Bayesian conditional Monte Carlo Algorithm for nonlinear time-series state estimation - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2015

Bayesian conditional Monte Carlo Algorithm for nonlinear time-series state estimation

Résumé

Bayesian filtering aims at estimating sequentially a hidden process from an observed one. In particular, sequential Monte Carlo (SMC) techniques propagate in time weighted trajectories which represent the posterior probability density function (pdf) of the hidden process given the available observations. On the other hand, conditional Monte Carlo (CMC) is a variance reduction technique which replaces the estimator of a moment of interest by its conditional expectation given another variable. In this paper, we show that up to some adaptations, one can make use of the time recursive nature of SMC algorithms in order to propose natural temporal CMC estimators of some point estimates of the hidden process, which outperform the associated crude Monte Carlo (MC) estimator whatever the number of samples. We next show that our Bayesian CMC estimators can be computed exactly, or approximated efficiently, in some hidden Markov chain (HMC) models; in some jump Markov state-space systems (JMSS); as well as in multitarget filtering. Finally our algorithms are validated via simulations
Fichier principal
Vignette du fichier
article_YohanPetetin.pdf (287.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01255022 , version 1 (04-09-2019)

Identifiants

Citer

Yohan Petetin, François Desbouvries. Bayesian conditional Monte Carlo Algorithm for nonlinear time-series state estimation. IEEE Transactions on Signal Processing, 2015, 63 (14), pp.3586 - 3598. ⟨10.1109/TSP.2015.2423251⟩. ⟨hal-01255022⟩
167 Consultations
93 Téléchargements

Altmetric

Partager

More