Comonotone lower probabilities for bivariate and discrete structures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Comonotone lower probabilities for bivariate and discrete structures

Résumé

Two random variables are called comonotone when there is an increasing relation between them, in the sense that when one of them increases (decreases), the other one also increases (decreases). This notion has been widely investigated in probability theory, and is related to the theory of copulas. This contribution studies the notion of comonotonicity in an imprecise setting. We define comonotone lower probabilities and investigate its characterizations. Also, we provide some sufficient conditions allowing to define a comonotone belief function with fixed marginals and characterize comonotone bivariate p-boxes.
Fichier principal
Vignette du fichier
Comonotone Lower Probabilities_v2.pdf (348.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01254278 , version 1 (12-01-2016)

Identifiants

  • HAL Id : hal-01254278 , version 1

Citer

Ignacio Montes, Sébastien Destercke. Comonotone lower probabilities for bivariate and discrete structures. Ninth International Symposium on Imprecise Probability: Theories and Applications (ISIPTA 2015), Jul 2015, Pescara, Italy. pp.207-216. ⟨hal-01254278⟩
269 Consultations
98 Téléchargements

Partager

More