Algebraic independence results on the generating Lambert series of the powers of a fixed integer - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2015

Algebraic independence results on the generating Lambert series of the powers of a fixed integer

Résumé

In this paper, the algebraic independence of values of the functionG d (z) := h≥0 z d h /(1 − z d h), d > 1 a fixed integer, at non-zero algebraic points in the unit disk is studied. Whereas the case of multiplicatively independent points has been resolved some time ago, a particularly interesting case of multiplicatively dependent points is considered here, and similar results are obtained for more general functions. The main tool is Mahler's method reducing the investigation of the algebraic independence of numbers (over Q) to the one of functions (over the rational function field) if these satisfy certain types of functional equations.
Fichier principal
Vignette du fichier
38Article3.pdf (285.36 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01253655 , version 1 (11-01-2016)

Identifiants

Citer

Peter Bundschuh, Keijo Väänänen. Algebraic independence results on the generating Lambert series of the powers of a fixed integer. Hardy-Ramanujan Journal, 2015, Volume 38 - 2015, pp.36-44. ⟨10.46298/hrj.2015.1358⟩. ⟨hal-01253655⟩
144 Consultations
889 Téléchargements

Altmetric

Partager

More