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ON THE COMPUTATIONAL COMPLEXITY OF

ALGEBRAIC NUMBERS: THE HARTMANIS–STEARNS

PROBLEM REVISITED

by

Boris Adamczewski, Julien Cassaigne & Marion Le Gonidec

Abstract. — We consider the complexity of integer base expansions of alge-
braic irrational numbers from a computational point of view. We show that
the Hartmanis–Stearns problem can be solved in a satisfactory way for the
class of multistack machines. In this direction, our main result is that the
base-b expansion of an algebraic irrational real number cannot be generated
by a deterministic pushdown automaton. We also confirm an old claim of
Cobham proving that such numbers cannot be generated by a tag machine
with dilation factor larger than one.

1. Introduction

An old source of frustration for mathematicians arises from the study of
integer base expansions of classical constants like

√
2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 · · ·

or
π = 3.141 592 653 589 793 238 462 643 383 279 502 884 197 · · ·

While these numbers admit very simple geometric descriptions, a close look
at their digital expansion suggest highly complex phenomena. Over the years,
different ways have been envisaged to formalize this old problem. This reoc-
curring theme appeared in particular in three fundamental papers using: the
language of probability after É. Borel [17], the language of dynamical systems
after Morse and Hedlund [35], and the language of Turing machines after
Hartmanis and Stearns [29]. Each of these points of view leads to a different
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assortment of challenging conjectures. As its title suggests, the present paper
will focus on the latter approach. It is addressed to researchers interested
both in Number Theory and Theoretical Computer Science. In this respect,
we took care to make the paper as self-contained as possible and hopefully
readable by members from these different communities.

After the seminal work of Turing [43], real numbers can be rudely divided
into two classes. On one side we find computable real numbers, those whose
base-b expansion can be produced by a Turing machine, while on the other side
lie uncomputable real numbers which will belong for ever beyond the ability of
computers. Note that, though most real numbers belong to the second class,
classical mathematical constants are usually computable. This is in particular
the case of any algebraic number. However, among computable numbers, some
are quite easy to compute while others seem to have an inherent complexity
that make them difficult to compute. In 1965, Hartmanis and Stearns [29]
investigated the fundamental question of how hard a real number may be to
compute, introducing the now classical time complexity classes. The notion of
time complexity takes into account the number T (n) of operations needed by
a multitape deterministic Turing machine to produce the first n digits of the
expansion. In this regard, a real number is considered all the more simple as
its base-b expansion can be produced very fast by a Turing machine. At the
end of their paper, Hartmanis and Stearns suggested the following problem.

Problem HS. — Do there exist irrational algebraic numbers for which the
first n binary digits can be computed in O(n) operation by a multitape deter-
ministic Turing machine?

Let us briefly recall why Problem HS is still open and likely uneasy to
solve. On the one hand, all known approaches to compute efficiently the
base-b expansion of algebraic irrational numbers intimately relate on the cost
of the multiplication M(n) of two n-digits numbers (see for instance [18]).

This operation is computable in quasilinear time (1) but to determine whether
one may have M(n) = O(n) or not remains a famous open problem in this
area. On the other hand, a negative answer to Problem HS (2) would contain
a powerful transcendental statement, a very special instance of which is the
transcendence of the following three simple irrational real-time computable
numbers:

∞∑

n=1

1

2n!
,

∞∑

n=1

1

2n2
and

∞∑

n=1

1

2n3
·

1. This means computable in O(n log1+ε
n) operations for some ε.

2. As observed in [26], this may be the less surprising issue.
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Of course, for the first one, Liouville’s inequality easily does the job. But the
transcendance of the second number only dates back to 1996 [16, 28] and
its proof requires the deep work of Nesterenko about algebraic independence
of values of Eisenstein’s series [37]. Finally, the transcendence of the third
number remains unknown.

In 1968, Cobham [26] (see also [24, 25]) was the first to consider the re-
striction of the Hartmanis-Stearns problem to some classes of Turing machines.
The model of computation he investigated is the so-called Tag machine. The
outputs of such machines correspond to the class of morphic sequences, a
well-known object of study in combinatorics on words and symbolic dynamics
(see for instance [12, 40, 41]). In his paper, Cobham stated two main theo-
rems without proof and only gave some hints that these statements should be
deduced from a general transcendence method based on some functional equa-
tions, now known as Mahler’s method. His first claim was finally confirmed by
the first author and Bugeaud [3], but using a totally different approach based
on a p-adic version of the subspace Theorem (see [3, 8]) (3).

Theorem AB (Cobham’s first claim). — The base-b expansion of an
algebraic irrational number cannot be generated by a uniform tag machine or,
equivalently, by a finite automaton.

Remark 1.1. — Theorem AB actually refers to two conceptually quite differ-
ent models of computation: uniform tag machines and finite automata. There
are two natural ways a multitape deterministic Turing machine can be used to
define computable numbers. First, it can be considered as enumerator, which
means that the machine will produce one by one all the digits, separated by
a special symbol, on its output tape. Problem HS originally referred to the
model of enumerators. The other way, referred to as Turing transducer, con-
sists in feeding to the machine some input representing a positive integer n
and asking that the machine compute the n-th digit on its output tape. In
Theorem AB, uniform tag machines are enumerators while finite automata are
used as transducers (4). The fact that these two models are equivalent is due
to Cobham [27].

Theorem AB is the main contribution up to date toward a negative solution
to Problem HS. In this paper, we show that the approach developed in [3, 8]
leads to two interesting generalizations of this result. First, we revisit the

3. Very recently, some advances in Mahler’s method [39, 10] allow to complete the proof
originally envisaged by Cobham.

4. Note that, used as enumerators, finite automata can only produce eventually peri-
odic sequences of digits and thus rational numbers. In contrast, used as transducers, finite
automata output the interesting class of automatic sequences.
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Hartmanis–Stearns problem as follows: instead of some time constraint, we
put some restriction based on the way the memory may be stored by Turing
machines. This leads us to consider a classical computation model called mul-
tistack machines. The classical finite automaton of Theorem AB corresponds
to a stack machine with no stack, that is with a strictly finite memory only
stored in the finite state control. The one-stack model is actually equivalent
to another famous device: the deterministic pushdown automaton. It is of
great importance on the one hand for theoretical aspects because of Chom-
sky’s hierarchy [23] in formal language theory and on the other for practical
applications, especially in parsing (see [30]). In this direction, our main re-
sult is Theorem 2.3: no algebraic irrational can be generated by a one-stack
machine. Incidentally, this result turns out to provide a complete picture con-
cerning multistack machines (see the discussion at the end of Section 2.1).
Our second generalization of Theorem AB concerns the model of tag machine.
In this direction, Theorem 2.6 confirms Cobham’s second claim: no algebraic
irrational can be generated by a tag machine with dilation factor larger than
one. The problem for tag machines with dilation factor equal to one remains
open.

This paper is organized as follows. Our two main results are stated in
Section 2, where multistack machines and tag machines are also introduced.
The useful combinatorial transcendence criterion of [8], on which our results
are based, is recalled in Section 3. Sections 4 and 5 are then respectively
devoted to the proofs of Theorems 2.3 and 2.6. We also recall the link between
uniform tag machines, morphisms, and finite automata in Section 5. Though
written in different terms, we stress that the Thèse de Doctorat of Julien Albert
[11] contains results closely related to Theorem 2.6. In order to provide a self-
contained proof of Theorem 2.6, we complete and reprove with permission
some content of [11] in Section 5. Finally, Section 6 is devoted to concluding
remarks regarding factor complexity, some quantitative aspects of this method,
and continued fractions.

2. Main results

In this section, we introduce multistack machines and tag machines and
state our two main results: Theorems 2.3 and 2.6.

All along the paper, we will use the following notation. An alphabet A is
a finite set of symbols, also called letters. A finite word over A is a finite
sequence of letters in A or equivalently an element of A∗, the free monoid
generated by A. The length of a finite word W , that is the number of symbols
composing W , is denoted by |W |. We will denote by ǫ the empty word, that
is the unique word of length 0. If a is a letter and W a finite word, then |W |a
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stands for the number of occurrences of the letter a in W . Let k ≥ 2 be a
natural number. We let Σk denote the alphabet {0, 1, . . . , k − 1}. Given a
positive integer n, we set 〈n〉k := wrwr−1 · · ·w1w0 for the base-k expansion of
n, which means that n =

∑r
i=0 wik

i with wi ∈ Σk and wr 6= 0. Note that by
convention 〈0〉k := ǫ. Conversely, if w := w1 · · ·wr is a finite word over the
alphabet Σk, we set [w]k :=

∑r
i=0wr−ik

i. The usual notations {x}, ⌊x⌋, and
⌈x⌉ respectively stand for the fractional part, the floor, and the ceil of the real
number x.

2.1. Multistack machines. — For a formal definition of Turing machines
the reader is referred to any of the classical references such as [30, 34, 42].
We will content ourself with the following informal definition of multistack
machines but a formal definition of the k-pushdown automaton (equivalent to
the model of one-stack machine) will be provided in Section 4.

When used as a transducer, a multitape Turing machine can be divided into
three parts:

• The input tape, on which there is a read-only head.

• The internal part, which consists in a finite control and the mem-
ory/working tapes (several tapes with one head per tape).

• The output tape on which there is a write-only head and from which
nothing can be erased.

w1 w2 w3 w4 w5

s1 s2 s3 s4 s5 s6 s7

q1 q2 q3 q4 q5 q6

r1 r2 r3 r4

Q

a(w)

Input tape

F
in
it
e
co
n
tr
o
l

Working tapes

Output tape

Figure 2.1. A multitape Turing machine

Furthermore, the machine is said to be one-way or on-line if the head of the
input tape cannot go to the left. A (multi)stack machine is a one-way multi-
tape deterministic Turing machine in which the memory is simply organized
by stacks. This means that the head of each working/memory tape is always



6 BORIS ADAMCZEWSKI, JULIEN CASSAIGNE & MARION LE GONIDEC

located on the rightmost symbol so that the tape can be though of simply as
a stack with a head on the topmost symbol.

w1 w2 w3 w4 w5

s1 s2 s3 s4 s5 s6 s7

q1 q2 q3 q4 q5 q6

r1 r2 r3 r4

Q

a(w)

Input tape
F
in
it
e
co
n
tr
o
l

Working tapes

Output tape

Figure 2.2. A stack machine

Let us briefly describe how such a machine operates. A move on a multistack
machine M is based on:

• The current state of the finite control.

• The input symbol read.

• The top stack symbol on each of its stacks.

Based on these data, a move of the multistack machine consists in:

• Change the finite state control to a new state.

• For each stack, replace the top symbol by a (possibly empty) string of
stack symbols. The choice of this string of symbols only depends on the
input symbol read, the state of the finite control and on the top symbol
of each stack.

• Move the head of the input tape to the right.

M can also possibly perform an ǫ-move: a move for which the head of the
input tape does not move. The possibility of such a move depends only on
the current state of the finite control and the top stack symbol on each of the
stacks. To make the machine deterministic, a move is uniquely determined by
the knowledge of the input symbol read, the state of the finite control and on
the top symbol of each stack.

Remark 2.1. — After reading a symbol of an input word w, the finite state
control ofM could have reached a state q from which ǫ-moves are still possible.
In that case, we ask M to perform all possible ǫ-moves before reading the
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next input symbol. Also, a multistack machine is not allowed to stop its
computation in a state from which an ǫ-move is possible.

After reading an input word w, M produces a output symbol a(w) that
belongs to a finite output alphabet. The symbol a(w) depends only on the
state of the finite control and the top symbol of each stack. Given an integer
k ≥ 2, a k-multistack machine is a multistack machine that takes as input the
base-k expansion of an integer (that is, for which the input alphabet is Σk).
In that case, the sequence a(〈n〉k)n≥0 is called the output sequence produced
by M.

Definition 2.2. — A real number ξ can be generated by a k-multistack ma-
chine M if, for some integer b ≥ 2, one has 〈{ξ}〉b = 0.a1a2 · · · , where (an)n≥1

corresponds to the output sequence produced by M. A real number can be
generated by a multistack machine if it can be generated by a k-multistack
machine for some k.

A stack machine with no stack has a strictly finite memory which is all
contained in the finite state control. Such a machine simply corresponds to a
finite automaton used as a transducer. Theorem AB can thus be rephrased as
follows: an algebraic irrational number cannot be generated by a zero-stack
machine. A stack machine with one stack corresponds to another famous
device: the deterministic pushdown automaton. We prove here the following
generalization of Theorem AB.

Theorem 2.3. — An algebraic irrational real number cannot be generated by
a one-stack machine, or equivalently, by a determistic pushdown automaton.

For instance, this gives the transcendence of binary number

ξ1 := 1.110 111 001 101 000 011 111 101 110 100 000 010 110 · · ·

whose n-th binary digit is 1 if the difference between the number of occurrences
of the digits 0 and 1 in the binary expansion of n is at most 1, and is 0
otherwise.

Theorem 2.3 actually provides a complete picture concerning the Hartmanis-
Stearns problem for multistack machines. Indeed, it is well-known (see for
instance [30]) that stack machines with two stacks or more have the same
power as general Turing machines. In consequence, any computable number
can be generated by a two-stack machine, while, following Theorem 2.3, at
least two stacks are needed to generate an algebraic irrational number.
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2.2. Tag machines. — As already mentioned in the introduction, Cobham
suggested in 1968 to restrict Problem HS to a special class of Turing machines
called tag machines. They form a class of interesting two-tape restricted Turing
machines whose outputs, as described in Section 5, precisely correspond to the
well-known class of morphic sequences. Contrary to the model of multistack
machines described before, tag machines are enumerators. Furthermore, it is
not hard to see that they compute their output sequence in real-time.

A tag machine is a two-tape enumerator that can be described as follows.
In internal structure, a tag machine T has:

• A finite state control.

• A tape on which operate a read-only head R and a write-only head W.

In external structure, M has:

• An output tape on which operates a write-only head W
′ and from which

nothing can be erased.

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

b σ(b)

ϕ(b)

R W

W
′

Q

Input tape

Finite control

Output tape

Figure 2.3. A tag machine

Let us briefly describe how a tag machine operates. The finite state control
of T contains some basic information: a finite set of symbols A together with
a special starting symbol a, so that with every element b of A is associated
a finite word σ(b) over A and a symbol ϕ(b) that belongs to a finite set of
symbols B. When the computation starts, R and W are both positioned on
the leftmost square of the (blank) tape and W proceeds writing the word σ(a),
one symbol per square. Then both head R and W move one square right, R
scans the symbol written in the corresponding square, say b, and W proceeds
writing the word σ(b). Again both heads move one square to the right and
the process keeps on for ever unless R eventually catches W in which case the
machine stops. Meanwhile, each time R reads a symbol b on the internal tape,
W

′ writes the symbol ϕ(b) on the output tape and moves one square right.
Each symbol written on the output tape is thus irrevocable and cannot be
erased in the process of computation. The output sequence produced by T is



9

the sequence of symbols written on its output tape. As we will see in Section
5, a practical and formal definition of Tag machine can be given in terms of
morphisms of free monoids.

Definition 2.4. — A real number ξ can be generated by a tag machine T if,
for some integer b ≥ 2, one has 〈{ξ}〉b = 0.a1a2 · · · , where (an)n≥1 corresponds
to the output sequence produced by T .

Cobham [26] introduced the following interesting quantity which measures
the rate of production of symbols by a tag machine.

Definition 2.5. — The (minimum) dilation factor of a tag machine T is
defined by

d(T ) = lim inf
n→∞

W(n)

n
,

where W(n) denotes the position of the write-only head W of T when the
read-only head R occupies the n-th square of the internal tape.

A tag machine is called uniform if for each symbol b of its internal alphabet,
the word σ(b) has the same length. It is easy to see that uniform tag machines,
or equivalently finite automata used as transducers (see Section 5), all have
dilation factor at least two. The following generalization of Theorem AB was
conjectured by Cobham in 1968.

Theorem 2.6 (Cobham’s second claim). — The base-b expansion of an
algebraic irrational number cannot be generated by a tag machine with dilation
factor larger than one.

For instance, this implies the transcendence of the ternary number

ξ2 := 0.021 201 220 210 122 202 120 120 210 122 220 212 122 · · ·

whose ternary expansion is generated by the tag machine defined by σ(a) =
acb, σ(b) = abc, σ(c) = c, ϕ(a) = 0, ϕ(b) = 1, and ϕ(c) = 2.

Cobham claimed that Mahler’s method only applied when d(T ) > 1. We
note that our approach, which follows a totally different way, suffers from the
same limitation. In particular, it does not imply the transcendence of the

binary number
∞∑

n=1

1

2n2
. We recall that this number can be generated by a tag

machine with dilation factor 1. Such a tag machine is defined by: σ(a) = ab,
σ(b) = ccb, σ(c) = c, ϕ(a) = ϕ(c) = 0, and ϕ(b) = 1.
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3. A combinatorial transcendence criterion

In this section, we recall the fundamental relation between Diophantine
approximation and repetitive patterns occurring in integer base expansions of
real numbers.

Let A be an alphabet and W be a finite word over A. For any positive
integer k, we write W k for the word

W · · ·W︸ ︷︷ ︸
k times

(the concatenation of the word W repeated k times). More generally, for any

positive real number x, W x denotes the word W ⌊x⌋W ′, where W ′ is the prefix
of W of length ⌈{x}|W |⌉. The following natural measure of periodicity for
infinite words was introduced in [4] (see also [1, 9]).

Definition 3.1. — The Diophantine exponent of an infinite word a is defined
as the supremum of the real numbers ρ for which there exist arbitrarily long
prefixes of a that can be factorized as UV α, where U and V are two finite
words (U possibly empty) and α is a real number such that

|UV α|
|UV | ≥ ρ.

The Diophantine exponent of a is denoted by dio(a).

Of course, for any infinite word a one has the following relation

1 ≤ dio(a) ≤ +∞.

Furthermore, dio(a) = +∞ for an eventually periodic word a, but the con-
verse is not true. There is some interesting interplay between the Diophantine
exponent and Diophantine approximation, which is actually reponsible for the
name of the exponent. Let ξ be a real number whose base-b expansion is
0.a1a2 · · · . Set a := a1a2 · · · . Let us assume that the word a begins with a
prefix of the form UV α. Set q = b|U |(b|V | − 1). A simple computation shows
that there exists an integer p such that

〈p/q〉b = 0.UV V V · · · .
Since ξ and p/q have the same first |UV α| digits in their base-b expansion, we
obtain that ∣∣∣∣ξ −

p

q

∣∣∣∣ <
1

b|UV α|

and thus

(3.1)

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

qρ
,
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where ρ = |UV α|/|UV |.
We do not claim here that p/q is written in lowest terms. Actually, it may

well happen that the gcd of p and q is quite large but (3.1) still holds in that
case. By Definition 3.1, it follows that if dio(a) = µ, then for every ρ < µ,
there exists infinitely many rational numbers p/q such that

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

qρ
·

Note that when dio(a) < 2, such approximations look quite bad, for the exis-
tence of much better ones is ensured by the theory of continued fractions or by
Dirichlet pigeonhole principle. Quite surprisingly, the inequality dio(a) > 1 is
already enough to conclude that ξ is either rational or transcendental. This
powerful combinatorial transcendence criterion, proved in [8] and restated in
Proposition ABL, emphasizes the relevance of the Diophantine exponent for
our purpose.

Proposition ABL. — Let ξ be a real number with 〈{ξ}〉b := 0.a1a2 · · · . Let
us assume that dio(a) > 1 where a := a1a2 · · · . Then ξ is either rational or
transcendental.

Proposition ABL is obtained as a consequence of the p-adic Subspace The-
orem. It is the key tool for proving Theorem AB and it will be the key tool
for proving Theorems 2.3 and 2.6 as well.

4. Proof of Theorem 2.3

In this section, we prove Theorem 2.3. To do this, we first need to give a
formal definition of one-stack machines. We use in fact a convenient equivalent
model: the deterministic pushdown automaton. This classical device is most
often used in formal language theory as an acceptor, that is a machine that
can accept or reject finite words (see for instance [13, 14, 30]). Our point
of view here is slightly different for we will use the pushdown automaton as a
transducer, that is a machine that associates a symbol with every finite word
on a given input alphabet.

4.1. One-stack machines and deterministic pushdown automata. —
Formally, a k-pushdown automaton is a complete deterministic pushdown
automaton with output, or DPAO for short. It is defined as a 7-tuple
M = (Q,Σk,Γ, δ, q0,∆, τ) where:

– Q is a finite set of states,

– Σk := {0, 1, . . . , k − 1} is the finite set of input symbols,
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– Γ is the finite set of stack symbols (it contains a special symbol # used
to mark the bottom of the stack).

– δ : E ⊂ (Q× Γ× (Σk ∪ {ε})) → Q× Γ∗ is the transition function,

– q0 ∈ Q is the initial state and (q0,#) is the initial (internal) configuration,

– ∆ is the finite set of output symbols,

– τ : Q× Γ → ∆ is the output function.

Furthermore, the transition function satisfies the following conditions.

– Determinism assumption: if (q, a, ǫ) belongs to E for some (q, a) ∈ Q×Γ,
then for every i ∈ Σk, (q, a, i) 6∈ E.

– Completeness assumption: If (q, a, ǫ) does not belong to E for some
(q, a) ∈ Q× Γ, then {q} × {a} × Σk ⊂ E.

Remark 4.1. — Notice that δ being a function is also a part of the deter-
minism assumption. In a nondeterministic k-pushdown automata, δ would be
only define as a subset of Q× Γ× (Σk ∪ {ǫ}) ×Q× Γ∗.

The transition function δ of a k-pushdown automaton can naturally be
extended to a subset of Q× Γ∗ × (Σk ∪ {ǫ}) by setting

∀S = s1 · · · sj ∈ Γ∗, |s| ≥ 2 , δ(q, S, a) = (q′, s1 · · · sj−1X) ,

when δ(q, sj , a) = (q′,X). In second place, it can be extended to a subset of
Q× Γ∗ × Σ∗

k by setting

δ(q, S,w1 · · ·wr) = δ (δ (q, S,w1 · · ·wr−1) , wr) .

This means in particular that M scans its inputs from left to right. We
also extend the output function τ to a subset of Q × Γ+ by simply setting
τ(q, s1s2 · · · sj) = τ(q, sj). These extensions allow to make sense to the com-
putation τ(δ(q0,#,W )) for any input word W in Σ∗

k.
Note that the special symbol # can only occur at the bottom of the stack,

that is, the transition function δ has to be defined so that δ(q0,#,W ) belongs
to Q×#(Γ \#)∗ for every W in Σ∗

k.

Definition 4.2. — Let M = (Q,Σk,Γ ∪ {#}, δ, q0,∆, τ) be a k-pushdown
automaton. The sequence (τ(δ(q0,#, 〈n〉k)))n≥1 is called the output sequence
produced by M.

This class of sequences are discussed in [22].

Example 4.3. — The 2-pushdown automaton A represented in Figure 4.1
generates the binary expansion of the number ξ1 defined in Section 2. Re-
call that the n-th binary digit of ξ1 is 1 if the difference between the number
of occurrences of the digits 0 and 1 in the binary expansion of n is at most
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1, and is 0 otherwise. It is formally defined as A := ({q0, q1, q−1},Σ2,X ∪
{#}, δ, q0, {0, 1}, τ), where the transition function δ is defined by δ(q0,#, 1) =
(q1,#), δ(q0,#, 0) = (q−1,#), δ(q1,#, 0) = (q0,#), δ(q1,#, 1) = (q1,#X),
δ(q1,X, 0) = (q1, ǫ), δ(q1,X, 1) = (q1,XX), δ(q−1,#, 0) = (q−1,#X),
δ(q−1,#, 1) = (q0,#), δ(q−1,X, 0) = (q−1,XX), δ(q−1,X, 1) = (q−1, ǫ), and
where the output function τ is defined by τ(q0,#) = τ(q1,#) = τ(q−1,#) = 1,
and τ(q0,X) = τ(q1,X) = τ(q−1,X) = 0.

In Figure 4.1 a transition δ(q, S, i) = (q′,W ) is symbolized by an arrow from
state q to state q′ labelled by (i, S|W ).

q1

q0

q−1

(1,#|#X), (1,X|XX), (0, X|ǫ)

(0,#|#)

(1,#|#)

(1,#|#)

(0,#|#)

(0,#|#X), (0,X|XX), (1, X|ǫ)

Figure 4.1. A 2-pushdown automaton producing the binary expan-
sion of ξ1

This automaton works as follows. Being on state q0 means that the part of
the input word that has been already read contains as many 1’s as 0’s. On
the other hand, being on state q1 means that the part of the input word that
has been already read contains more 1’s than 0’s, while being on state q−1

means that it contains more 0’s than 1’s. Furthermore, in any of these two
states, the difference between the number of 0’s and 1’s (in absolute value) is
one more than the number of X’s in the stack. Thus, the difference between
the number of occurrences of the symbols 1 and 0 in the input word is at
most 1 if, and only if, the reading ends with an empty stack (regardless to the
ending state). By definition of the output function, we see that A generates
the binary expansion of ξ1.
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4.1.1. About ǫ-moves. — As in Remark 2.1, we ask M to perform all possible
ǫ-moves before reading a new input symbol. This appears to be a classical
convention (see the discussion in [14]). Since we only consider deterministic
pushdown automata, we can assume without loss of generality that all ǫ-moves
are decreasing (see for instance [14]). This means that a computation of the
form δ(q,W, ǫ) = (q′,W ′), always implies that |W ′| < |W |.
4.1.2. About input words. — In our model of k-pushdown automaton, we
choose to feed our machines only with the proper base-k expansion of each non-
negative integer n. Instead, we could as well imagine to ask that τ(δ(q0,#, w))
remains the same for all words w ∈ Σ∗

k such that [w]k = n, that is
τ(δ(q0,#, w)) = τ(δ(q0,#, 0jw)) for every natural number j. Such a change
would not affect the class of output sequences produced by k-pushdown au-
tomata. The discussion is similar to the case of the k-automaton and we refer
to [12] for more details.

Our second remark concerning inputs is more important. In our model,
the k-pushdown automaton scans the base-k expansion of a positive integer
n starting from the most significant digit. This corresponds to the usual
way humans read numbers, that is from left to right. In the case of the k-
automaton, this choice is of no consequence because both ways of reading
are known to be equivalent. However, this is no longer true for k-pushdown
machines as the class of deterministic context free languages is not closed
under mirror image.

4.1.3. About uniqueness. — There always exist several different k-pushdown
automata producing the same output. In particular, it is possible to choose
one with a single state (see for instance [13]). The 2-automaton given in Figure
4.1 is certainly not the smallest one with respect to the number of states, but
it makes the process of computation more transparent and it only uses one
ordinary stack symbol.

4.2. Proof of Theorem 2.3. — We introduce a useful and natural equiva-
lence relation on the set of internal configurations of a one-way transducer like
machine. This equivalence relation is closely related to the classical Myhill-
Nerode relation used in formal language theory. Roughly, we think about two
configurations as being equivalent if, starting from each configuration, there
is no way to distinguish them by feeding the machine with arbitrary inputs.

Let us introduce some notation. For the multitape Turing machine, an
internal configuration is determined by the state of the finite control and the
complete knowledge of all the memory/working tapes (that is, the word written
on each tape and the position of each head). For the pushdown automaton,
since there is no need to precise the position of the head of the stack, an
internal configuration is just a pair (q,W ) where q denote the state of the
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finite control and W denote the word written on the stack. Given an input
word w, CM(w), or for short C(w) if there is no risk of confusion, will denote
the internal configuration reached by the machine M when starting from the
initial configuration and feeding it with the input w. Furthermore, τ(C(w))
will denote the corresponding output symbol produced by M. We will also
use the classical notation C ⊢w C ′ to express that starting from the internal
configuration C and reading the input word w, the machine enters into the
internal configuration C ′. When the input alphabet is Σk and n is a natural
number, we will simply write C(n) instead of C(〈n〉k).

Definition 4.4. — Let M be a one-way transducer like machine. Given two
input words x and y, we say that C(x) and C(y) are equivalent, and we note
C(x) ∼ C(y), if for every input w, one has

τ(C1) = τ(C2) ,

where C(x) ⊢w C1 and C(y) ⊢w C2.

It is obvious that ∼ is an equivalence relation. We are now ready to state
the following simple but key result.

Proposition 4.5. — Let ξ be a real number generated by a one-way trans-
ducer like machine. Let us assume that the equivalence relation ∼ is nontrivial
in the sense that there exist two distinct positive integers n and n′ such that
C(n) ∼ C(n′). Then ξ is either rational or transcendental.

Remark 4.6. — In Definition 4.4 and Proposition 4.5 above, we do not need
to concretely describe how the memory/working part of the machine is orga-
nized (tapes, stacks, or whatever). All what we need is to work with a machine
with a one-way input tape and an output tape on which every symbol written
is irrevocable. This explains why we do not give a precise definition of the
model of computation we use and only refer to it as one-way transducer like
machines.

Proof. — Let ξ be a real number whose base-b expansion can be generated by
a one-way transducer like machine M with input alphabet Σk. Let us denote
by a := (an)n≥1 the output sequence of M, so that 〈{ξ}〉b = 0.a1a2 · · · . Let
us assume that there exist two positive integers n and n′, n < n′, such that
C(n) ∼ C(n′). Set wn := 〈n〉k and w′

n = 〈n′〉k. By definition of the equivalence
relation, one has:

a[wnw]k = a[w′

nw]k ,

for every word w ∈ Σ∗
k. Given a positive integer ℓ, we obtain in particular the

following equalities:

(4.1) ∀i ∈ [0, kℓ − 1], akℓn+i = akℓn′+i .
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Set Uℓ := a1a2 · · · akℓn−1 and Vℓ := akℓnakℓn+1 · · · akℓn′−1. We thus deduce
from (4.1) that the word

UℓV
1+1/(n′−n)
ℓ := a1a2 · · · akℓn−1akℓnakℓn+1 · · · akℓn′−1akℓn · · · akℓn+kℓ−1

is a prefix of a. Furthermore, one has

|UℓV
1+1/(n′−n)
ℓ |/|UℓVℓ| = 1 +

1

n′ − 1/kl
≥ 1 +

1

n′ − 1
·

Since the exponent 1 + 1/(n′ − 1) does not depend on ℓ, this shows that

dio(a) ≥ 1 + 1/(n′ − 1) > 1 .

Then Proposition ABL implies that ξ is either rational or transcendental,
which ends the proof.

With this proposition in hand, we first observe that Theorem AB becomes
obvious.

Proof of Theorem AB. — For a finite automaton, a configuration is just given
by the state of the finite control for there is no memory tape. Since there are
only a finite number of states, a finite automaton has only a finite number of
different possible configurations. By the pigeonhole principle, there thus exist
two distinct positive integers n and n′ such that C(n) = C(n′). Then the
proof follows from Proposition 4.5.

We our now ready to prove the main result of this section.

Proof of Theorem 2.3. — Let ξ be a real number that can be generated by a
k-pushdown automata, say M := (Q,Σk,Γ, δ, q0,∆, τ). Given an input word
w ∈ Σ∗

k, we denote by qw the state reached by M when starting from its
initial configuration and reading the input w. We also denote by S(w) ∈ Γ∗

the corresponding content of the stack of M and by H(w) the corresponding
stack height, that is the length of the word S(w). With this notation, we obtain
that starting from the initial configuration (q0,#) and reading the input w,
M reaches the internal configuration(qw, S(w)), that is (q0,#) ⊢w (qw, S(w)).

Let us denote by Rk := (Σk \ {0}) Σ∗
k the language of all proper base-k

expansion of positive integers (written from most to least significant digit).
Then for every positive integer n, there is a unique word w in Rk such that
〈n〉k = w. For every positive integer m, we consider the set

Hm := {w ∈ Rk | H(w) ≤ m} .
We distinguish two cases.

(i) Let us first assume that there exists a positive integer m such that Hm

is infinite. Note that for all w ∈ Hm, the configuration C(w) = (qw, S(w))
belongs to the finite set ∆×Γ≤m, where Γ≤m denotes the set of words of length
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at mostm defined over Γ. SinceHm is infinite, the pigeonhole principle ensures
the existence of to distinct words w and w′ in Hm such that C(w) = C(w′).
Setting n := [w]k and n′ := [w′]k, we obtain that n 6= n′ and C(n) = C(n′). In
particular, C(n) ∼ C(n′). Then Proposition 4.5 applies, which concludes the
proof in that case.

(ii) Let us assume now that all sets Hm are finite. For every m ≥ 1, we can
thus pick a word vm inHm with maximal length. Note that sinceHm ⊂ Hm+1,
we have |vm| ≤ |vm+1|. Furthermore, one has

Rk =
∞⋃

m=1

Hm ,

which implies that the set {vm | m ≥ 1} is infinite.
As discussed in 4.1.1, we can assume without loss of generality that all ǫ-

moves of M are decreasing ones. Furthermore, recall that all possible ǫ-moves
are effectively performed after reading the last symbol of a given input. This
leads to the following alternative. For every internal configuration (qw, S(w)),
each time a new input symbol a is consumed, one has:

– Either the stack height is decreased, which means that H(wa) < H(w).

– Or only the topmost symbol of the stack has been modified, which for-
mally means that there exist two words X,Y ∈ Γ∗ and a letter z ∈ Γ such
that S(w) = Xz while S(wa) = XY .

The definition of vm ensures that

(4.2) ∀w ∈ Σ∗
k, H(vm) < H(vmw) .

Furthermore, if m is large enough, we have that H(vm) > 1. For such m, let
us decompose the stack word S(vm) as

S(vm) = Xmzm ,

where zm ∈ Γ is the topmost stack symbol. Inequality (4.2) implies that for all
w ∈ Σ∗

k, the word Xm is a prefix of the stack word S(vmw). In other words,
the part of the stack corresponding to the word Xm will never be modified
or even read during the computation (qvm , S(vm)) ⊢w (qvmw, S(vmw)). This
precisely means that

(qvm , S(vm)) ∼ (qvm , zm) .

Note that (qvm , zm) ∈ ∆ × Γ, which is a finite set, while we already ob-
served that {vm | m ≥ 1} is infinite. The pigeonhole principle thus implies
the existence of two distinct integers m and m′ such that vm 6= vm′ and
C(vm) ∼ C(vm′). Setting n := [vm]k and n′ := [vm′ ]k, we get that
C(n) ∼ C(n′) and n 6= n′. Then Proposition 4.5 applies, which ends the
proof.



18 BORIS ADAMCZEWSKI, JULIEN CASSAIGNE & MARION LE GONIDEC

5. Proof of Theorem 2.6

In this section, we provide a proof of Cobham’s second claim.

5.1. Tag machines, morphic sequences and finite automata. — A
practical way to describe tag machines is to use the notion of morphism. We
recall here some basic definitions. Let A be a finite alphabet. A map from A
to A∗ naturally extends to a map from A∗ into itself called (endo)morphism.
Given two alphabets A and B, a map from A to B naturally extends to a map
from A∗ into B∗ called a coding or letter-to-letter morphism. A morphism σ
over A is said to be k-uniform if |σ(a)| = k for every letter a in A, and just
uniform if it is k-uniform for some k. A morphism σ over A is said to be
prolongable on a if σ(a) = aW for some word W and if the length of the word
σn(a) tends to infinity with n. Then the word

σω(a) := lim
n→∞

σn(a) = aWσ(W )σ2(W ) · · ·

is the unique fixed point of σ that begins with a. An infinite word obtained
by iterating a prolongable morphism σ is said to be generated by σ and purely
morphic. The image of a purely morphic word under a coding is a morphic
word. A useful object associated with a morphism σ is the so-called incidence
matrix of σ, denoted by Mσ. We first need to choose an ordering of the
elements of A, say A = {a1, a2, . . . , ad}, and then Mσ is defined by

∀i, j ∈ {1, . . . , d}, (Mσ)i,j := |σ(aj)|ai .
The choice of the ordering has no importance.

We can now give the following practical definition of a tag machine.

Definition 5.1. — A tag machine is a 5-tuple T = (A, σ, a,B, ϕ) where:

– A is a finite set of symbols called the internal alphabet.

– a is a an element of A called the starting symbol.

– σ is a morphism of A∗ prolongable on a.

– B is a finite set of symbols called the external alphabet.

– ϕ is a letter-to-letter morphism from A to B.

The output sequence of T is the morphic sequence ϕ(σω(a)). A tag machine
is said to be uniform (resp. k-uniform) when the morphism σ has the additional
property to be uniform (resp. k-uniform).

Remark 5.2. — Following Cobham [26], there is no loss of generality to
assume than the internal morphism σ is a non-erasing morphism, which means
that no letter is mapped to the empty word. Indeed, if the output sequence of
a tag machine is infinite, then there exists a tag machine with a non-erasing



19

internal morphism that produces the same output sequence. From now on, we
will thus always made the assumption that internal morphisms of tag machines
are non-erasing.

Let us now briefly recall the definition of a k-automaton (a k-stack machine
with no stack). It is defined in a similar way as a k-pushdown automaton. A
k-automaton is a 6-tuple

A = (Q,Σk, δ, q0,∆, τ) ,

where Q is a finite set of states, δ : Q×Σk → Q is the transition function, q0 is
the initial state, ∆ is the output alphabet, and τ : Q → ∆ is the output func-
tion. Given a state q in Q and a finite word w = w1w2 · · ·wn on the alphabet
Σk, we define δ(q, w) recursively by δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn). The
output sequence produced by A is the sequence (τ(δ(q0, 〈n〉k)))n≥1. Such a
sequence is called k-automatic.

The class of uniform tag machines is relevant because of the following result
of Cobham [27].

Proposition C.— A sequence is k-automatic if and only if it can be produced
by some k-uniform tag machine.

It is also easy to see that the dilation factor of a k-uniform machine is
equal to k and thus it is at least 2. This result and Proposition C show
that Theorem 2.6 is a natural generalization of Theorem AB. Furthermore
the proof of Proposition C is completely constructive and provides a simple
way to transform a k-uniform tag machine into a k-automaton and vice versa.
This general feature is examplified below. For a complete treatment see [27]
or Chapter 6 of [12].

Example 5.3. — The Thue–Morse sequence t := (tn)n≥0 is probably the
most famous example among automatic sequences. It is defined as follows:
tn = 0 if the sum of the binary digits of n is even, and tn = 1 otherwise. The
Thue–Morse sequence can be generated by the following finite 2-automaton:
A = ({q0, q1}, {0, 1}, δ, q0 , {0, 1}, τ), where δ(q0, 0) = δ(q1, 1) = q0, δ(q0, 1) =
δ(q1, 0) = q1, τ(q0) = 0 and τ(q1) = 1. The Thue–Morse sequence is as well

q0/0 q1/1

0 0
1

1

Figure 5.1. A 2-automaton generating Thue–Morse sequence.

generated by the following 2-uniform tag machine: T = (A, σ, a,B, ϕ), where
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A = {q0, q1}, σ is defined by σ(q0) = q0q1 and σ(q1) = q1q0, a = q0, B = {0, 1},
τ(q0) = 0, τ(q1) = 1.

5.2. Proof of Theorem 2.6. — We are now ready to prove the main result
of this section.

Definition 5.4. — Let A be a finite set and σ be a morphism of A∗. A letter
b ∈ A is said to have maximal growth if there exists a real number C such that

|σn(c)| < C|σn(b)| ,
for every letter c ∈ A and every positive integer n.

Lemma 5.5. — Let A be a finite set and a ∈ A. Let σ be a morphism of A∗

prolongable on a and such that all letters of A appear in σω(a). Let θ denote
the spectral radius of Mσ. Then the letter a has maximal growth. Furthermore,
there exist a nonnegative integer k, and two positive real numbers c1 and c2
such that

(5.1) c1n
kθn < |σn(a)| < c2n

kθn .

Proof. — Let c be a letter occurring in σω(a). Then c also occurs in σr(a),
for some positive integer r. Then

|σn(c)| ≤ |σn+r(a)| = |σr(σn(a))| ≤ ‖Mσr‖∞|σn(a)| ,
where ‖·‖∞ stands for the usual infinite norm. This shows that a has maximal
growth. Recall now that by a classical result of Salomaa and Soittola (see for
instance Theorem 4.7.15 in [21]), there exist a nonnegative integer k, a real
number β ≥ 1, and two positive real numbers c1 and c2 such that

(5.2) c1n
kβn < |σn(a)| < c2n

kβn ,

for every positive integer n. Since a has maximal growth, a classical theorem
on matrices due to Gelfand (see for instance [21]) implies that β must be equal
to θ, the spectral radius of the incidence matrix of σ.

The following proposition is stated without proof by Cobham in [26].

Proposition 5.6. — Let T := (A, σ, a,B, ϕ) be a tag machine. Then the
following statements are equivalent:

(i) d(T ) > 1.

(ii) The spectral radius of Mσ is larger than one.

Proof. — Let us first prove that (i) implies (ii). Since d(T ) > 1, there exists
a positive real number ε such that

|σn+1(a)|
|σn(a)| > 1 + ε ,
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for every n large enough. This implies that there exists a positive real number
c such that

|σn(a)| > c(1 + ε)n ,

for every positive integer n. By Lemma 5.5, we obtain that θ, the spectral
radius of Mσ, must satisfy θ ≥ 1 + ε > 1.

Let us now prove that (ii) implies (i). Let θ > 1 denote the spectral radius of
Mσ. We argue by contradiction assuming that d(T ) = 1. Let u := σω(a). By
Lemma 5.5, there exist a nonnegative integer k, and two positive real numbers
c1 and c2 such that

(5.3) c1n
kθn < |σn(a)| < c2n

kθn ,

for every positive integer n. Set C := ‖Mσ‖∞. Let ε be a positive number
and let m be a positive integer such that

θm > C(1 + ε)c2/c1 .

We then infer from (5.3) that

|σm+n(a)| > c1(m+ n)kθm+n > θmc1n
kθn > C(1 + ε)c2n

kθn

and thus
|σm+n(a)| > C(1 + ε)|σn(a)| ,

for every positive integer n. Let N be a positive integer and let us denote by
u1u2 · · · uN the prefix of length N of u. Let n be the largest integer such that
σn(a) is a prefix of u1u2 . . . uN . It thus follows that

|σm(u1 · · · uN )| ≥ |σm(σn(a))| = |σm+n(a)| > C(1 + ε)|σn(a)| .
Since the definition of n ensures that |σn(a)| > N/C, we have

(5.4) |σm(u1u2 · · · uN )| > (1 + ε)N .

On the other hand, for every δ > 0 there exists a positive integer N such that:

|σ(u1u2 · · · uN )|
N

< 1 + δ ,

since by assumption d(T ) = 1. Let V be the finite word defined by the relation
σ(u1u2 · · · uN ) = u1u2 . . . uNV . Thus |V | < δN . Now it is easy to see that

σm(u1u2 . . . uN ) = u1u2 . . . uNV σ(V ) · · · σm−1(V ) ,

which implies that

|σm(u1u2 . . . uN )| < N + δN + CδN + · · ·+ Cm−1δN .

Choosing δ < ε(C − 1)/(Cm − 1), we get that |σm(u1u2 . . . uN )| < (1 + ε)N ,
which contradicts (5.4). This ends the proof.

Proposition 5.7. — Let T be a tag machine such that d(T ) > 1 and let a
denote the output sequence produced by T . Then dio(a) > 1.
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Proof. — Let T := (A, σ, a,B, ϕ) be a tag machine such that d(T ) > 1. Let
u := σω(a) denote the internal sequence produced by T . Since by definition σ
is prolongable on a and all letters of A appear in u, Lemma 5.5 implies that
a has maximal growth and that there exist two positive real numbers c1 and
c2 such that

(5.5) c1n
kθn < |σn(a)| < c2n

kθn,

for every positive integer n. Furthermore, Proposition 5.6 implies that θ > 1.

We now prove that there are infinitely many occurrences of letters with
maximal growth in u. Let us argue by contradiction. If there are only finitely
many occurrences of letters with maximal growth, then there exists a positive
integer n0 such that u = σn0(a)w where w is an infinite word that contains
no letter with maximal growth. Since θ > 1, there is an integer m0 such that

(5.6) c2/θ
m0 < c1/2.

Let us denote by V0 the unique finite word such that σn0+m0(a) = σn0(a)V0.
Then for every positive integer n we get that

|σn+n0+m0(a)| = |σn+n0(a)|+ |σn(V0)| ≤ c2(n+ n0)
kθn+n0 + |σn(V0)| .

Given ε > 0, we have that |σn(V0)| < εnkθn for all n large enough, since by
construction V0 contains no letter with maximal growth. Choosing ε < c1/2,
we then infer from (5.6) that

|σn+n0+m0(a)|
(n+ n0 +m0)kθn+n0+m0

< c1 ,

as soon as n is large enough. This provides a contradiction with (5.5).

Since there are infinitely many occurrences in u of letters with maximal
growth, the pigeonhole principle ensures the existence of such a letter b that
occurs at least twice in u. In particular, there exist two possibly empty finite
words U and V such that UbV b is a prefix of u. Set r = |U |, s = |bV |,
and for every nonnegative integer n, Un := σn(U), Vn := σn(bV ). Since by
definition u is fixed by σ, we get that UnV

δn
n is a prefix of u, where δn :=

1 + |σn(b)|/|σn(bV )|. Since b has maximal growth, there exists a positive real
number c3 such that

|σn(c)| < c3|σn(b)| ,
for every letter c in u. We thus obtain that

|UnV
δn
n |

|UnVn|
≥ 1 +

|σn(b)|
|σn(UbV )| ≥ 1 +

1

c3(r + s)
> 1.

This proves that dio(u) > 1. By definition of the output sequence produced by
T , one has a := ϕ(u). It thus follows that dio(a) ≥ dio(u) > 1, for applying
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a coding to an infinite word cannot decrease the Diophantine exponent. This
ends the proof.

Proof of Theorem 2.6. — The result follows directly from Propositions ABL
and 5.7.

6. Concluding remarks

We end this paper with several comments concerning factor complexity,
transcendence measures, and continued fractions, also providing possible di-
rections for further research.

6.1. Links with factor complexity. — Another interesting way to tackle
problems concerned with the expansions of classical constants in integer bases
is to consider the factor complexity of real numbers. Let ξ be a real number,
0 ≤ ξ < 1, and b ≥ 2 be a positive integer. Let us denote by a = (an)n≥1 ∈ ΣN

b
its base-b expansion. The complexity function of ξ with respect to the base b
is the function that associates with each positive integer n the positive integer

p(ξ, b, n) := Card{(aj , aj+1, . . . , aj+n−1), j ≥ 1}.

When ξ does not belongs to [0, 1), we just set p(ξ, b, n) := p({ξ}, b, n). To
obtain lower bounds for the complexity of classical mathematical constants
remains a famous challenging problem. In this direction, the main result
concerning algebraic numbers was obtained by Bugeaud and the first author
[3] who proved that

(6.1) lim
n→∞

p(ξ, b, n)

n
= +∞ ,

for all algebraic irrational numbers ξ and all integers b ≥ 2. This lower bound
implies Theorem AB for it is well-known that a real number generated by
a finite automaton has factor complexity in O(n) [27]. We stress that the
situation is really different with pushdown automata and tag machines. In-
deed, given a positive integer d, there exist pushdown automata whose output
sequence has a factor complexity growing at least like nd [36], while tag ma-
chines can output sequences with quadratic complexity (see for instance [38]).
In particular, Theorems 2.3 and 2.6 do not follow from (6.1). We now exem-
plify this difference by providing lower bounds for the complexity of the two
numbers ξ1 and ξ2 defined in Section 2.

6.1.1. A lower bound for p(ξ1, 2, n). — Recall that the binary number ξ1 is
defined as follows: its n-th binary digit is 1 if the difference between the
number of occurrences of the digits 0 and 1 in the binary expansion of n is at
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most 1, and is 0 otherwise. We outline a proof of the fact that

p(ξ1, 2, n) = Θ(n log2 n) .

We can first infer from [32] that p(ξ1, 2, n) = O(n(log n)2), for this sequence
is generated by a pushdown automaton with one ordinary stack symbol and
no ǫ-move. In order to find a lower bound for p(ξ1, 2, n), we are going to
describe a tag machine-like process (over an infinite alphabet) generating the
binary expansion of ξ1. We first notice that another way to understand the
action of the 2-PDA A in Figure 4.1 that generates the binary expansion
of ξ1 is to unfold it. This representation, given in Figure 6.1, corresponds
to the transition graph of A: states in this graph are given by all possible
configurations and transitions between configurations are just labelled by the
input digits 0 or 1. In Figure 6.1, the notation qXn means that A is in state
q and the content of the stack is #XX · · ·X (n times).

...

...

q1# q1X q1X
2 q1X

3 q1X
4 q1X

5

q0#

q−1# q−1X q−1X
2 q−1X

3 q−1X
4 q−1X

5

1

0

1

0

1

0

1

0

1

0

1

0
01

01
0

1

0

1

0

1

0

1

0

1

0

1

Figure 6.1. The transition graph of A

In Figure 6.2, states of the transition graph has been renamed as follows:
configurations are replaced with integers, where reading a 1 in state n leads to
a move to state n+1 and reading a 0 in state n leads to a move to staten− 1.
We easily see that the output state is just the difference between the number
of 1’s and 0’s in the input word. Thus the n-th binary digit of ξ1 is equal
to 1 if and only if the reading of the binary expansion of n by this infinite
automaton ends in one of the three states labelled by 0, −1 and 1.

...

...

1/1 2/0 3/0 4/0 5/0 6/0

0/1

−1/1 −2/0 −3/0 −4/0 −5/0 −6/0

1

0

1

0

1

0

1

0

1

0

1

0
01

01
0

1

0

1

0

1

0

1

0

1

0

1

Figure 6.2. Relabelling of the transition graph of A



25

The action of 0 and 1 can be summarized by n
0−→ n−1 and n

1−→ n+1. This
leads to a tag machine-like process over an infinite alphabet T = (A, σ, s,B, ϕ)
for generating the expansion of ξ1. The starting symbol is s, A = Z∪{s}, σ is
defined by σ(s) = s1 and σ(n) = (n− 1)(n + 1), B = {0, 1}, ϕ(−1) = ϕ(0) =
ϕ(1) = 1, and ϕ(e) = 0 if e /∈ {s,−1, 0, 1}. Then we have 〈ξ〉2 = 0.ϕ(σω(s)),
where the infinite word

σω(s) = s 1 0 2 (−1) 1 1 3 (−2) 0 0 2 0 2 2 4 (−3) (−1) (−1) 1 (−1) 1 1 3 (−1) 1 1 · · ·
is the unique fixed point of the morphism σ.

Given a positive integer n, there exists a unique k such that 2k ≤ n < 2k+1.
The strategy consists now in finding sufficiently many different right special
factors, that is factors w of ϕ(σω(s)) for which both factors w0 and w1 also
occur in ϕ(σω(s)). Arguing as in [31, Lemma 1.13], one can actually show
that, for every pair

(p, q) ∈ E := {(p, q) ∈ N
2 | 1 ≤ p ≤ q ≤ k − 2} ,

both words

A := ϕ(σk(k − 2p)σk(k − 2p+ 2)σk(k − 2q))

and

B := ϕ(σk(k − 2p)σk(k − 2p + 2)σk(−k − 2))

occur in ϕ(σω(s)) and they have the same factor of length n, say w(p, q),
occurring at index 2k+1+2q−n. Furthermore, in the word A the factor w(p, q)
is followed by a 1, while in the word B it is followed by a 0. Thus w(p, q) is
a right special factor. It can also be extracted from [31, Lemma 1.13] that
the map (p, q) 7→ w(p, q) is injective on E . This ensures the existence of at

least (k−2)(k−1)
2 distinct right special factors of length n in ϕ(σω(s)). Then it

follows that

p(ξ1, 2, n + 1)− p(ξ1, 2, n) ≥
(k − 2)(k − 1)

2
,

from which one easily deduces the lower bound :

p(ξ1, 2, n) ≥ cn(log n)2 ,

for some positive constant c.

6.1.2. A lower bound for p(ξ2, 3, n). — It follows from the definition of the
number ξ2 that its ternary expansion is the fixed point of the morphism µ
defined by µ(0) = 021, µ(1) = 012, µ(2) = 2. We note that the letter 2 has
clearly bounded growth (|µn(2)| = 1 for all n ≥ 0) and that µω(0) contains
arbitrarily large blocks of consecutive occurrences of the letter 2. Then, a
classical result of Pansiot [38] implies that the complexity of the infinite word
µω(0) is quadratic. In other words, one has :

c1n
2 < p(ξ2, 3, n) < c2n

2 ,
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for some positive constants c1 and c2.

6.2. Quantitative aspects: transcendence measures and the imita-
tion game. — We discuss here some problems related to the quantitative
aspects of our results.

6.2.1. The number theory side: transcendence measures. — A real number
ξ is transcendental if |P (ξ)| > 0, for all non-zero integer polynomials P (X).
A transcendence measure for ξ consists in a limitation of the smallness of
|P (ξ)|, thus refining the transcendence statement. In general, one looks for a
nontrivial function f satisfying:

|P (ξ)| > f(H, d) ,

for all integer polynomials of degree at most d and height at most H. Here,
H(P ) stands for the näıve height of the polynomial P (X), that is, the max-
imum of the absolute values of its coefficients. The degree and the height of
an integer polynomial P allow to take care of the complexity of P . We will
use here the following classification of real numbers defined by Mahler [33] in
1932. For every integer d ≥ 1 and every real number ξ, we denote by wd(ξ)
the supremum of the exponents w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most d.
Further, we set w(ξ) = lim supd→∞(wd(ξ)/d) and, according to Mahler [33],
we say that ξ is an

A-number, if w(ξ) = 0;

S-number, if 0 < w(ξ) < ∞;

T -number, if w(ξ) = ∞ and wd(ξ) < ∞ for any integer d ≥ 1;

U -number, if w(ξ) = ∞ and wd(ξ) = ∞ for some integer d ≥ 1.

An important feature of this classification is that two transcendental real num-
bers that belong to different classes are algebraically independent. The A-
numbers are precisely the algebraic numbers and, in the sense of the Lebesgue
measure, almost all numbers are S-numbers. A Liouville number is a real
number ξ such that for any positive real number ρ the inequality

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

qρ

has a at least one solution (p, q) ∈ Z
2, with q > 1. Thus ξ is a Liouville number

if, and only if, w1(ξ) = +∞.

Let ξ be an irrational real number defined through its base-b expansion,
say 〈{ξ}〉b := 0.a1a2 · · · . Let us assume that the base-b expansion of ξ can be
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generated either by a pushdown automata or by a tag machine with dilation
factor larger than one. As recalled in Proposition ABL (Section 3), the key
point for proving that ξ is transcendental is to show that dio(a) > 1, where
a := a1a2 · · · . This comes down to finding two sequences of finite words
(Un)n≥0 and (Vn)n≥0, a sequence of rational numbers αn, and a real number
δ > 0 such that the word UnV

αn

n is a prefix of a, the length of the word UnV
αn

n

increases, and

(6.2)
|UnV

αn

n |
|UnVn|

≥ 1 + δ .

A look at the proofs of Theorems 2.3 and 2.6 show that one actually has, in
both cases, the following extra property: there exists a real number M such
that

(6.3) lim sup
n→∞

|Un+1Vn+1|
|UnVn|

< M .

Using an approach introduced in [9] and developed in [6], one can first prove
that

(6.4) dio(a)− 1 ≤ w1(ξ) ≤ c1dio(a) ,

for some real number c1 that depends only on δ and M . In particular, ξ is
a Liouville number if and only if dio(a) is infinite. Then it is proved in [6],
following a general approach introduced in [5] and based on a quantitative
version of the subspace theorem, that this extra condition leads to transcen-
dence measures. Indeed, taking all parameters into account, one could derive
an upper bound of the type

(6.5) wd(ξ) ≤ max{w1(ξ), (2d)
c2(log 3d)(log log 3d)} ,

for all positive integers d and some real number c2 that depends only on δ and
M . The constants c1 and c2 can be made effective. In particular, we deduce
from Inequalities (6.4) and (6.5) the following result.

Theorem 6.1. — Let ξ be an irrational real number such that 〈{ξ}〉b :=
0.a1a2 · · · and let a := a1a2 · · · . Let us assume that the base-b expansion
of ξ can be generated either by a pushdown automata or by a tag machine with
dilation factor larger than one. Then one of the following holds.

(i) dio(a) = +∞ and ξ is a Liouville number.

(ii) dio(a) < +∞ and ξ is a S- or a T -number.

Of course, in view of Theorem 6.1, it would be interesting to prove whether
or not there exist such numbers for which dio(a) = +∞. In this direction,
it is proved in [9] that dio(a) is always finite when ξ is generated by a finite
automaton. We add here the following contribution to this problem.
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Proposition 6.2. — Let a := a1a2 · · · be an aperiodic purely morphic word
generated by a morphism σ defined over a finite alphabet A. Set M :=
max{|σ(i)| | i ∈ A}. Then dio(a) ≤ M + 1.

Proof. — Let us assume that σ is prolongable on the letter a and that σω(a) =
a1a2 · · · . We argue now by contradiction by assuming that dio(a) > M + 1.

This assumption ensures that one can find two finite words U and V and a
real number s > 1 such that :

(i) UV s is a prefix of a, and s is maximal with this property.

(ii) V is primitive (i.e. is non-empty and not the integral power of a shorter
word).

(iii) One has

|UV s|/|UV | ≥ M + 1 .

Not that since a is fixed by σ then the word σ(UV s) is also a prefix of a.
By definition of M , it follows from (iii) that

UV s = σ(U)W ,

where W = Ṽ α for some conjugate Ṽ of V (i.e., V = AB and Ṽ = BA for
some A,B) and α ≤ s. On the other hand, σ(V ) is also a period of W since

UV s = σ(U)W is a prefix of σ(UV s) = σ(U)σ(V )s
′

, for some s′. Thus W has

at least two periods: Ṽ and σ(V ). Furthermore, (iii) implies that

|UV s−1| ≥ M(|U |+ |V |)

and then

|W | = |UV s| − |σ(U)| ≥ |σ(V )|+ |V | = |σ(V )|+ |Ṽ | .

We can thus apply Fine and Wilf’s theorem (see for instance [12, Chap. 1])

to the word W and we obtain that there is a word of length gcd(|Ṽ |, |σ(V )|)
that is a period of W . Since by assumption (ii) V is primitive, the word Ṽ

is primitive too, and it follows that gcd(|Ṽ |, |σ(V )|) = |Ṽ |. This gives that

σ(V ) = Ṽ k for some positive integer k. It follows that

σ(UV s) = σ(U)Ṽ ks′ = UV s−α+ks′

is a prefix of a. Now the inequality |σ(UV s)| > |UV s| gives a contradiction
with the maximality of s. This ends the proof.
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6.2.2. The computer science side: the imitation game. — Theorems AB, 2.3,
and 2.6 show that some classes of Turing machines are too limited to produce
the base-b expansion of an algebraic irrational real number. Let ξ be an
irrational real number that can be generated by a k-pushdown automaton or
by a tag machine with dilation factor larger than one. Then the results of
Section 6.2 could be rephrased to provide a limitation of the way ξ can be
approximated by irrational algebraic numbers. In this section, we suggest to
view things from a different angle, changing our target. Indeed, we fix an
algebraic irrational real number α and a base b, and ask for how long the
base-b expansion of α can be imitated by outputs of a given class of Turing
machines.

Let us explain now how to formalize our problem. We can naturally take
the number of states as a measure of complexity of a k-automaton. One can
also defined the size of k-pushdown automata and tag machines as follows. Let
us define the size of a k-pushdown automaton A := (Q,Σk,Γ, δ, q0,∆, τ) to be
|Q|+ |Γ|+ L, where L is the maximal length of a word that can be added to
the stack by the transition function δ of A. Let us also define the size of a tag
machine T := (A, σ, a, ϕ,B) to be |A| + L, where L := max{|σ(i)| | i ∈ A}.
Now, let us fix a class M of Turing machines among k-automata, k-pushdown
automata, and tag machines. Let M be a positive integer. We stress that
there are only finitely many such machines with size at most M . Then there
exists a maximal positive integer I(α,M) for which there exists a machine in
M with size at most M whose output agrees with the base-b expansion of α
at least up to the I(α,M)-th digit. We suggest the following problem.

Problem 6.3. — Let α be an algebraic irrational real number and fix a class
of Turing machines among k-automata, k-pushdown automata, and tag ma-
chines. Given a positive integer M , find an upper bound for I(α,M).

In the case of finite automata, we can give a first result toward this problem.
Indeed, the factor complexity of the output a of a k-automaton with at most
M states satisfies p(a, n) ≤ kM2n (see for instance [12]). Let us denote
respectively by d and H the degree and the height of α. Then the main result
of [19] allows to extract the following upper bound :

I(α,M) ≤ max
{
(max(logH, e)100kM2)8 log 4kM

2

,

(
(log d)10100(kM2)11/2 log(kM2)

)2.1
}

.

6.3. Computational complexity of the continued fraction expansion
of algebraic numbers. — Replacing integer base expansions with continued
fractions leads to similar problems. Rational numbers all have a finite contin-
ued fraction expansion, while quadratic real numbers correspond to eventually
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periodic continued fractions. In contrast, much less is known about the con-
tinued fraction expansion of algebraic real numbers of degree at least three
such as 3

√
2. In this direction, an approach based on the subspace theorem

was introduced by Bugeaud and the first author [2]. Recently, Bugeaud [20]
shows that this approach actually leads to the following analogue of Proposi-
tion ABL.

Proposition B. — Let ξ be a real number with ξ := [a0, a1, a2, . . .] where
we assume that (an)n≥1 is a bounded sequence of positive integers. Let us
assume that dio(a) > 1 where a := a1a2 · · · . Then ξ is either quadratic or
transcendental.

In [20], the author deduce from Proposition B that the continued fraction
expansion of an algebraic real number of degree at least 3 cannot be generated
by a finite automaton. This provides the analogue of Theorem AB in this
framework. As a direct consequence of our results and Proposition B, we
obtain the following generalization of Bugeaud’s result corresponding to the
analogue of Theorems 2.3 and 2.6.

Theorem 6.4. — Let ξ be an algebraic real number of degree at least 3. Then
the following holds.

(i) The continued fraction expansion of ξ cannot be generated by a one-stack
machine, or equivalently, by a deterministic pushdown automaton.

(ii) The continued fraction expansion of ξ cannot be generated by a tag
machine with dilation factor larger than one.

Using the approach introduced in [7] and the discussion of Section 6.2, it
will also be possible to produce transcendence measures analogous to Theorem
6.1 for real numbers whose continued fraction expansion can be generated by
deterministic pushdown automata or by a tag machine with dilation factor
larger than one.
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et des systèmes d’information, pp. 987–998, Vuibert, 2006.

[16] D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), 339–
350.
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