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Bayesian Conditional Monte Carlo Algorithms for

non linear time-series state estimation
Yohan Petetin*, François Desbouvries, Senior Member, IEEE

Abstract—Bayesian filtering aims at estimating sequentially a
hidden process from an observed one. In particular, sequential
Monte Carlo (SMC) techniques propagate in time weighted
trajectories which represent the posterior probability density
function (pdf) of the hidden process given the available observa-
tions. On the other hand, Conditional Monte Carlo (CMC) is a
variance reduction technique which replaces the estimator of a
moment of interest by its conditional expectation given another
variable. In this paper we show that up to some adaptations, one
can make use of the time recursive nature of SMC algorithms in
order to propose natural temporal CMC estimators of some point
estimates of the hidden process, which outperform the associated
crude Monte Carlo (MC) estimator whatever the number of
samples. We next show that our Bayesian CMC estimators can
be computed exactly, or approximated efficiently, in some hidden
Markov chain (HMC) models; in some jump Markov state-space
systems (JMSS); as well as in multitarget filtering. Finally our
algorithms are validated via simulations.

Index Terms—Conditional Monte Carlo, Bayesian filtering,
Hidden Markov Models, jump Markov state space systems,
Rao-Blackwell particle filters, multi-object filtering, probability
hypothesis density

I. INTRODUCTION

LET us first fix notations. Bold letters denote vectors;

p(x), say, denotes the pdf of random variable (r.v.) X
and p(x|y), say, the conditional pdf of X given Y = y; if

i ≤ j pi:j|n is a shorthand notation for p(xi:j |y0:n); if xi are

samples from p(x) then the set {xi}Ni=1 can also be denoted

x1:N ; subscripts are reserved for labels or times indices and

superscripts for realizations. In Bayesian filtering we consider

two random processes {Xn}n≥0 and {Yn}n≥0 with given

joint probability law. Yi is observed, i.e. we have realizations

y0:n = {yi}
n
i=0 of Y0:n = {Yi}

n
i=0. Process {Xn} is hidden,

and our aim is to compute, for each time instant n, some

moment of interest

Θn =

∫
f(x0:n)p(x0:n|y0:n)dx0:n (1)

of the a posteriori pdf p(x0:n|y0:n) of X0:n given y0:n.

Unfortunately, in most models (1) cannot be computed

exactly. Suboptimal solutions for computing Θn include SMC

techniques [1] [2], which propagate over time weighted tra-

jectories {xi
0:n, w

i
n}

N
i=1 with

∑N
i=1 w

i
n = 1. In other words,

p̂0:n|n =
∑N

i=1 w
i
nδxi

0:n
, in which δ is the Dirac mass, is a
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discrete (and random) approximation of p(x0:n|y0:n), and Θn

is finally estimated as

Θ̂n =
N∑

i=1

wi
nf(x

i
0:n). (2)

In this paper we do not discuss the choice of the SMC

algorithm, but rather directly focus on Θ̂n, and see under

which conditions one can improve this point estimator at a

reasonable computational cost.

This leads us to variance reduction techniques and more

specifically to Rao-Blackwellization. Roughly speaking, the

rationale is as follows. Assume that the multiple integral

(1) can be split in two parts, and the inner integral can be

computed exactly, so that only the outer one needs to be

approximated. Then one can reduce the dimension of the MC

samples, and as a benefit the corresponding estimator Θ̂RB

will have a reduced variance.

In Bayesian filtering the idea is either known as marginal-

ized or Rao-Blackwellized Particle Filters (RB-PF) and has

been applied so far to a spatial partition of the state vectors

[3]–[7]; by spatial we mean that each vector xk is split as

xk = [(xl
k)

T (xnl
k )T ]T (where xl

k and xnl
k are respectively the

”linear” and ”non-linear” components of vector xk), so that

matrix [x0, · · · ,xn] is partitioned into two block rows.

In this paper we propose another class of RB-PF; the main

difference is that our partitioning of x0:n is now temporal

rather than spatial, i.e. that matrix [x0, · · · ,xn] is split into two

(block) columns, [x0, · · · ,xn−1] and xn. Strangely enough,

such a decomposition has not been considered before, whereas

it arises naturally in the Bayesian filtering context: at time

n we usually build Θ̂n from p̂0:n|n, but indeed p̂0:n−1|n−1

was also available for free since, by nature, sequential MC

algorithms construct p̂0:n|n from p̂0:n−1|n−1. As we shall

see in Section II-C, making use of p̂0:n−1|n−1 enables us to

propose a CMC estimator of moment (1). The rest of this paper

is organized as follows. Section II describes our methodology.

We first briefly recall the principles of variance reduction

via conditioning and next discuss spatial vs. temporal RB

estimators, as well as computational aspects; in particular, we

recall the principle of local MC computations. We next identify

Markovian models where our CMC estimator can be computed

efficiently enough. So in section III we first consider HMC

models, and we see that a Bayesian CMC estimator can be

computed directly in some of them, or approximated other-

wise. In section IV we develop our Bayesian CMC estimators

for JMSS; particularly, the specifities of these models for CMC

estimates are discussed in section IV-B. Finally in section V
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we adapt Bayesian CMC from single- to multi-target scenarios.

We end the paper with a conclusion.

II. SPATIAL VS. TEMPORAL RB-PF FOR BAYESIAN

FILTERING

A. Rao-Blackwellization : tradeoff between variance reduction

and computational complexity

Let us first recall the well known following result. Let X
and Y be any two r.v. The law of iterated expectations and the

law of total variance (sometimes called Rao-Blackwellization

[8] [9], even though the conditioning is not always in terms

of a sufficient statistic) respectively read

E(E(Y |X)) = E(Y ), (3)

var(E(Y |X)) = var(Y )− E(var(Y |X)). (4)

As a toy application of (3) (4) let us address the generic prob-

lem of computing via MC simulations the partially computable

integral

Θ =

∫
f(x1, x2)p(x1, x2)dx1dx2 (5)

=

∫ [∫
f(x1, x2)p(x2|x1)dx2

]
p(x1)dx1; (6)

by partially computable, we mean that neither (5) nor the outer

integral in (6) can be computed exactly, but that the inner

integral in (6) can. Let {(Xi
1, X

i
2)}

N
i=1

i.i.d.
∼ p(x1, x2). From

(3)-(4) (applied with Y = f(X1, X2) and X = X1) the so-

called CMC estimator Θ̃ = 1
N

∑N
i=1 E(f(Xi

1, X2)|X
i
1) has

the same mean but lower variance than the crude MC one Θ̂ =
1
N

∑N
i=1 f(X

i
1, X

i
2). In other words, for estimating moment

(5) it is preferable to compute whatever can be computed, and

use MC simulations only when necessary.

Of course, the advantage of Θ̃ over Θ̂ depends on X1;

ideally, one should easily sample from p(x1) (the choice

of a ”good” variable X1 is not necessarily straightforward

if f(x1, x2) depends on x2 only); the variance reduction

in (4) should be as large as possible; but in the mean-

time function g(x1) = E(f(x1, X2)|x1) should remain

computable at a reasonable computational cost. As far as

these last two points are concerned, when partitioning as

(X1, X2) a given set of variables (X0:n, say), the set X1

should be as small as possible. More precisely, let Θ =

E(f(X1, X2, X3)) and let {(Xi
1, X

i
2)}

N
i=1

i.i.d.
∼ p(x1, x2).

Then two Bayesian CMC estimators can be thought of:

Θ̃X3 built from Θ = E[E(f(X1, X2, X3)|X1, X2)], in which

the inner expectation (w.r.t. X3) is computed exactly; and

Θ̃(X2,X3) built from Θ = E[E(f(X1, X2, X3)|X1)] and from

p̂(x1). Estimator Θ̃(X2,X3) is preferable to Θ̃X3 , but comput-

ing Θ̃(X2,X3) requires an additional expectation computation,

since E(f(X1, X2, X3)|X1) = E[E(f(X1, X2, X3)|X1, X2)].

B. Spatial RB-PF for Bayesian filtering

Variance reduction techniques based on (4) have been

adapted to Bayesian filtering [3] [4] [5]. The aim is to compute

(1), i.e. generically integral (5), but the difference with section

II-A is that it is usually not possible to sample from p(x1, x2),

and often p(x1, x2) ∝ p′(x1, x2) is only known up to a

constant, whence the use of normalized importance sampling

(IS) techniques [10]. So let now

Θ̂(x1:N
1 ,x1:N

2 ) =

N∑

i=1

wi
2(x

1:N
1 ,x1:N

2 )f(xi
1, x

i
2) with (xi

1, x
i
2) ∼ q2,

(7)

Θ̃RB(x1:N
1 ) =

N∑

i=1

wi
1(x

1:N
1 )E(f(xi

1, X2)|x
i
1) with xi

1 ∼ q1,

(8)

with
∑N

i=1 w
i
1 =

∑N
i=1 w

i
2 = 1. Estimator Θ̃RB depends on

samples {xi
1}

N
i=1 only and is known as the RB estimator of Θ.

However Θ̃RB is known to outperform Θ̂ only under specific

assumptions on q1, q2, w1:N
1 and w1:N

2 . In particular, if wi
1 ∝

wu,i
1 = p′(xi

1)/q1(x
i
1), wi

2 ∝ wu,i
2 = p′(xi

1, x
i
2)/q2(x

i
1, x

i
2)

and q1(x1) =
∫
q2(x1, x2)dx2, then the variance of wu,i

1 can

only be lower than that of wu,i
2 [11]. If moreover (xi

1, x
i
2)

are independent, an asymptotic analysis based on (3) and

(4) proves that Θ̃RB indeed outperforms Θ̂ [4]. However,

independence never holds in the presence of resampling; in

the general case, the comparison of both estimators depends

on the choice of the importance distributions q1 and q2, and

can be proved (asymptotically) only under specific sufficient

conditions [12] [13].

RB-PF have been applied to the specific case where the

state vectors x0:n can be partitioned into a “linear” component

x2 = xl
0:n and a “non-linear” one x1 = xnl

0:n. Models in which

Θ̃RB can be computed exactly include linear and Gaussian

JMSS [3] [4] or partially linear and Gaussian HMC [5]. In

other models, it may be possible to approximate Θ̃RB by using

numerical approximations of w1(x) and of E(f(X1, X2)|x1);
however, due to the spatial structure of the decomposition of

x0:n, approximating Θ̃RB in (8) involves propagating numeri-

cal approximations over time. Finally, recent contributions [6]

[7] propose to approximate the integral in (8) via a local

MC method which also leads to an approximation of the

importance weights wi
1(x

1:N
1 ) in (8).

C. Temporal RB-PF for Bayesian filtering

In this paper we propose another class of RB-PF; the main

difference is that our partitioning (X1, X2) of x0:n is now

temporal rather than spatial (which, by contrast with spatially

partitioned RB-PF, induces that the state space no longer

needs to be multi-dimensional). Remember that the aim is

to compute (5), or equivalently (6). Let us start from the

following approximation of p(x1):

p(x1) ≈ p̂(x1) =

N∑

i=1

wi(x1:N
1 )δxi

1

. (9)

For 1 ≤ i ≤ N , let us assume that we can sample xi
2 ∼

p(x2|x
i
1). Then

p̂(x1, x2) =

N∑

i=1

wi(x1:N
1 )δ(xi

1
,xi

2
) (10)
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(with unchanged weights) can be used as an approximation

of p(x1, x2). Next we have two options: computing the full

expectation in (5) by using (10), or only the outer one in (6)

by using (9). So let

Θ̂(x1:N
1 ,x1:N

2 ) =

N∑

i=1

wi(x1:N
1 )f(xi

1, x
i
2), (11)

Θ̃(x1:N
1 ) =

N∑

i=1

wi(x1:N
1 )E(f(xi

1, X2)|x
i
1). (12)

In this paper, we shall call Θ̂(x1:N
1 ,x1:N

2 ) (resp. Θ̃(x1:N
1 ))

the Bayesian crude MC (resp. Bayesian CMC) estimator of

Θ. Let us now compare Θ̃ to Θ̂. Here each weight wi may

depend on {xi
1}

N
i=1, but not on {xi

2}
N
i=1; as a consequence

Θ̃ = E(Θ̂|x1:N
1 ), which induces that Θ̃ outperforms Θ̂ (due to

(3) and (4)), whatever the number N of particles, and whatever

the MC approximation p̂(x1) in (9).

Let us comment this result. By contrast with section II-B,

comparing Θ̃ to Θ̂ is easy here, because weights wi of the

crude estimator (11) no longer depend on {xi
2}

N
i=1 (compare

(7)-(8) to (11)-(12)). This, in turn, is rendered possible because

we assumed that one can sample from p(x2|x
i
1). Observe that

this is not the case if the partitionning is spatial, at least if

x0:n are partitioned as a “linear” component x2 = xl
0:n and a

“non-linear” one x1 = xnl
0:n with xk = [(xl

k)
T (xnl

k )T ]T . The

reason why is that the generic conditional pdf p(x2|x1) at

time n reads p(xl
0:n|x

nl
0:n,y0:n); so even in a model in which

(theoretically) one could sample from p(x2|x1), it is impossi-

ble in practice because each sample xi
2 ∼ p(x2|xi

1) is now a

whole new trajectory x
l,i
0:n, with dimension proportional to n

(unfortunately sequentiality does not hold so we cannot just

extend x
l,i
0:n−1). As we shall see in sections III to V, we will

consider the generic partitioning (X1, X2) = (X0:n−1,Xn);
so the dimension of xi

2 ∼ p(x2|x
i
1) is independent of n, and

sampling from p(x2|x
i
1) is conceivable. It then remains to

look for models where sampling from p(x2|xi
1) is possible

in practice.

D. Practical considerations

From section II-C, Θ̃ outperforms Θ̂; so in the rest of

this paper we look for Markovian models where Θ̃ can

be computed efficiently. To that respect, a key point is the

availability of an approximation p̂(x1) of p(x1) (which can

be a problem in itself - see e.g. section III-B), as well as

the integrability of f(x1, x2)p(x2|x1). However as we shall

see integral
∫
f(x1, x2)p(x2|x1)dx2 can be computed exactly

only in a restrictive class of models. In order to widen the

applicability of CMC estimators we thus need to consider

models where (12) can be implemented approximately.

Implementations based on numerical approximations may

rapidly prove unsatisfying, in particular in models with se-

vere nonlinearities. Then one can use a local MC imple-

mentation of (12) The principle is as follows. Assume that

neither the importance weights associated to p̂(x1) nor inte-

gral
∫
f(x1, x2) p(x2|x1)dx2 are computable. In such cases

one can approximate the integral via a local MC method

which also leads to an approximation of the importance

weights necessary in the computation of p̂(x1). In particular,

if p(x1)p(x2|x1)=p(x1, x2) is known, then for a given xi
1, a

normalized IS technique which produces samples {xi,j
2 }Mj=1

and which approximates a moment according to p(x2|x
i
1)

(which is known up to a constant) also provides an unbiased

estimator of p(xi
1). Thus weights {wi

1}
N
i=1 associated to the

approximation of p(x1) (which rely on {p(xi
1)}

N
i=1) can be

approximated by some weights {w̃i
1}

N
i=1, in which w̃i

1 depends

on {xi,j
2 }Mj=1. Now, in a sequential filtering context, p(x1, x2)

is typically only known up to a constant; however a sequential

application of this technique ensures that the (marginal) target

distribution deduced from the approximated weights is still

p(x1). The idea has already been applied to spatial RB [6] [7]

and, as we shall see (see in particular section III-D), can be

adapted to the CMC problem discussed in this paper.

III. BAYESIAN CMC PF FOR SOME HMC MODELS

A. Deriving a Bayesian CMC estimator Θ̃n

Let {Xn}n≥0 (resp. {Yn}n≥0) be a p- (resp. q-) di-

mensional state vector (resp. observation). We assume that

(Xn,Yn) follows the well known HMC model:

p(x0:n,y0:n) = p(x0)
n∏

i=1

fi|i−1(xi|xi−1)
n∏

i=0

gi(yi|xi),

(13)

in which fi|i−1(xi|xi−1) is the transition pdf of Markov

chain {Xn}n≥0 and gi(yi|xi) the likelihood. We consider

the problem of computing (1), and in particular moment

Θn = Epn|n
(f(Xn)), which we rewrite as

Θn =

∫
f(xn)︸ ︷︷ ︸
f(x2)

p(x0:n−1,xn|y0:n)︸ ︷︷ ︸
p(x1,x2)

dx0:n−1︸ ︷︷ ︸
x1

d xn︸︷︷︸
x2

.(14)

So (14) coincides with (5), with X1 = X0:n−1, X2 = Xn,

f(x1, x2) depends on x2 only, and p(x1, x2) is the joint pdf

p(x0:n−1,xn|y0:n) = p(x0:n−1|y0:n)︸ ︷︷ ︸
p(x1)

p(xn|xn−1,yn)︸ ︷︷ ︸
p(x2|x1)

.

Let p̂(x0:n−1|y0:n) =
∑N

i=1 w̃
i
n−1δxi

0:n−1

be an approximation

of p(x1) = p(x0:n−1|y0:n) and x̃i
n ∼ p(xn|x

i
n−1,yn), for

1 ≤ i ≤ N . From (11) and (12), the crude and CMC estimators

of moment Θn defined in (14) are respectively

Θ̂n(x
1,N
0:n−1, x̃

1:N
n ) =

N∑

i=1

w̃i
n−1(x

1:N
0:n−1)f(x̃

i
n), (15)

Θ̃n(x
1:N
0:n−1) =

N∑

i=1

w̃i
n−1(x

1:N
0:n−1)

∫
f(xn)p(xn|x

i
n−1,yn)dxn.

(16)

B. SMC algorithms

Let us now address computational aspects. Contrary to most

SMC algorithms which focus on an MC approximation of

p(x0:n−1|y0:n−1), here we first need an approximation of the

smoothing pdf p(x1) = p(x0:n−1|y0:n). Let us discuss the

different solutions.

1) Smoothing techniques:
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a) Smoothing via filtering: First, the propagation of an

MC approximation {xi
0:n−1, w

i
n−1}

N
i=1 of p(x0:n−1|y0:n−1)

is a well known problem which has been studied in many

contributions. SMC algorithms mainly include the sampling

importance resampling (SIR) algorithms and the class of Aux-

iliary Particle Filtering (APF) ones [14], which rely on an im-

portance distribution q(xn−1|x0:n−2,yn−1). Once an approx-

imation {xi
0:n−1, w

i
n−1}

N
i=1 of p(x0:n−1|y0:n−1) is obtained,

an MC approximation {xi
0:n−1, w̃

i
n−1}

N
i=1 of p(x0:n−1|y0:n)

is deduced by setting

w̃i
n−1 ∝ wi

n−1p(yn|x
i
n−1); (17)

b) Direct smoothing: On the other hand, one can directly

focus on an MC approximation of p(x0:n−1|y0:n) (actually,

we do not need an approximation of p(x0:n−1|y0:n−1) in our

formulation) via

p(x0:n−1|y0:n) ∝ p(x0:n−2|y0:n−1)×

fn−1|n−2(xn−1|xn−2)gn−1(yn−1|xn−1)

p(yn−1|xn−2)
p(yn|xn−1). (18)

Starting from an MC approximation {xi
0:n−2, w̃

i
n−2}

N
i=1

of p(x0:n−2|y0:n−1), and given an importance distribution

q(xn−1|xi
0:n−2,yn−1:n), weight w̃i

n−1 associated to xi
n−1 ∼

q(xn−1|x
i
0:n−2,yn−1:n) reads

w̃i
n−1 ∝ w̃i

n−2

fn−1|n−2(x
i
n−1|x

i
n−2)gn−1(yn−1|xi

n−1)

q(xi
n−1|x

i
0:n−2,yn−1:n)p(yn−1|xi

n−2)
×

p(yn|x
i
n−1). (19)

Note that a key point of this formulation is that importance

distribution q(xn−1|xi
0:n−2,yn−1:n) can depend on the new

observation yn, which leads to the consideration of an impor-

tance distribution more adapted to the smoothing problem;

c) Alternate smoothers: finally, note that several smooth-

ing algorithms have been proposed to obtain robust MC

approximations of p(x0:n−1|y0:n) [15] [16] [17]. Roughly

speaking, most of these solutions start by getting an MC

approximation {x0:n, wn}Ni=1 of p(x0:n|y0:n) via a classical

filtering SMC algorithm, then use an additional sampling

mechanism in order to obtain a better MC approximation of

p(x0:n−1|y0:n). Even though such strategies may give accurate

approximations of a moment according to the smoothing

distribution p(x0:n−1|y0:n), they will not be used in this paper;

the reason why is discussed below (see §III-B2).

2) Discussion: Let us now discuss on the relevance of

these three classes of smoothers to our problem. Even though

approximation p̂(x0:n−1|y0:n) impacts on estimator Θ̃n, re-

member from section II-C that Θ̃n will outperform Θ̂n

whatever p̂(x0:n−1|y0:n); also keep in mind that our final

goal is to compute estimator (16) in an efficient way. So

let us first observe that computing estimator (16) involves

pdf p(xn|xn−1,yn), which happens to coincide with the so-

called optimal (in the sense that it minimizes the variance

of the importance weights) importance distribution of SIR

filtering algorithms [18] [19] [11]. In addition, (17) and

(19) in the first two points above highlight the role of

p(yn|xn−1) =
∫
fn|n−1(xn|xn−1) gn(yn|xn)dxn, which is

related to p(xn|xn−1,yn) = fn|n−1(xn|xn−1)gn(yn|xn)/

p(yn|xn−1); it may thus be of practical interest to involve

function p(xn|xn−1,yn) in the sampling step of new particles.

In addition, p(xn|xn−1,yn) is the optimal conditional impor-

tance distribution in the filtering problem, but also plays a

role in the one step backward smoothing one, since the optimal

importance distribution for the smoothing problem (that which

minimizes the conditional variance of weights w̃i
n−1 in (19))

is given by

q(xn−1|x0:n−2,yn−1:n) ∝ p(xn−1|xn−2,yn−1)p(yn|xn−1).
(20)

Finally, the algorithms [15] [16] [17] mentioned in point c)

above focus on the computation of p(x0:n−1|y0:n), not on that

of the integral in (16). Moreover, even if the integral in (16)

can be computed exactly, the CMC estimate obtained from

such a smoothing strategy does not necessarily outperform

a crude estimate. As a simple illustration of this point, basic

SMC algorithms provide an approximation of p0:n|n and so of

p0:n−1|n given by p̂0:n−1|n =
∑

wi
nδxi

0:n−1

. However weights

wi
n in general depend on the particles {xi

n}
N
i=1 which have

just been sampled. In that case, the associated Bayesian CMC

and crude estimators become

Θ̂n(x
1:N
0:n−1,x

1:N
n )=

N∑

i=1

wi
n(x

1:N
0:n−1,x

1:N
n )f(xi

n), (21)

Θ̃n(x
1:N
0:n−1,x

1:N
n )=

N∑

i=1

wi
n(x

1:N
0:n−1,x

1:N
n )

∫
f(xn)p(xn|x

i
n−1,yn)dxn,

(22)

which can no longer be compared easily (see the end of section

II-C). If more sophisticated smoothers were used [15] [16]

[17], Θ̃n in (22) could depend on other variables which would

render the comparison more difficult. So from now on, we

will only use the first two classes of smoothers for computing

p(xn−1|y0:n). We next focus on the implementation of Θ̃n in

HMC models.

C. Computing Θ̃n exactly or via numerical approximations

Strictly speaking, Θ̃n can be computed only if p(yn|xn−1)
is available (for the computation of weights w̃i

n−1, via (17)

or (19)) and one can compute
∫
f(xn)p(xn|x

i
n−1,yn)dxn.

As we now see, this is the case in some HMC models

and for some functions f(.). Let us e.g. consider the semi-

linear stochastic models with additive Gaussian noise, given

by fn|n−1(xn|xn−1) = N (xn, fn(xn−1),Qn(xn−1)) (where

fn is arbitrary) and gn(yn|xn) = N (xn, Hnxn,R
v
n). Such

models can indeed be seen as the temporal equivalent of the

partially linear and Gaussian model in which the spatial RB

estimate [5] can be computed exactly. Then p(xn|xn−1,yn) =
N (xn,mn(xn−1,yn),Pn(xn−1)) and p(yn|xn−1) = N (yn,
Hnfn(xn−1),Ln(xn−1)), in which parameters mn(.), Pn(.)
and Ln(.) can be computed exactly. So Θ̃n is computable for

some functions f(.). If f(x) is a polynomial in x, the problem

reduces to computing the first moments of p(xn|xn−1,yn). In

the important particular case where f(x) = x, no further com-

putation is indeed necessary; in this case the ith integral in (16)
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is equal to mn(x
i
n−1,yn). Note also that in that case, comput-

ing Θ̃n or Θ̂n indeed requires the same computational cost, be-

cause both estimators compute pdfs p(xn|xi
n−1,yn), and use

them to sample the new particles x̃i
n which, in both cases, are

needed for the next time step. The only difference is that Θ̂n =∑N
i=1 w̃

i
n−1x̃

i
n, while Θ̃n =

∑N
i=1 w̃

i
n−1mn(x

i
n−1,yn). Fi-

nally, since p(yn|xn−1) and p(xn|xn−1,yn) are available in

these models, an approximation of the optimal distribution

p(xn−1|xn−2,yn−1,yn) ∝ p(xn−1|xn−2,yn−1)p(yn|xn−1)
for the smoothing problem can be obtained via an adapta-

tion of classical linearizations/Unscented Transformation (UT)

techniques [11] [20].

Now, if p(yn|xn−1) and/or moments of p(xn|xn−1,yn) are

not computable, local numerical approximations such as local

linearizations [11], Taylor series expansion [20] or the UT

[21] can be used in (16) and (17). By contrast with the spatial

case, an interesting feature of temporal RB-PF is that such

numerical approximations no longer need to be propagated

over time. On the other hand, these techniques indeed compute

an approximation of function p(yn|xn−1) (used to deduce an

MC approximation of p0:n−1|n) and can be very poor since it

is built from an approximation of its first order moments.

D. A general implementation of Θ̃n based on local MC

techniques

1) Application: We now discuss on the adaptation of

the local MC method described in Section II-D. Apply-

ing this methodology, we approximate simultaneously the

integral in (16) and the weights in (17) or (19). For a

given trajectory xi
0:n−1, let us sample M particles xi,j

n ∼
qCMC(xn|x

i
0:n−1,yn) (superscript CMC indicates that this

importance distribution is used to perform the CMC step);

we thus obtain an estimator of each integral in (16) and an

unbiased estimator of each p(yn|x
i
n−1):

∫
f(xn)p(xn|x

i
n−1,yn)dxn ≈

M∑

j=1

wCMC,i,j
n f(xi,j

n ),

wCMC,i,j
n ∝

fn|n−1(x
i,j
n |xi

n−1)gn(yn|x
i,j
n )

qCMC(xi,j
n |xi

0:n−1,yn)
,

M∑

j=1

wCMC,i,j
n = 1,

p̂(yn|x
i
n−1) =

1

M

M∑

j=1

fn|n−1(x
i,j
n |xi

n−1)gn(yn|x
i,j
n )

qCMC(xi,j
n |xi

0:n−1,yn)
. (23)

Finally, weights in (17) are approximated by

w̃i
n−1 ∝ wi

n−1p̂(yn|x
i
n−1), (24)

and weights in (19) by

w̃i
n−1 ∝ w̃i

n−2

fn−1|n−2(x
i
n−1|x

i
n−2)gn−1(yn−1|x

i
n−1)

q(xi
n−1|x

i
0:n−2,yn−1:n)p̂(yn−1|xi

n−2)
×

p̂(yn|x
i
n−1), (25)

where q(xn−1|xi
0:n−2,yn−1:n) is the importance distribu-

tion used to obtain samples {xi
n−1}

N
i=1. Our approximated

Bayesian CMC estimator is now

Θ̃n =

N∑

i=1

w̃i
n−1




M∑

j=1

wCMC,i,j
n f(xi,j

n )


 . (26)

Note that one can check easily that the distribution targeted

by weights ŵ(x0:n−1, x
CMC,1:M
n ) in (25) is p(x0:n−1|y0:n)

since

p̂(yn|xn−1) =
1

M

M∑

j=1

fn|n−1(x
.,j
n |xn−1)gn(yn|x.,j

n )

qCMC(x.,j
n |x0:n−1,yn)

is an unbiased estimator of p(yn|xn−1).

2) Discussion: Of course, this local MC approximation

requires an extra computational cost since for each particle

xi
n−1, i ∈ {1, · · · , N}, we sample an additional set of M

particles xi,j
n , j ∈ {1, · · · ,M}. However, we expect that

using a temporal RB approach will enable us to decrease the

size of the MC approximation of p0:n−1|n. This point will be

particularly discussed in our simulations.

On the other hand, the computational cost due to the local

sampling step can be controlled in another way, and indeed

let us observe that the PF proposed in [22] can be seen as an

approximated temporal RB estimate in which the local compu-

tations are done with N particles only. More precisely, instead

of using a particular set {xi,j
n }Mj=1 for each trajectory xi

0:n−1,

one can first extend each trajectory with a set of particles

{xi
n}

N
i=1 as in classical PF algorithms, then recycle these sam-

ples {xj
n}

N
j=1 in order to compute the local MC approximation

of p(yn|x
i
n−1) and of

∫
f(xn)p(xn|x

i
n−1,yn)dxn. In other

words, in this solution one samples a unique set of M = N
particles {xj

n}
N
j=1, rather than a set of N ×M samples. Thus,

the importance distribution qCMC(xn|xi
0:n−1,yn) becomes

qCMC(xn|x
1:N
0:n−1,yn) =

N∑

i=1

wi
n−1q(xn|x

i
0:n−1,yn). (27)

Since the new set {xj
n}

N
j=1 is common to each sample xi

n−1,

we easily check by plugging (24) in (26) that

Θ̃n =

N∑

j=1

wj
n−1f(x

j
n), (28)

wj
n−1 ∝ gn(yn|x

j
n)

∑N
i=1 w

i
n−1fn|n−1(x

j
n|x

i
n−1)∑N

i=1 w
i
n−1q(x

j
n|xi

0:n−1,yn)
. (29)

Estimate (28) coincides with the estimate deduced from the

Marginal PF proposed in [22]. The counterpart of this N
samples technique is that it requires the computation of the

N2 weights wCMC,i,j
n . In addition, Θ̃n in (28) improves

the classical SIR estimate only if the importance distribu-

tion qCMC(xn|x
1:N
0:n−1,yn) is well chosen. For instance, in

the simplest case where we set qCMC(xn|x
1:N
0:n−1,yn) =∑N

i=1 w
i
n−1fn|n−1(xn|x

i
n−1), weights wj

n−1 in (29) reduce

to wj
n−1 ∝ gn(yn|xj

n), so Θ̃n in (28) reduces to the estimate

based on the bootstrap filter [22].

E. Simulations

Let us now discuss the performances of our (possibly

approximated) Bayesian CMC estimators via simulations in

several HMC models. Our results are averaged on P = 200
simulations and we compute several criterions of performance.



6

First, the mean square error (MSE) w.r.t. the filtering mean

E(f(xn)|y0:n) is computed,

MSEf
n =

1

P

P∑

i=1

(Θ̃i
n − E(f(Xn)|y0:n))

2, (30)

where Θ̃i
n is an estimate of E(f(Xn)|y0:n) for the i-th

simulation, and E(f(Xn)|y0:n) is computed via a classical PF

(for example a bootstrap one [23]) with N = 105 particles.

We also compute the MSE at time n w.r.t. the true state f(xn),
MSEt

n = 1
P

∑P
i=1(Θ̃

i
n−f(xn))

2, which will be averaged over

time via criterion

J =
1

T

T∑

n=1

√
MSEt

n, (31)

where T is the length of the considered scenario. In all our

simulations, we will take f(xn) = xn (i.e. we look for

estimating the hidden state Xn).

1) Semi-linear model: We start with the HMC model

fn|n−1(xn|xn−1) = N (xn, atan(xn−1), Q) and gn(yn|xn) =
N (yn, xn, R). In this semi-linear model, the Fully Adapted

(FA) algorithm can be implemented [14] since it is possi-

ble to sample according to p(xn|xn−1, yn) and to compute

p(yn|xn−1). So we compare a crude estimate based on the

FA algorithm with N = 1000; a CMC estimate (CMC-

FA) in which p0:n−1|n is deduced from the FA algorithm

with N = 1000 particles; and a second CMC estimate in

which we directly propagate an MC approximation of p0:n−1|n

via IS (see the second paragraph of III-B1). The chosen

importance distribution approximates the optimal importance

distribution for the smoothing problem (20) which is not

exactly computable here. However, since p(xn−1|xn−2,yn−1)
and p(yn|xn−1) are computable (see III-C), (20) can be

approximated via the UT described in [24]. The specific

parameters for the UT are β = 2, α = 0.5 and κ = 2 (see e.g.

[24, p. 8] for the meaning of these parameters).

Fig. 1 and Table I display the filtered MSE in (30) for

Q = 10 and R = 1 for N = 1000 and criterion J in

(31) in function of Q and R for N = 50 and N = 1000
particles, respectively. These results show that the CMC es-

timates outperform the estimate based on the FA algorithm

and also highlight the role of the approximation of p0:n−1|n.

In particular, the CMC estimate based on the approximation

of importance distribution (20) is preferable here. Let us

now analyze the results described in Table I, which displays

criterion J . First, the CMC estimates outperform that based

on the FA algorithm whatever the parameters Q and R of

the model and the number of samples N . Of course, the gap

between the crude and the CMC estimates decreases when

we take a large number of samples. Now, if we compare both

CMC estimates, that based on an approximation of importance

distribution (20) outperforms that based on the FA algorithm

when the observation noise variance R is large as compared

to the process noise variance Q; remember that particles xi
n

sampled from (20) take into account yn and yn+1, which

is critical here, because yn is not informative enough. By

contrast, if R is small then yn is very close to xn and taking

into account yn+1 is not essential.
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CMC−FA (N=1000)
CMC−Optimal Smoothing (N=1000)
FA (N=1000)

Fig. 1. MSE w.r.t to E(Xn|y0:n). fn|n−1(xn|xn−1) =
N (xn, atan(xn−1), Q), gn(yn|xn) = N (yn, xn, R). CMC estimates are
closer to the optimal estimate. Moreover using an importance distribution
more adapted to the smoothing problem (i.e. approximating the optimal
importance distribution p(xn|xn−1, yn, yn+1)) can improve the natural
temporal RB estimate deduced from the FA algorithm.

FA CMC-FA CMC-opt

Q = 0.1, R = 0.1 0.2586 / 0.2423 0.2441 / 0.2411 0.2429 / 0.2411

Q = 10, R = 0.1 0.3200 / 0.3061 0.3039 / 0.3038 0.3039 / 0.3038

Q = 0.1, R = 10 0.6445 / 0.5775 0.6211 / 0.5732 0.5977 / 0.5707

Q = 10, R = 1 0.9833 / 0.9403 0.9362 / 0.9360 0.9360 / 0.9360

Q = 1, R = 10 1.1944 / 1.1294 1.1433 / 1.1273 1.1415 / 1.1226

Q = 10, R = 10 2.3960 / 2.2925 2.2856 / 2.2780 2.2846 / 2.2771

TABLE I
CRITERION J IN (31) FOR fn|n−1(xn|xn−1) = N (xn, atan(xn−1), Q),

gn(yn|xn) = N (yn, xn, R) IN FUNCTION OF Q AND R FOR N = 50
(LEFT) AND N = 1000 (RIGHT) PARTICLES. CMC ESTIMATES

OUTPERFORM THE FA BASED ONE WHATEVER THE PARAMETERS, AND

THE CHOICE OF THE IMPORTANCE DISTRIBUTION PLAYS A CRITICAL ROLE

WHEN R IS LARGE.

2) Autoregressive Conditional Heteroscedasticity (ARCH)

Model: We now consider the ARCH model used for finan-

cial datasets, fn|n−1(xn|xn−1) = N (xn, 0, β0 + β1x
2
n−1),

gn(yn|xn) = N (yn, xn, R
v
n), and we set Rv

n = 1, β0 = 9 and

β1 = 3. The realization we work on is displayed in Figure 2(a)

and is characterized by calm and perturbed periods. Two crude

and three CMC estimates are computed for this simulation.

The crude ones are classical SMC estimates either based

on the Bootstrap algorithm (particles are sampled according

to fn|n−1(xn|xn−1)) or the FA one (particles are sampled

according to p(xn|xn−1,yn)), and both use N = 1000
particles; the CMC estimates are based on the propagation

of p0:n−1|n−1 via the Bootstrap algorithm, with N = 1000
particles, or via the FA algorithm, with either N = 1000 or

N = 100 particles.

Figure 2(b) displays the filtered MSE MSEf
n for each

estimate over time. First, the gain of the CMC estimates

is larger in outlier periods (see for example times n = 22,

n = 40, n = 55 and n = 80). Next, it is clear that

the classical Bootstrap estimate is poor compared to the

FA one. However, the CMC estimate which relies on a

Bootstrap approximation of p0:n−1|n−1 performs better

than the classical FA-based estimate. It means that CMC

estimates which are based on a filtering algorithm (see
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the first paragraph of III-B1) can improve classical SMC

ones, even when the approximation of p0:n−1|0:n−1 is

poor. This is confirmed by criterion J computed for

each estimate: we get J (Bootstrap− 1000) = 1.2965,

J (FA− 1000) = 0.9965, J (CMC− Bootstrap− 1000) =
0.9707, J (CMC− FA− 100) = 0.9707 and

J (CMC− FA− 100) = 0.9706.

Finally, note that it is possible to decrease the size of the

MC approximation used: the CMC-FA estimate with N = 100
particles outperforms the crude bootstrap and FA ones with

N = 1000 particles, and within CMC algorithms, the CMC-

FA estimate with N = 100 particles behaves similarly to the

CMC-bootstrap one with N = 1000 particles. As we will see

in the next section, this point is critical when we need to use

additional MC approximations to compute similarly an MC

approximation of p0:n−1|n and the integral in (16). Indeed,

this simulation shows that it may be possible to decrease the

size of the MC approximation p0:n−1|n without damaging the

final estimate, when we use a CMC approach. Thus, in models

where the additional local MC approximation developped in

§III-D is needed, this saved computational cost can be used

for the local MC approach .

3) Non linear and non gaussian model: We finally consider

the non linear and non gaussian model Xn = 1+sin(πωn)+
φ1Xn−1 + Un, Yn = φ2X

2
n + Vn if n ≤ 30 and Yn =

φ3Xn − 2 + Vn if n > 30, in which {Un ∼ Γ(3, 2)} (Γ(., .)
stands for the Gamma distribution) and {Vn ∼ N (0, R)} are

i.i.d. and mutually independent, R = 1, ω = 4e−2, φ1 = 0.5,

φ2 = 0.2 and φ3 = 0.5 [24]. In this model p(yn|xn−1)
is not available in closed form and it is not possible to

compute exactly the integral in (16). So we have to resort

to the local MC approximation of §III-D. Remember that we

have to choose an importance distribution q(xn|x0:n−1, yn)
for getting an approximation of p(x0:n−1|y0:n) and an-

other one qCMC(xn|x0:n−1, yn) to compute the importance

weights and the integral in (16). We set q(xn|x0:n−1,yn) =
qCMC(xn|x0:n−1,yn) =fn|n−1(xn|xn−1) and (multinomial)

resampling is done at each time step for all the algorithms. Of

course, the use of such a local MC approximation increases

the computational cost. So the objective of this simulation is

to evaluate the role of N and M and the compromise between

performances and computational cost. It is why we will take

into account the computational time for the considered CMC

estimates (simulations are executed with Matlab 2009). Note

that the local MC approximation is adapted to parallel architec-

tures, and that parallel implementations as those proposed in

[6] would enable users to decrease the computational cost due

to the local MC step. Our CMC estimates are compared with

a classical SIR algorithm with N = 1000 particles which also

use the transition pdf fn|n−1(xn|xn−1) to obtain new samples.

Several results are displayed:

First, Fig. 3(a) displays the filtered MSE (30) averaged over

time w.r.t. the optimal estimate in function of N and M . Small

values of M improve the classical SIR estimate, provided N is

not too small. Indeed, if N ≥ 300, M = 10 additional samples

are sufficient to improve the MSE of the CMC estimate. By

constrast, if N is small (N = 100), many local samples are

necessary to approach the performances of the SIR estimate.
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FA (N=1000)

CMC−FA (N=100)

CMC−bootstrap (N=1000)

CMC−FA (N=1000)

Bootstrap (N=1000)

(b) MSE

Fig. 2. ARCH model - β0 = 9, β1 = 3 and Rv
n = 1 - (a) Consid-

ered scenario : alternance of calm and perturbed periods - (b) MSE w.r.t.
E(Xn|y0:n) for two crude estimates (Bootstrap-1000 and FA-100) and three
CMC estimates (CMC-Boostrap-1000, CMC-FA-100 and CMC-1000): CMC
estimates improve the crude ones, particularly in outlier periods. Note that the
CMC estimates present similar performances whatever the MC approximation
of p0:n−1|n−1.

So the difficulty is to find a compromise between the quality

of the approximation of p0:n−1|n and the approximation of the

quantities needed to compute CMC estimates. It can be seen

that N = 300 particles are here sufficient for CMC estimates.

Next computational cost is of course a critical point for

CMC estimates. So Fig. 3(b) displays the averaged computa-

tional time for one iteration and for each CMC estimate. Note

that using local sets of M samples enables us to reduce N and,

as an additional side effect, to also reduce the computational

time due to the propagation of the main set of N particles

(in particular during the resampling step), see Fig. 3(b).

Moreover, in order to take into account both the MSE and

the computational time, we compute the efficiency defined

as Eff(n) = 1/(MSEf
n × E(C(n))) where C(n) is the CPU

time to compute an estimate at time n [25], see Fig. 3(c). It

appears that the most efficient settings of the CMC estimate

are N = 300 and M = 20.

Finally Table II displays criterion J in (31) in the case

where R = 0.00001; it is indeed a challenging scenario for

classical SIR algorithms since small values of R make it
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difficult to guide particles into regions with high likelihood.

Of course, in the first column the value is independent of

M . Here, for a small value of N (e.g. N = 100), the

CMC estimates improve the SIR based one even when the

number M of additional samples is weak. In addition, Fig.

3(b) remains valid for this simulation since the computational

time is independent of the chosen parameters.

0 50 100 150 200
0

1

2

3

4

5

6
x 10

−3

M

A
v
e

ra
g

e
d

 f
ilt

e
re

d
 M

S
E

 

 

SIR (N=1000)
CMC (N=100)
CMC (N=300)
CMC (N=500)
CMC (N=700)
CMC (N=1000)

(a) Averaged MSE

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M

C
o

m
p

u
ta

ti
o

n
a

l 
ti
m

e
 (

s
)

 

 

SIR (N=1000)

CMC (N=100)

CMC (N=300)

CMC (N=500)

CMC (N=700)

CMC (N=1000)

(b) Averaged Computational time (for 1 iteration)
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(c) Averaged efficiency

Fig. 3. Non linear and non gaussian model - (a) - MSE w.r.t. E(Xn|y0:n) for
CMC estimates in function of N and M - (b) Averaged computational time
of CMC estimates for one iteration - (c) Averaged efficiency. CMC estimates
improve the SIR estimate for small values of N and M (see Fig. (a)), and at
a reasonable computational cost (see Fig. (b)). Note that for a given N , the
maximum of efficiency is achieved for M = 20 (see Fig. (c)).

IV. BAYESIAN CMC ALGORITHMS FOR JMSS MODELS

The CMC estimates have been discussed in detail in previ-

ous section. We now show that they can be extended to JMSS

models. A JMSS model reads

p(r0:n,x0:n,y0:n)=p(r0)
n∏

i=1

p(ri|ri−1)×

p(x0)
n∏

i=1

fi|i−1(xi|xi−1, ri)
n∏

i=0

gi(yi|xi, ri). (32)

Model (32) can be thought of as an HMC model (13), in

which fi|i−1 and gi now depend on the realization of a discrete

Markov Chain {Rn}n≥0 where each Rn takes its values in

{1, · · · ,K}. So now both Xn and Rn are hidden, and as in

section III, we focus on E(f(Xn)|y0:n). As is well known [26]

[27] [4], in a JMSS exact Bayesian filtering is either impossible

(in the general case) or an NP-hard problem (in the linear and

Gaussian case), so one has to use suboptimal techniques and in

particular SMC methods. The goal of this section is twofold.

First, we show that the RB estimates obtained in the previous

section can be adapted for general JMSS model. Next, we

discuss on how specificities of these models (in the sense that

a part of the hidden state is now discrete) lead to other RB

estimates.

A. Bayesian CMC algorithms for non linear JMSS models

Let us first rewrite Θn as

Θn =
∑

r0:n−1,rn

∫
f(xn)p(x0:n−1, r0:n−1,xn, rn|y0:n)dx0:n−1dxn.

In model (32), (Xn, Rn) is a Markov chain and

((Xn, Rn),Yn) is an HMC in which transitions

and likelihoods respectively read p(rn|rn−1)×
fn|n−1(xn|xn−1, rn) and gn(yn|xn, rn); so the

methodology described in Section III can be directly

applied when we partition (X0:n,R0:n) as (X1, X2) with

X1 = (X0:n−1,R0:n−1) and X2 = (Xn, Rn). Let us assume

that an MC approximation of p(x0:n−1, r0:n−1|y0:n) is given

by p̂(x0:n−1, r0:n−1|y0:n) =
∑N

i=1 w̃
i
n−1δxi

0:n−1
,ri

0:n−1

and

(xi
n, r

i
n) ∼ p(xn, rn|x

i
n−1, r

i
n−1,yn). The crude estimate Θ̂n

and the CMC one Θ̃
(Xn,Rn)
n read

Θ̂n(x
1:N
0:n , r1:N0:n )=

N∑

i=1

w̃i
n−1f(x

i
n), (33)

Θ̃(Xn,Rn)
n (x1:N

0:n−1, r
1:N
0:n−1)=

N∑

i=1

w̃i
n−1×

∫
f(xn)p(xn|x

i
n−1, , r

i
n−1,yn)dxn. (34)

(for simplicity f depends on xn, not on rn, but the extension

is straightforward). Let us now adress computational aspects.

Since ((Xn, Rn),Yn) is an HMC with augmented state, the

techniques described in Section III to obtain an approximation

of p(x0:n−1, r0:n−1|y0:n) and to compute the integral in (34)

can still be used, except that the key quantities of Section III,
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SIR-1000 CMC-100 CMC-300 CMC-500 CMC-700 CMC-1000

M = 5 0.2546 0.5077 0.2859 0.2054 0.1615 0.1300

M = 10 0.2546 0.3689 0.1865 0.1138 0.0813 0.0643

M = 20 0.2546 0.2481 0.1242 0.0748 0.0574 0.0452

M = 50 0.2546 0.1270 0.0560 0.0392 0.0273 0.0195

M = 100 0.2546 0.0865 0.0253 0.0166 0.0111 0.0111

M = 200 0.2546 0.0487 0.0172 0.0154 0.0110 0.0041

TABLE II
CRITERION J FOR NON LINEAR AND NON GAUSSIAN MODEL - R = 0.00001. IN THIS CHALLENGING SCENARIO, A FEW NUMBER OF SAMPLES M ARE

SUFFICIENT TO IMPROVE THE SIR BASED ESTIMATE, EVEN WHEN N IS SMALL. THE COMPUTATIONAL TIME OF OUR ESTIMATES IS ALSO GIVEN IN FIG.
3(B).

p(yn|xn−1) and p(xn|xn−1,yn), are now replaced by

p(yn|xn−1, rn−1) =∫∑

rn

p(rn|rn−1)fn|n−1(xn|xn−1, rn)gn(yn|xn, rn)dxn, (35)

p(xn|xn−1, rn−1,yn) ∝∑

rn

p(rn|rn−1)fn|n−1(xn|xn−1, rn)gn(yn|xn, rn) (36)

respectively. All the computational aspects described in para-

graphs III-A up to III-D remain valid (up to the adaptations

given above) so are not further discussed in this section.

B. Specific CMC estimates for JMSS

Throughout section IV the hidden state (Xn, Rn) in aug-

mented dimension contains a discrete component Rn; as we

now see, this feature enables us to propose a number of CMC

estimates which all differ from each other through a partition

(X1, X2) of (X0:n,R0:n). Section IV-B1 discusses partition

X1 = (X0:n−1,R0:n), X2 = Xn; Section IV-B2 discusses

partition X1 = (X0:n,R0:n−1), X2 = Rn; finally Section

IV-B3 focuses on partition X1 = R0:n−1, X2 = Rn, in

the case where a spatial RB decomposition has already been

applied (in particular in linear and Gaussian JMSS).

1) Reducing the computational cost of (34): Instead of

setting X1 = (X0:n−1,R0:n−1), X2 = (Xn, Rn), let us now

set X1 = (X0:n−1,R0:n), X2 = Xn. The CMC estimate Θ̃Xn
n

corresponding to this new partition reads

Θ̃Xn
n (x1:N

0:n−1, r
1:N
0:n )=

N∑

i=1

w̃i
n−1

∫
f(xn)p(xn|x

i
n−1,yn, r

i
n)dxn. (37)

The difference between (37) and (34) comes

from the integral which is computed. In (34),

and for a given sample (xi
n−1, r

i
n−1), one needs

to compute a moment of p(xn|x
i
n−1, r

i
n−1,yn)

∝
∑

rn
p(rn|rn−1)p(yn|xn−1, rn)p(xn|xn−1,yn, rn) and so

moments of p(xn|xi
n−1,yn, rn) for each rn ∈ {1, · · · ,K};

by contrast, in (37), we only need to compute a moment

according to p(xn|x
i
n−1,yn, r

i
n), where rin is the particle

which has just been sampled. In summary, due to partitions

and the discussion in §II-A, Θ̃
(Xn,Rn)
n is preferable to Θ̃Xn

n

but requires an extra computational cost.

2) Reducing the variance of weights in a general

SMC approach: In this section, we show that it is al-

ways possible to reduce the variance of the weights of

any SMC method in non-linear JMSS by using parti-

tion X1 = (X0:n,R0:n−1) and X2 = Rn. Let us

briefly recall the principle of SMC methods based on

the SIR algorithm. Starting from an MC approximation

{(xi
0:n−1, r

i
0:n−1), w

i
n−1}

N
i=1 of p(x0:n−1, r0:n−1|y0:n−1), an

MC approximation of p(x0:n, r0:n|y0:n) is obtained by sam-

pling (xi
n, r

i
n) ∼ qSIR(xn, rn|x

i
0:n−1, r

i
0:n−1,yn); the associ-

ated estimate Θ̂SIR
n reads

Θ̂SIR
n (x1:N

0:n−1, r
1:N
0:n ) =

N∑

i=1

wu,i
n∑N

j=1 w
u,j
n

f(xi
n),

wu,i
n = wi

n−1

p(rin|r
i
n−1)fn|n−1(x

i
n|r

i
n,x

i
n−1)gn(yn|x

i
n, r

i
n)

qSIR(xi
n, r

i
n|x

i
0:n−1, r

i
0:n−1,yn)

.

Now if we want to build the CMC estimate associated to

partition X1 = (X0:n,R0:n−1) and X2 = Rn, we need

an approximation of p(x0:n, r0:n−1|y0:n). This approximation

can be also obtained via importance sampling; starting again

from the MC approximation {(xi
0:n−1, r

i
0:n−1), w

i
n−1} of

p(x0:n−1, r0:n−1|y0:n−1), and sampling xi
n according to q(xn|

xi
0:n−1, r

i
0:n−1,yn) =

∑
rn

qSIR(xn, rn| x
i
0:n−1, r

i
0:n−1,yn),

the CMC estimate Θ̃Rn
n associated to this partition reads

Θ̃Rn
n (x1:N

0:n−1, r
1:N
0:n−1) =

n∑

i=1

wRB,u,i
n∑N

j=1 w
RB,u,j
n

f(xi
n),

wRB,u,i
n = wi

n−1×∑
rn

p(rn|r
i
n−1)fn|n−1(x

i
n|rn,x

i
n−1)gn(yn|x

i
n, rn)

q(xn|xi
0:n−1, r

i
0:n−1,yn)

.

It is easy to check that var(wRB,u,i
n ) ≤ var(wu,i

n ); in addition,

using the arguments described in §II-B, Θ̃Rn
n outperforms

Θ̂SIR
n from an asymptotical point of view.

3) Specific CMC estimates for linear and Gaussian JMSS

models: Let us finally focus on linear and Gaussian JMSS

models, i.e. models in which fn|n−1 and gn in (32) read

fn|n−1(xn|xn−1, rn) = N (xn,Fn(rn)xn−1,Q(rn)), (38)

gn(yn|xn, rn) = N (yn,Hn(rn)xn,R
v
n(rn)). (39)

In this model, it is well known that it is possible to apply a

spatial decomposition (see e.g [4]) by writing

Θn =
∑

r0:n

p(r0:n|y0:n)︸ ︷︷ ︸
PF

∫
f(xn) p(xn|r0:n,y0:n)︸ ︷︷ ︸

KF

dxn, (40)

in which p(r0:n|y0:n) is computed via PF, while the integral is

computed exactly for each sample ri0:n via Kalman Filtering

(KF).
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Now we show that a further variance reduction of this

estimate is possible. Indeed (40) coincides with (5), up to

the identification: X1 = R0:n−1, X2 = Rn, f(x1, x2) =
φ(r0:n) =

∫
f(xn)p(xn|r0:n−1, rn,y0:n)dxn, and p(x1, x2)

is the joint pdf

p(r0:n|y0:n) = p(r0:n−1|y0:n)︸ ︷︷ ︸
p(x1)

p(rn|r0:n−1,y0:n)︸ ︷︷ ︸
p(x2|x1)

.

We need to compute both factors (we cannot simply ap-

ply the results of §III-A, because in (32) the marginal

chain (Rn,Yn) is not an HMC, as was (Xn,Yn) in (13)).

Let p̂(r0:n−1|y0:n) =
∑N

i=1 w̃
i
n−1δri

0:n−1

, and let rin ∼

p(rn|r
i
0:n−1,y0:n). Then the Bayesian crude and CMC esti-

mators of Θn respectively read

Θ̂n(r
1:N
0:n−1, r

1:N
n ) =

N∑

i=1

w̃i
n−1(r

1:N
0:n−1)φ(r

i
0:n−1, r

i
n), (41)

Θ̃n(r
1:N
0:n−1) =

N∑

i=1

w̃i
n−1(r

1:N
0:n−1)×

∑

rn

φ(ri0:n−1, rn)p(rn|r
i
0:n−1,y0:n). (42)

Consequently, the computation of Θ̃n in (42) relies on the

computation of p(rn|r
i
0:n−1,y0:n) (φ(ri0:n−1, rn) can be com-

puted by KF for all rn, rn ∈ {1, · · · ,K}) and on an

approximation of p(r0:n−1|y0:n). Let us address this last point.

Starting from an MC approximation of p(r0:n−2|y0:n−1), an

MC approximation of p(r0:n−1|y0:n) can be deduced from

p(r0:n−1|y0:n) ∝ p(r0:n−2|y0:n−1)×

p(rn−1|r0:n−2,y0:n−1)p(yn|r0:n−1,y0:n−1)

via IS. Since the model is linear and Gaussian,

p(yn|r0:n−1,y0:n−1) can be computed via KF from the

Gaussian pdf p(xn−1|r0:n−1,y0:n−1) and so

p(rn−1|r0:n−2,y0:n−1) =

p(yn−1|y0:n−2, r0:n−2, rn−1)p(rn−1|rn−2)

p(yn|y0:n−1, r0:n−1) =
∑

rn
N

. (43)

(here N stands for numerator) is also computable. Conse-

quently, except the MC approximation of p(r0:n−1|y0:n), no

additional approximations are needed to compute Θ̃n in (42).

Note also that the optimal importance distribution (for the

smoothing problem) proportional to p(rn−1| r0:n−2,y0:n−1)
p(yn| r0:n−1,y0:n−1), is computable too. For this importance

distribution weights w̃i
n−1 in (42) become

w̃i
n−1 ∝ w̃i

n−2×∑

rn−1

p(rn−1|r
i
0:n−2,y0:n−1)p(yn|r

i
0:n−2, rn−1,y0:n−1)

and thus do not depend on {rin−1}
N
i=1.

Estimator Θ̃n in (42) can be seen as a (temporal) further RB

step (i.e., X1 = R0:n−1, X2 = Rn) of the already (spatially

partitionned) RB estimator (41) (i.e., X1 = R0:n, X2 = X0:n).

From a computational point of view, Θ̃n can be computed

under the same assumptions as those needed for computing

Θ̂n, at the price of a slight extra computational effort, as we

see from (41) and (42). Indeed, {p(rn|r
i
0:n−1,y0:n)}

K
rn=1 in

(43) have to be computed for both estimators. The difference

is that in the CMC algorithm we directly compute means∑
rn

φ(ri0:n−1, rn)p(rn|r
i
0:n−1,y0:n), which requires running

K KF updating steps per trajectory ri0:n−1, while the crude

estimator first extends each trajectory before computing con-

ditional expectations.

V. BAYESIAN CMC ALGORITHMS FOR MULTI-TARGET

FILTERING

In this final section we adapt CMC from single- to multi-

target filtering. As we shall see in section V-A, multi-object

filtering (see e.g. [28]) essentially reduces to computing Θn =∫
f(xn)vn(xn)dxn in which vn(xn) is now the so-called

Probability Hypothesis Density (PHD), i.e. the a posteriori

spatial density of the expected number of targets given all

measurements. The same difficulties hold as in single-object

filtering: in general, neither PHD vn nor moment Θn can

be computed exactly; so again SMC techniques propagate a

weighted samples approximation {xi
n, w

i
n}

N
i=1 of vn, and Θn

is estimated by
∑N

i=1 w
i
nf(x

i
n). Though in this multi-object

context we do not necessary deal with classical pdf (here∑N
i=1 w

i
n, which in general is different from 1, is an estimator

of the number of targets), the discussion in section II-C still

holds, up to some adaptations. We begin with a brief review of

multi-object filtering and next adapt CMC to the multi-target

framework.

A. A brief review of Random Finite Sets (RFS) based multi-

target filtering

In multi-object filtering we now look for estimating an un-

known number of targets from a set of observations which are

either due to detected targets or are false alarms measurements.

Early solutions [29] [30] include a costly matching mechanism

between targets and observations. Alternately, solutions based

on RFS, which are sets of r.v. with random and time-varying

cardinal (see e.g. [31]), no longer require such a matching

mechanism. The RFS formulation was first used to derive the

multi-object Bayesian filter, which generalizes the classical

single object one [28]. However this filter involves the com-

putation of set integrals of multi-object densities, and cannot in

general be computed in practice (unless the number of targets

is small [32]). Later on, Mahler proposed to propagate a first

order moment of the multi-object density, the so-called PHD

or intensity [28]. Let |X∩S| be the number of objects in RFS

X which belong to region S; then the PHD v(x) is defined

as the spatial density of the expected number of targets, i.e.
∫

S ⊂IRp

v(x) dx = E(|X ∩ S|). (44)

Let now vn(x) be the a posteriori PHD given past measure-

ments Z0:n = {Z0, · · · , Zn} (be they due to detected targets

or to false alarms), where Zk is the set of measurements

available at time k. Let ps,n(.) (resp. pd,n(.)) be the prob-

ability of survival (resp. of detection) at time n which can

depend on state xn−1 (resp. on xn); κn(.) (resp. γn(.)) the
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intensity of the false alarms measurements (resp. of the birth

targets) at time n; and let us assume that the predicted and

clutter processes are Poisson, and that each target evolves and

generates observations independently of one another. Then vn
is propagated as follows (we assume for simplicity that there

is no spawning) [28] [31]:

vn|n−1(xn)=

∫
ps,n(xn−1)fn|n−1(xn|xn−1)vn−1(xn−1)dxn−1

+ γn(xn), (45)

vn(xn) = [1− pd,n(xn)] vn|n−1(xn)

+
∑

z∈Zn

pd,n(xn)gn(z|xn)vn|n−1(xn)

κn(z) +
∫
pd,n(xn)gn(z|xn)vn|n−1(xn) dxn

. (46)

B. Deriving a Bayesian CMC PHD estimator

The problem we address is to compute moment Θn =∫
f(xn)vn(xn)dxn (typically, we shall take either f(xn) = 1,

in order to compute an estimate of the number of targets, or

f(xn) = 1S(xn), where S is some region of interest). From

now on we assume that pd,n does not depend on xn. Plugging

(45) in (46), the PHD at time n can be written as

vn(xn) =

4∑

i=1

vin(xn) (47)

where

v1n(xn) = [1− pd,n]

∫
ps,n(xn−1)×

fn|n−1(xn|xn−1)vn−1(xn−1)dxn−1, (48)

v2n(xn) = [1− pd,n] γn(xn),

v3n(xn) =
∑

z∈Zn

pd,ngn(z|xn)
∫
ps,n(xn−1)

Bn(z)
×

fn|n−1(xn|xn−1)vn−1(xn−1)dxn−1, (49)

v4n(xn) =
∑

z∈Zn

pd,ngn(z|xn)γn(xn)

Bn(z)
,

and where Bn(z) = κn(z) +B1
n(z) +B2

n(z), with

B1
n(z)=

∫
pd,ngn(z|xn)

∫
ps,n(xn−1)×

fn|n−1(xn|xn−1)vn−1(xn−1)dxn−1dxn

= pd,n

∫
ps,n(xn−1)p(z|xn−1)vn−1(xn−1)dxn−1,

and B2
n(z) =

∫
pd,ngn(z|xn)γn(xn)dxn. Term v1n (resp. v2n)

is due to non-detected persistent (resp. birth) targets, while v3n
(resp. v4n) is due to detected persistent (resp. birth) targets.

From (47) we see that

Θn =

4∑

i=1

∫
f(xn)v

i
n(xn)dxn

︸ ︷︷ ︸
Θi

n

, (50)

and we now consider whether one can adapt the CMC method-

ology of section II-C to any of the moments Θi
n.

First, v2n(xn) and v4n(xn) do not depend on vn−1(xn−1) so

we compute (or estimate via crude MC) Θ2
n and Θ4

n, whence

Θ̂2
n and Θ̂4

n. On the other hand, the computation of v1n(xn)
and of v3n(xn) depends on vn−1(xn−1). Now the PHD is not

a pdf (it is a positive function, but remember from (44) that it

does not sum to 1), and weights {wi
n−1}

Ln−1

i=1 may depend on

variables different from x
1:Ln−1

n−1 (but which are known at time

n− 1). But these differences do not impact the discussion of

section II-C which can still be used in this context. Indeed, we

have fn|n−1(xn|xn−1)gn(z|xn) = p(xn|xn−1, z)p(z|xn−1),
so Θ1

n and Θ3
n can be rewritten as

Θ1
n=[1− pd,n]

∫
E(f(Xn)|xn−1)×

[ps,n(xn−1)vn−1(xn−1)] dxn−1,

Θ3
n=
∑

z∈Zn

∫
E(f(Xn)|xn−1, z)×

[
pd,nps,n(xn−1)p(z|xn−1)vn−1(xn−1)

Bn(z)

]
dxn−1.

Let v̂n−1 =
∑Ln−1

i=1 wi
n−1δxi

n−1

and γ̂n =
∑Lγn

i=1 wi
γn
δxi

γn

be MC approximations of vn−1(xn−1) and of γn(xn),
respectively. Let us start with Θ1

n. Even if it is not a

pdf, factor ps,n(xn−1)vn−1(xn−1) within brackets plays

the role of p(x1) in (6), and can be approximated by∑Ln−1

i=1 w1,i
n δxi

n−1

where w1,i
n = [1− pd,n] ps,n(x

i
n−1)w

i
n−1.

So the crude MC and Bayesian CMC estimators

of Θ1
n are respectively Θ̂1,n =

∑Ln−1

i=1 w1,i
n f(xi

n)

and Θ̃1,n =
∑Ln−1

i=1 w1,i
n E(f(xn)| xi

n−1) in which

xi
n ∼ fn|n−1(xn|x

i
n−1). Let us next consider Θ3

n. For each

measurement z ∈ Zn, factor
pd,nps,n(xn−1)p(z|xn−1)vn−1(xn−1)

Bn(z)

within brackets plays the role of p(x1) in (6), and

can be approximated by
∑Ln−1

i=1 w3,i
n (z)δxi

n−1

where

w3,i
n (z) = pd,nps,n(x

i
n−1)p(z|x

i
n−1)w

i
n−1/B̃n(z)

and B̃n(z) is an MC estimator of B(z). So the

crude MC and Bayesian CMC estimators of Θ3
n are

respectively Θ̂3
n =

∑
z

∑Ln−1

i=1 w3,i
n (z)f(xz,i

n ) and

Θ̃3
n =

∑
z∈Zn

∑Ln−1

i=1 w3,i
n (z)E(f(Xn)|xi

n−1, z) in which

xz,i
n ∼ p(xn|x

i
n−1, z).

In summary, the crude MC PHD estimator Θ̂n of Θn is

Θ̂n =
∑4

i=1 Θ̂
i
n, while our Bayesian CMC PHD estimator

Θ̃n is a sum of two crude MC and two Bayesian CMC

estimators: Θ̃n = Θ̃1
n+Θ̂2

n+Θ̃3
n+Θ̂4

n. Since Θ̃1
n and Θ̃3

n are

computed from the same MC approximation of vn−1(xn−1),

Θ̃n = E(Θ̂n|{x
i
n−1}

Ln−1

i=1 , {xi
γn
}
Lγn

i=1 , Zn), so Θ̃n outperforms

Θ̂n.

C. Computing the CMC PHD filter Θ̃n in practice

In the multi-target filter problem, we look for computing an

estimator of the number of targets and of multi-target states.

From (44), an estimator of the number of targets is given by

Ñn=

Ln−1∑

i=1

w1,i
n +

∑

z∈Zn

Ln−1∑

i=1

w3,i
n (z)+

Lγn∑

i=1

w2,i
n +

∑

z∈Zn

Lγn∑

i=1

w4,i
n (z).

(51)

The procedure to extract persistent targets consists in

looking for local maxima of
∑Ln−1

i=1 w1,i
n p(xn|x

i
n−1) +
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∑
z∈Zn

∑Ln−1

i=1 w3,i
n (z)p(xn|x

i
n−1, z). For birth targets, this

procedure cannot be used if the PHD due to birth targets was

computed via an MC approximation. One can use clustering

techniques [32], or the procedure described in [33], which con-

sists in looking for measurements z such that
∑Lγn

i=1 w4,i
n (z)

is above a given threshold (typically 0.5) (this procedure can

also be used for persistent targets); then an estimator of the

state associated to z is given by
∑Lγn

i=1 w4,i
n (z)xi

γn
. However,

birth targets become persistent targets at the next time step;

so their extraction becomes easy at the next iteration since an

SMC extraction procedure can be avoided.

Let us now detail some applications of the CMC-

PHD filter. We first assume that fn|n−1(xn|xn−1) =
N (xn;Fnxn−1;Qn), gn(z|xn) = N (z;Hnxn;Rn), and

that γn is a Gaussian mixture (GM), i.e. that γn(xn) =∑Nγn

i=1 wi
γn
N (xn;m

i
γn
; Pi

γn
). For such models a GM imple-

mentation has been proposed [34], which consists in propagat-

ing a GM approximation of PHD vn via (45)-(46). The mixture

grows exponentially due to the summation on the set of

measurements in (46), so pruning and merging approximations

are necessary. In addition, this implementation requires that

pd,n and ps,n are constant (or possibly GM [34]). In our

algorithm we do not need to make any assumption about

ps(xn−1). For this model B2
n(z) is directly computable, and

the Bayesian CMC procedure for estimating the number of

targets and extracting the states is valid since p(xn|xn−1, z)
and p(z|xn−1) are computable. Finally, in the case where

ps(xn−1) is constant, we have at our disposal three imple-

mentations of the PHD filter: the GM one [34], the SMC one

[32] and our Bayesian CMC one. These three implementations

will be compared in section V-D below.

Now, if γn is not a GM our method remains valid since

Θ2,n, Θ4,n and B2
n(z) can be computed via an MC approxi-

mation; the GM structure for persistent targets is kept. Finally

in non linear models, the approximation techniques developed

in paragraphs III-C and III-D can still be used in this context.

In particular, the local linearization and MC methods can

be used but require to compute quantities of interest for all

measurements z in Zn.

D. Simulations

We now compare our Bayesian CMC PHD estimator to

alternative implementations of the PHD filter. The MSE cri-

terion used previously is not appropriate in the multi-target

context: since the number of targets evolves, a performances

criterion should take into account an estimator of the number

of targets and one of their states. So in this section we will

use the optimal subpattern assignment (OSPA) distance [35],

which is a classical tool for comparing multi-target filtering

algorithms. Let X = {x1, ..., xm} and Y = {y1, ..., yn} be

two finite sets, which respectively represent the estimated and

true sets of targets. For 1 ≤ p < +∞ and c > 0, let

d(c)(x, y) = min(c, ||x− y||) (||.|| is the Euclidean norm) and

let Πn be the set of permutations on {1, 2, ..., n}. The OSPA

metric is defined by

d
c

p(X,Y )
∆
=

(
1

n

(
min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

)) 1

p

if m ≤ n, and d
c

p(X,Y )
∆
= d

c

p(Y,X) if m > n. The

term min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p represents the localization error,

while the second term represents the cardinality error. We set

p = 2 and c = 100.

We focus on a linear and Gaussian model, in which the GM-

PHD is used as a benchmark solution, and a Gaussian model

with range and bearing measurements. So we compare the

GM-PHD, the SMC-PHD and our Bayesian CMC-PHD filters

in the first scenario and the SMC-PHD and the approximated

CMC-PHD filters in the second one. We track the position

and velocity of the targets so xn = [px, ṗx, py, ṗy]
T
n . Let also

fn|n−1(xn| xn−1) = N (xn;Fnxn−1,Qn) and gn(zn|xn) =
N (zn;Hnxn,Rn) in the linear case or gn(zn|xn) = N (zn;

[atan(py/px),
√

p2x + p2y]
T ,Rrb

n ) in the non linear one. We

set Fn = I2 ⊗

[
1 T
0 1

]
, Rrb

n =

[
σ2
b 0
0 σ2

r

]
, Qn = σ2

vI2 ⊗[
T 3

3
T 2

2
T 2

2 T

]
, Hn =

[
1 0 0 0
0 0 1 0

]
, Rn = σ2

zI2.

We compare the SMC-PHD estimator to our Bayesian CMC

one in the case where both algorithms use the transition pdf

fn|n−1(xn|xn−1) (remember that in our approach, we need to

propagate a discrete approximation of the PHD, even if it not

used for computing an estimator of the number of targets).

We take T = 2, σv = 3 but σz = 0.3 or σb = 0.002 and

σr = 0.06, which means that likelihood gn(z|xn) is sharp;

since the transition pdf does not take into account available

measurements, it is difficult to guide particles into promising

regions, so this experimental scenario is challenging for the

SMC-PHD implementation. Particles are initialized around the

measurements [33]. In the pure SMC implementation, we use

Nb = 50 particles per newborn target and N = 200 particles

per persistent target, while for the Bayesian CMC we only

use Nb = 20 particles per newborn target, N = 20 particles

per persistent target and possibly M = 10 if the local MC

method is required. The probability of detection is pd,n = 0.95
and that of survival ps,n = 0.98, for all n, 1 ≤ n ≤ 100,

and we generate 10 false alarm measurements (in mean). We

consider a scenario with 6 targets which appear either at n = 0,

n = 20 or n = 50. We also test the GM implementation

in which Tp = 10−5 for the pruning threshold, Tm = 4m
for the merging threshold and we keep at most Nmax = 100
Gaussians.

The OSPA distances for both scenarios are displayed in

Figure 4. The Bayesian CMC approach outperforms the SMC

one and copes with the issue of guiding particles in promising

regions. Even if we use the transition density for getting a

discrete approximation of vn−1, the Bayesian CMC approach

provides a correct estimate of the number of targets, by

contrast to the SMC one in which the new set {xi
n, w

i
n}

Ln

i=1

is used to deduce a discrete approximation of vn, then an

estimate of the number of targets. In other words, even if
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v̂n−1 is poor, the CMC estimator performs well and is close

to the GM based one.
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(b) range bearing scenario

Fig. 4. Comparison of the Bayesian CMC and SMC estimates for multi-object
filtering. Linear and Gaussian scenario (a): the CMC estimate is close to the
GM one - (b) range bearing tracking scenario. The Bayesian CMC (resp.
SMC) implementation uses Nb = 20 (resp. Nb = 50) particles for birth
objects, N = 20 (resp. Nb = 200) for persistent ones. The CMC estimate
relies on a local approximation for scenario (b): we set M = 10 (which gives
a total of 200 particles for persistent objects), which is sufficient to improve
the classical PF.

VI. CONCLUSION

In this paper we proposed a CMC estimator of a moment

of interest in a Bayesian filtering context. Our method relies

on the recursive nature of SMC algorithms and can be seen

as a temporal, rather than spatial, RB-PF procedure. We next

showed that a CMC estimator can indeed be computed, or

approximated efficiently, in a variety of Markovian models,

including HMC or JMSS. In particular, local MC implemen-

tations have been discussed and evaluated in terms of variance

reduction vs. computational cost. Finally we adapted Bayesian

CMC to multi-target filtering, and showed that our CMC PHD

estimator has interesting practical features as compared to

alternate (SMC or GM) implementations of the PHD filter.
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