ is not a hypersurface.

Suppose now that g0 = EIII. It can be seen from its Satake diagram that Πi = {α3, α4, α5}
and that

σ(α1) = α6 + C1,3α3 + C1,4α4 + C1,5α5

σ(α2) = α2 + C2,3α3 + C2,4α4 + C2,5α5

σ(α6) = α1 + C6,3α3 + C6,4α4 + C6,5α5.

Since σ is involutive, we obtain C6,j = C1,j for j = 3, 4, 5. This gives

σ(α1 + α3 + α4 + α5 + α6) = α1 + (2C1,3 − 1)α3 + (2C1,4 − 1)α4 + (2C1,5 − 1)α5 + α6.

Comparison with the list of positive roots shows that α1 + α3 + α4 + α5 + α6 must be a real
root, i.e., that C1,3 = C1,4 = C1,5 = 1. Similarly, the only possibilities for σ(α2) are α2,
α2 +α4, α2 +α4 +α5, α2 +α3 +α4, α2 +α3 +α4 +α5 and α2 +α3 + 2α4 +α5. However, since
we know that σ(α2)−α2 is not a root, we only have σ(α2) = α2 or σ(α2) = α2 +α3 +2α4 +α5.
In the first case we obtain σ(α2 + α4) = α2 − α4, which contradicts the fact that ∆+ is a
σ-order. Therefore, we see that σ(α2) = α2 + α3 + 2α4 + α5.

Let Γ = Π \ {αj} for 1 6 j 6 6. Then Γn ∩ σ(Γn) contains always the roots α1 +α2 +α3 +
α4 + α5 + α6 and

σ(α1 + α2 + α3 + α4 + α5 + α6) = α1 + α2 + 2α3 + 3α4 + 2α5 + α6.

Consequently, the minimal G0-orbit in X = G/QΓ cannot be a hypersurface for any Γ ⊂ Π.

A.7. The exceptional Lie algebra g = E7. Let g = E7. Identifying h∗R with V = {x ∈
R8; x8 = −x7} a system of simple roots is given by

Π =
{
α1 = 1/2(e1−e2−e3−e4−e5−e6−e7 +e8), α2 = e1 +e2, αj = ej−1−ej−2(3 6 j 6 7)

}
.

The Lie algebra g = E7 has two non-split non-compact real forms, namely EV I and EV II.
Let g0 = EV I. Its Satake diagram shows Πi = {α2, α5, α7}. In a first step we determine

the integers Ck,l such that

σ(αk) = αk + Ck,2α2 + Ck,5α5 + Ck,7α7
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for k = 1, 3, 4, 6. One checks immediately that σ(α1) = α1 and σ(α3) = α3. For the remaining
cases the only possibilities that respect σ(αk)− αk /∈ ∆ are

σ(α4) = α4 or σ(α4) = α2 + α4 + α5

and
σ(α6) = α6 or σ(α6) = α5 + α6 + α7.

Since α4 + α5, α5 + α6 ∈ ∆+ we obtain

σ(α4) = α2 + α4 + α5 and
σ(α6) = α5 + α6 + α7.

According to [HONO13] the only possibility for a minimal orbit of hypersurface type is Γ =
Π \ {α7}. Since in this case Γn contains the two real roots α2 + α3 + 2α4 + 2α5 + 2α6 + α7

and α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7, the minimal G0-orbit in X = G/QΓ cannot be a
hypersurface.

Let g0 = EV II. Here we have Πi = {α2, α3, α4, α5} and we must determine

σ(αk) = αk + Ck,2α2 + Ck,3α3 + Ck,4α4 + Ck,5α5

for k = 1, 6, 7. One sees directly σ(α7) = α7. For the remaining cases the only possibilities
that respect σ(αk)− αk /∈ ∆ are

σ(α1) = α1 or σ(α1) = α1 + α2 + 2α3 + 2α4 + α5

and
σ(α6) = α6 or σ(α6) = α2 + α3 + 2α4 + 2α5 + α6.

Since α1 + α3, α5 + α6 ∈ ∆+ we obtain

σ(α4) = α1 + α2 + 2α3 + 2α4 + α5 and
σ(α6) = α2 + α3 + 2α4 + 2α5 + α6.

Let Γ = Π \ {αk} for 1 6 k 6 7. Then Γn ∩σ(Γn) contains always α1 +α2 +α3 +α4 +α5 +
α6 + α7 and

σ(α1 + α2 + α3 + α4 + α5 + α6 + α7) = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 + α7.

Consequently, the minimal G0-orbit in X = G/QΓ is never a hypersurface.

A.8. The exceptional Lie algebra g = E8. According to [HONO13] no real form of G can
have a compact hypersurface in any G-homogeneous rational manifold.

A.9. The exceptional Lie algebra g = F4. The rank of g = F4 is 4 and the root system is
given by

∆ = {ek; 1 6 k 6 4} ∪ {±ek ± el; 1 6 k < l 6 4} ∪
{

1/2(±e1 ± e2 ± e3 ± e4)
}
.

Choosing ∆+ = {ek} ∪ {ek ± el} ∪ {1/2(e1 ± e2 ± e3 ± e4)} we obtain

Π = {α1 = 1/2(e1 − e2 − e3 − e4), α2 = e4, α3 = e3 − e4, α4 = e2 − e3}.
The non-compact real forms of g are FI and FII. Since FI is split, we concentrate on
g0 = FII. According to [Ara62, p. 21] the simple roots α2, α3 and α4 are imaginary while
σ(α1) = α1+3α2+2α3+α4. Equivalently, we have σ(e1) = e1 and σ(ek) = −ek for 2 6 k 6 4.
One checks that ∆+ is a σ-order.

A direct calculation shows that the minimal G0-orbit in X = G/QΓ is never a hypersurface.

A.10. The exceptional Lie algebra g = G2. The only non-compact real form of g is split.
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