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Algebraic independence results on the generating

Lambert series of the powers of a fixed integer

Peter Bundschuh and Keijo Väänänen

Abstract. In this paper, the algebraic independence of values of the functionGd(z) :=
∑
h≥0 z

dh/(1− zdh ), d>1 a fixed integer,

at non-zero algebraic points in the unit disk is studied. Whereas the case of multiplicatively independent points has been resolved
some time ago, a particularly interesting case of multiplicatively dependent points is considered here, and similar results are

obtained for more general functions. The main tool is Mahler’s method reducing the investigation of the algebraic independence

of numbers (over Q) to the one of functions (over the rational function field) if these satisfy certain types of functional equations.
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1. Introduction and main results

A series of type
∞∑
k=1

λk
zk

1− zk

with (λk) ∈ CN is called a Lambert series. Denoting by d the ‘integer’ in the title, supposing always
d ≥ 2, and taking λk to be 1 or 0 depending on whether k is a power of d or not, our above series
reduces to

Gd(z) :=
∞∑
h=0

zd
h

1− zdh
. (1.1)

This series converges exactly on the open unit disk D and defines there a holomorphic function.
The similar-looking series

Fd(z) :=
∞∑
h=0

zd
h

1 + zdh
(1.2)

has the same analytic properties and, indeed, we have Fd(z) = −Gd(−z) in D if d is odd. Thus, in
this case, both functions Fd, Gd are very closely related.

The aim of the present paper is to study the algebraic independence of the values of the functions
Gd(z) and Fd(z) at certain multiplicatively dependent points α1, . . . , αn ∈ D. The arithmetical
nature of the values of these functions, being typical examples of Mahler functions, has been studied
in several works (see [BV15c], [Coo12], [Coo13], [Mah69], [Sch67]). In particular, it is known that

Gd(α1), . . . , Gd(αn) are algebraically independent (over Q) if α1, . . . , αn ∈ Q×∩D are multiplicatively
independent, and the same holds for Fd instead of Gd. Here and in the sequel, Q denotes the field of
all complex algebraic numbers.

In this work, we suppose always

αi := αmi (i = 1, . . . , n)

with α ∈ Q× ∩ D and all mi ∈ N. The following result was established in [BV15c, Theorem 3.1].
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Theorem 1. Let m1, . . . ,mn be n ≥ 2 positive integers, and let α ∈ Q×∩D. Then Gd(α1), . . . , Gd(αn)
are algebraically independent if and only if

mj

mi
/∈ dZ (1.3)

holds for any pair (i, j) with i 6= j.

To state our first new result, we define, for any function f , the notation f(±β) to mean either
f(β) or f(−β).

Theorem 2. Let m1, . . . ,mn be n ≥ 2 positive integers satisfying the condition (1.3), and let

α ∈ Q×∩ D. Then, for each choice of n signs, the values Gd(±α1), . . . , Gd(±αn) are algebraically
independent, and the same holds for Fd(±α1), . . . , Fd(±αn).

Note that, as an immediate corollary of this result, we obtain the analogue of Theorem 1 for Fd.
To state our next result, we define

Gd(z) :=

∞∑
h=0

ahz
dh

1− zdh
, Fd(z) :=

∞∑
h=0

bhz
dh

1 + zdh
, (1.4)

where (ah), (bh) are non-zero periodic sequences of algebraic numbers.

Theorem 3. Let m1, . . . ,mn be n ≥ 2 positive integers such that

mj

mi
/∈ N (1.5)

holds for any pair (i, j) with i 6= j, and let α ∈ Q×∩ D. Then, for each choice of n signs, the values
Gr(±αi) (i = 1, . . . , n; r ∈ N \{1}) are algebraically independent. In particular, the numbers Gr(±αi)
(i = 1, . . . , n; r ∈ N \{1}) are algebraically independent. The same holds if Gr, Gr are replaced by
Fr, Fr.

In the remaining results, both functions Gd, Fd are studied simultaneously. But here the case
d = 2 has to be excluded in a natural way since, using (1.1) and (1.2), we find for z ∈ D

G2(z) + F2(z) = 2

∞∑
h=0

z2h

1− z2h+1 = 2
∞∑
h=0

∞∑
k=0

z(1+2k)2h = 2
∞∑
n=1

zn =
2z

1− z
. (1.6)

Theorem 4. Suppose d ≥ 3, and let m1, . . . ,mn be n ≥ 2 positive integers satisfying (1.3) and

mj

mi
/∈ 2dZ (1.7)

for any pair (i, j) with i 6= j. If α ∈ Q×∩D, then the numbers Gd(α1), . . . , Gd(αn), Fd(α1), . . . , Fd(αn)
are algebraically independent.

It may be of some interest to see a typical example of an application of Theorem 4 involving
reciprocal sums of the usual Fibonacci numbers Φn (or Lucas numbers Λn, respectively). To this
purpose, we first deduce from (1.1) and (1.2) that Gd(β

m) + Fd(β
m), up to an algebraic summand,
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equals to (2/
√

5)
∑

h>0 1/Φmdh for any d,m ∈ N with 2 | d, where we put β := (1−
√

5)/2. Assuming
even 4 | d, Theorem 4 tells us the algebraic independence of all numbers∑

h≥0

1

Φmdh
(m ∈ 2N− 1).

Similarly we establish, for odd d > 2, the algebraic independence of all
∑

h≥0
1

Λ
mdh

with odd m not

divisible by d.

Theorem 5. Let m1, . . . ,mn be n ≥ 2 positive integers such that

2mj

mi
/∈ N (1.8)

holds for any pair (i, j) with i 6= j. If α ∈ Q×∩ D, then the numbers Gr(αi),Fr(αi) (i = 1, . . . , n; r ∈
N \{1}, r /∈ 22N−1) are algebraically independent. In particular, the numbers Gr(αi), Fr(αi) (i =
1, . . . , n; r ∈ N \{1}, r /∈ 22N−1) are algebraically independent.

Remark. Assuming that (dh) ∈ NN0 satisfies a linear recurrence dh+t = c1dh+t−1 + . . . + ctdh with
certain conditions on t and (c1, . . . , ct) ∈ Nt0 \ {0} excluding, in particular, the case of (dh) being a
geometric progression, Tanaka [Tan05] settled the algebraic independence problem for the values of

the Lambert series
∑

h≥0 z
dh/(1−zdh) at distinct points α1, . . . , αn ∈ Q×∩D. Thus, our investigations

on the Lambert series Gd(z) just concern the important remaining case, where (dh) reduces to the
geometric progression (dh).

2. The main lemma

The main tool in the proof of [BV15c, Theorem 3.1] was the following auxiliary result.

Lemma 1. Let m1, . . . ,mn be n ≥ 2 positive integers satisfying condition (1.3). Then the functions
Gd(z

m1), . . . , Gd(z
mn) are linearly independent over C modulo C(z).

Combining the proof of this lemma with some new ideas, we are now able to generalize Lemma
1. To state this generalization, we introduce, for fixed a ∈ C×, the functions

Gd(a, z) :=
∞∑
h=0

ahzd
h

1− zdh
, Fd(a, z) :=

∞∑
h=0

ahzd
h

1 + zdh
. (2.9)

Lemma 2. Let m1, . . . ,mn be n ≥ 2 positive integers satisfying condition (1.3). Assume that I1 and
I2 are (possibly empty) disjoint sets of positive integers satisfying I1 ∪ I2 = {1, . . . , n}. Then, for any
root of unity ζ, the functions Gd(ζ, z

mi) (i ∈ I1), Fd(ζ, z
mi) (i ∈ I2) are linearly independent over C

modulo C(z).

Proof. We first note that the functions

gi(z) := Gd(ζ, z
mi), fi(z) := Fd(ζ, z

mi) (i = 1, . . . , n) (2.10)

satisfy the functional equations

ζgi(z
d) = gi(z) +

zmi

zmi − 1
, ζfi(z

d) = fi(z)−
zmi

zmi + 1
(i = 1, . . . , n). (2.11)
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Assume now, contrary to Lemma 2, that there exists some c := (c1, . . . , cn) ∈ Cn \ {0} such that

r(z) :=
∑
i∈I1

cigi(z) +
∑
i∈I2

cifi(z)

is a rational function. For i ∈ {1, . . . , n}, we now write mi = dt(i)ki with integers t(i) ≥ 0, ki > 0 such
that d - ki. Then condition (1.3) is equivalent to the distinctness of k1, . . . , kn. By using a suitable
permutation of {1, . . . , n}, we may assume without loss of generality that, for some m ∈ {1, . . . , n},
the conditions c1 · · · cm 6= 0, cm+1 = · · · = cn = 0 hold and, moreover, k1 > · · · > km. If, under this
permutation, {i ∈ Ij : ci 6= 0} changes to Jj (j = 1, 2), then J1 ∪ J2 = {1, . . . ,m} and we may write

r(z) :=
∑
i∈J1

cigi(z) +
∑
i∈J2

cifi(z).

From (2.11) we see

ζr(zd) = r(z) +
∑
i∈J1

ci
zmi

zmi − 1
−

∑
i∈J2

ci
zmi

zmi + 1
.

With c and r as above, we define the rational function s by

s(z) := r(z)−
∑
i∈J1

t(i)−1∑
τ=0

ciz
dτki

ζt(i)−τ (zdτki − 1)
+

∑
i∈J2

t(i)−1∑
τ=0

ciz
dτki

ζt(i)−τ (zdτki + 1)
.

This new function satisfies

ζs(zd) = s(z) +
∑
i∈J1

ciz
ki

ζt(i)(zki − 1)
−

∑
i∈J2

ciz
ki

ζt(i)(zki + 1)
(2.12)

= s(z) +
∑
i∈J1

ci

ζt(i)
−

∑
i∈J2

ci

ζt(i)
+

∑
i∈J1

ci

ζt(i)(zki − 1)
+

∑
i∈J2

ci

ζt(i)(zki + 1)
.

Since all polynomials zki − 1, zki + 1 (i = 1, . . . ,m) divide zL − 1, where L := 2 lcm(k1, . . . , km),
it follows from [Nis97, Lemma 1] that s must be of the form

s(z) =
a(z)

zL − 1

with some a ∈ C[z]. By considering poles on the right-hand side of the first line of (2.12), one
easily concludes a 6= 0. Moreover, considering the same line near ∞, we obtain deg a ≤ L, whence
σ := s(∞) ∈ C and s1(z) := s(z) − σ tends to 0 as z → ∞. All in all, we conclude from the second
line of (2.12)

ζs1(zd) = s1(z) +
∑
i∈J1

ci

ζt(i)(zki − 1)
+

∑
i∈J2

ci

ζt(i)(zki + 1)

= s1(z) +
m∑
i=1

ci

ζt(i)(zki − 1)
−

∑
i∈J2

2ci

ζt(i)(z2ki − 1)
.

Let now d|2ki exactly for i ∈ {i(1), . . . , i(p)} (i ∈ J2, clearly such i can exist only if d is even),
and write 2ki = d`i for these i. Then d - `i and the `i’s are distinct. Assume that j(1), . . . , j(q) are
those values i ∈ J2 with d - 2ki. Since an equation `i(u) = 2kj(v) leads to the contradiction d|ki(u), the
intersection {`i(1), . . . , `i(p)} ∩ {2kj(1), . . . , 2kj(q)} is empty. It follows that the rational function

S(z) := s1(z) +

p∑
u=1

2ci(u)

ζt(i(u))+1(z`i(u) − 1)
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satisfies

ζS(zd)− S(z) =
m∑
i=1

ci

ζt(i)(zki − 1)
−

p∑
u=1

2ci(u)

ζt(i(u))+1(z`i(u) − 1)
−

q∑
v=1

2cj(v)

ζt(j(v))(z2kj(v) − 1)
, (2.13)

where, without loss of generality, we may assume `i(1) > · · · > `i(p) and 2kj(1) > · · · > 2kj(q).
The possible poles on both sides of (2.13) are roots of unity. If there ever is a pole, let a primitive

Nth root of unity be one of these on the left-hand side with maximal N . Crucial to our final reasoning
will be the fact d|N .

Indeed, this divisibility property follows from the proof of [BV15c, Lemma 3.3], but, for the sake
of completeness, we briefly explain here the reasoning. For this purpose, we may write down the
partial fraction decomposition of S as

S(z) =
∑
δ|L

sδ(z) with sδ(z) :=
δ−1∑
j=0

(j,δ)=1

sδ,j

z − ζjδ
,

where the sδ,j ’s are complex constants and ζδ := e2πi/δ.
From this definition of sδ for positive divisors δ of L we obtain

sδ(z
d) =

δ−1∑
j=0

(j,δ)=1

sδ,j

zd − ζjδ
=

δ−1∑
j=0

(j,δ)=1

sδ,j

d−1∑
κ=0

1

dζ
(j+κδ)(d−1)
dδ (z − ζj+κδdδ )

. (2.14)

Suppose, from now on, p
ν(1)
1 · . . . · pν(ω)

ω to be the canonical factorization of d. Assume that p1, . . . , pσ
are not divisors of δ but pσ+1, . . . , pω are, where we have to consider the cases σ = 0, . . . , ω. Then we
have the following equivalence

(j, δ) = 1 ⇐⇒ (j + κδ, δ) = (j + κδ, dδ/
∏σ

i=1
p
ν(i)
i ) = 1

with the usual convention here and later that empty products (or sums) equal 1 (or 0, respectively).
Now, any positive divisor D of p1 ·. . .·pσ is relatively prime to δ, whence there are precisely d

D numbers
κ ∈ {0, . . . , d − 1} satisfying D|(j + κδ). Thus, by the well-known inclusion-exclusion principle, we
can say that, for fixed coprime j, δ, the number of κ ∈ {0, . . . , d − 1} such that j + κδ is prime to

p1 · . . . ·pσ (or equivalently to
∏σ
i=1 p

ν(i)
i ) equals d

∏σ
i=1(1−1/pi). Therefore we can note that, for fixed

coprime j, δ, there are exactly d
∏σ
i=1(1 − 1/pi) values κ ∈ {0, . . . , d − 1} such that (j + κδ, dδ) = 1

holds. Hence we conclude

sδ(z
d) =

dδ−1∑
j=0

(j,dδ)=1

sδ,j−[j/δ]δ

dζ
j(d−1)
dδ (z − ζjdδ)

+ Σδ(z) (2.15)

from the double sum in (2.14). The rational function Σδ in (2.15) vanishes identically in case σ = 0,
whereas, in the cases 1 ≤ σ ≤ ω, it may have poles at certain primitive ρth roots of unity but with
ρ < dδ only. Since sδ 6= 0 is equivalent to the fact that not all sδ,j−[j/δ]δ, j ∈ {0, . . . , dδ−1} and prime

to dδ, vanish, we conclude from (2.15) that, in this case of δ, the difference sδ(z
d) − sδ(z) has poles

at (dδ)th roots of unity. Thus, the number N defined after (2.13) must be of the form dδ, whence
d|N holds.

If the set J2 is empty (p+ q = 0), then we obtain N = k1 from the right-hand side of (2.13), hence
d |k1, a contradiction, and it suffices to subsequently consider only the case p+ q ≥ 1.

In case d = 2, we have q = 0 and ki = `i for all i ∈ J2. Thus, the right-hand side of (2.13) is of
the form

m∑
i=1

ci

ζt(i)(zki − 1)
−

∑
i∈J2

2ci

ζt(i)+1(zki − 1)
,
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whence again N = k1, a contradiction.
We next suppose d ≥ 3. If k1 6= max{`i(1), . . . , `i(p), 2kj(1), . . . , 2kj(q)}, we are led to the same

contradiction as before. Hence, let k1 be equal to that maximum. This implies k1 = 2kj(1) observing

that `i(1) < k1 follows from d ≥ 3. If c1/ζ
t(1) 6= 2cj(1)/ζ

t(j(1)), we have our contradiction, whence

c1 = 2cj(1)ζ
t(1)−t(j(1)) must hold. We may now continue in the same way and obtain a contradiction

unless {k1, . . . , kp+q} = {`i(1), . . . , `i(p), 2kj(1), . . . , 2kj(q)}. Moreover, for each i ∈ {1, . . . , p+ q}, there

must exist a unique µ(i) ∈ {i(1), . . . , i(p), j(1), . . . , j(q)} such that ci = 2cµ(i)ζ
t(i)−t(µ(i))−δ with δ = 1

if µ(i) ∈ {i(1), . . . , i(p)} and δ = 0 otherwise. If p + q < m, then N = kp+q+1 holds under the
preceding conditions, and we end up at our ‘standard’ contradiction. Therefore, the only remaining
possibility is that p+ q = m,J1 = ∅. In this case, the above conditions lead to c1 = 2jζνc1 with some
j ∈ {1, . . . ,m}, ν ∈ Z, and this contradiction completes the proof of Lemma 2. �

We next apply some ideas introduced in [Nis02],[NTT99] (see also [BV14],[BV15b]) to the functions

gi,d(z) := Gd(zmi), fi,d(z) := Fd(zmi) (i = 1, . . . , n),

the Gd,Fd as defined in (1.4). We obtain from Lemma 2 and [BV14, Lemma 5] the following

Lemma 3. Under the assumptions of Lemma 2, the functions

gi,dj (z) =

∞∑
h=0

ahz
mid

jh

1− zmidjh
(i ∈ I1, j ∈ N), fi,dj (z) =

∞∑
h=0

ahz
mid

jh

1 + zmidjh
(i ∈ I2, j ∈ N)

are algebraically independent over C(z).

Similarly to the proof of [BV14, Theorem 3], and noting that condition (1.5) implies (1.3), this
lemma leads to the following result.

Theorem 6. Let m1, . . . ,mn be n ≥ 2 positive integers satisfying (1.5), and let α ∈ Q×∩ D. Then
the numbers Gr(αi) with i ∈ I1, r ∈ N \ {1}, and Fr(αi) with i ∈ I2, r ∈ N \ {1} are algebraically
independent. In particular, the numbers Gr(αi) (i ∈ I1, r ∈ N \ {1}), Fr(αi) (i ∈ I2, r ∈ N \ {1}) are
algebraically independent.

3. Proof of Theorems 2 and 3

To this end, we denote I1 := {i : αi = αmi}, I2 := {i : αi = −αmi}. Clearly, these Ij satisfy the
conditions of Lemma 2. Further, let

hi(ζ, z) := Gd(ζ, z
mi) for i ∈ I1, hi(ζ, z) := Gd(ζ,−zmi) for i ∈ I2,

where Gd(a, z) (and its F -analogue) is defined in (2.9). If i ∈ I2, then hi(ζ, z) = −Fd(ζ, zmi) for odd
d, and hi(ζ, z) = Gd(ζ, z

mi) + 2zmi/(z2mi − 1) for even d. Therefore, Lemma 2 immediately gives

Lemma 4. Let m1, . . . ,mn be n ≥ 2 positive integers satisfying (1.3). Then, for any root of unity ζ,
the functions hi(ζ, z) (i = 1, . . . , n) are linearly independent over C modulo C(z).

By using [Nis96, Theorem 3.3.11], this lemma provides us directly Theorem 2.
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Lemma 4 leads also to an analogue of Lemma 3 for the functions

hi,d(z) := gi,d(z) if i ∈ I1, hi,d(z) :=

∞∑
h=0

ah(−zmi)dh

1− (−zmi)dh
if i ∈ I2.

Lemma 5. If the assumptions of Lemma 4 are satisfied, then the functions hi,dj (z) (i = 1, . . . , n, j ∈
N) are algebraically independent over C(z).

Analogously to Theorem 6, this lemma implies Theorem 3.

4. Proof of Theorems 4 and 5

In the following, we want to study algebraic independence of the functions Gd and Fd. By (1.6), it
is natural to suppose d ≥ 3 for this consideration. First we note that, for any m ∈ N, the functional
equation

ζr(zd) = r(z) +
zm

zm − 1
− 2z2m

z2m − 1
+

zm

zm + 1
.

has r(z) = 0 as a solution. Thus, the functions Gd(ζ, z
m), Gd(ζ, z

2m), and Fd(ζ, z
m) are linearly

dependent over C. More generally, if
mj

2mi
∈ dZ

holds, then the functions gj(z), gi(z), and fi(z) introduced in (2.10) are linearly dependent over C
modulo C(z). Indeed, if mj = dt2mi with t ≥ 0, then the rational function

r1(z) := −2

t−1∑
τ=0

zd
τ2mi

ζt−τ (zdτ2mi − 1)

satisfies

ζr1(zd) = r1(z)− 2zmj

zmj − 1
+

zmi

ζt(zmi − 1)
+

zmi

ζt(zmi + 1)

implying
r1(z) = −2gj(z) + ζ−tgi(z)− ζ−tfi(z).

Furthermore, if dtmj = 2mi with t > 0, then

r2(z) := 2

t−1∑
τ=0

zd
τmj

ζt−τ (zd
τmj − 1)

is a solution of

ζr2(zd) = r2(z)− 2ζ−t
zmj

zmj − 1
+

zmi

zmi − 1
+

zmi

zmi + 1

implying
r2(z) = −2ζ−tgj(z) + gi(z)− fi(z).

This makes it evident that we have to suppose condition (1.7) for our linear independence considera-
tions.

Lemma 6. Let m1, . . . ,mn be n ≥ 2 positive integers, let d ≥ 3, and assume that conditions (1.3) and
(1.7) are satisfied. Then, for any root of unity ζ, the functions Gd(ζ, z

m1), . . . , Gd(ζ, z
mn), Fd(ζ, z

m1),
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. . . , Fd(ζ, z
mn) are linearly independent over C modulo C(z).

Proof. Assume, contrary to Lemma 6, that there exists a C := (b1, . . . , bn, c1, . . . , cn) ∈ C2n \{0} such
that r(z) :=

∑n
i=1(bigi(z) + cifi(z)) is a rational function satisfying

ζr(zd) = r(z) +

n∑
i=1

bi
zmi

zmi − 1
−

n∑
i=1

ci
zmi

zmi + 1
.

We may now argue as in the proof of Lemma 2 to obtain

ζS(zd)− S(z) =
n∑
i=1

bi + ci

ζt(i)(zki − 1)
−

p∑
u=1

2ci(u)

ζt(i(u))+1(z`i(u) − 1)
−

q∑
v=1

2cj(v)

ζt(j(v))(z2kj(v) − 1)
(4.16)

as an analogue of (2.13), where p+q = n and some of bi, ci may vanish. An equation ki = 2kj(v) is im-
possible, by (1.7). Thus, ki 6= 2kj(v) for all pairs (i, j(v)), and similarly ki 6= `i(u) for all pairs (i, i(u)).
Further, {`i(1), . . . , `i(p)} ∩ {2kj(1), . . . , 2kj(q)} = ∅ was shown in the proof of Lemma 2. All in all,
this means that {k1, . . . , kn, `i(1), . . . , `i(p), 2kj(1), . . . , 2kj(q)} is a set of 2n distinct positive integers,
each one not divisible by d. Moreover, condition C 6= 0 implies (b1 + c1, . . . , bn + cn, c1, . . . , cn) 6= 0.
Therefore, if we now define N for the equation (4.16) as we did it for (2.13), then we get d|N from
the left-hand side of (4.16), but clearly d - N from its right-hand side, a contradiction. �

To establish Theorem 4, we proceed similarly to our proof of Theorem 2 in the previous section.
Moreover, the following analogue of Lemma 5 holds.

Lemma 7. Let m1, . . . ,mn be n ≥ 2 positive integers, let d ≥ 3, and assume that conditions (1.3)
and (1.7) are satisfied. Then the functions gi,dj (z), fi,dj (z) (i = 1, . . . , n; j ∈ N) are algebraically
independent over C(z).

Outline of Proof. By noting that (1.8) implies (1.3) and (1.7) for any d ≥ 3, the proof of Theorem 5
runs very much parallel to that of Theorem 6. �
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