On the computational complexity of algebraic numbers : the Hartmanis-Stearns problem revisited - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2020

On the computational complexity of algebraic numbers : the Hartmanis-Stearns problem revisited

Résumé

— We consider the complexity of integer base expansions of algebraic irrational numbers from a computational point of view. We show that the Hartmanis–Stearns problem can be solved in a satisfactory way for the class of multistack machines. In this direction, our main result is that the base-b expansion of an algebraic irrational real number cannot be generated by a deterministic pushdown automaton. We also confirm an old claim of Cobham proving that such numbers cannot be generated by a tag machine with dilation factor larger than one.
Fichier principal
Vignette du fichier
HartmanisStearns12:01:2016.pdf (287.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01254293 , version 1 (12-01-2016)

Identifiants

Citer

Boris Adamczewski, Julien Cassaigne, Marion Le Gonidec. On the computational complexity of algebraic numbers : the Hartmanis-Stearns problem revisited. Transactions of the American Mathematical Society, 2020, 373, pp.3085-3115. ⟨10.1090/tran/7915⟩. ⟨hal-01254293⟩
733 Consultations
403 Téléchargements

Altmetric

Partager

More