Nonparametric Laguerre estimation in the multiplicative censoring model - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2016

Nonparametric Laguerre estimation in the multiplicative censoring model

Résumé

We study the model $Y_i=X_iU_i, \; i=1, \ldots, n$ where the $U_i$'s are {\em i.i.d.} with $\beta(1,k)$ density, $k\ge 1$, the $X_i$'s are {\em i.i.d.}, nonnegative with unknown density $f$. The sequences $(X_i), (U_i),$ are independent. We aim at estimating $f$ on ${\mathbb R}^+$ from the observations $(Y_1, \dots, Y_n)$. We propose projection estimators using a Laguerre basis. A data-driven procedure is described in order to select the dimension of the projection space, which performs automatically the bias variance compromise. Then, we give upper bounds on the ${\mathbb L}^2$-risk on specific Sobolev-Laguerre spaces. Lower bounds matching with the upper bounds within a logarithmic factor are proved. The method is illustrated on simulated data.
Fichier principal
Vignette du fichier
LaguerreMult24_05_16.pdf (659.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01252143 , version 1 (07-01-2016)
hal-01252143 , version 2 (03-05-2016)
hal-01252143 , version 3 (24-05-2016)

Identifiants

Citer

Denis Belomestny, Fabienne Comte, Valentine Genon-Catalot. Nonparametric Laguerre estimation in the multiplicative censoring model. Electronic Journal of Statistics , 2016, 10 (2), pp.3114-3152. ⟨10.1214/16-EJS1203⟩. ⟨hal-01252143v3⟩
257 Consultations
223 Téléchargements

Altmetric

Partager

More