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Introduction

Consider observations Y 1 , . . . , Y n such that [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] Y i = X i U i , i = 1, . . . , n.

where (X i ) are i.i.d. nonnegative random variables with unknown density f , (U i ) are i.i.d. with β(1, k) density given by f U (u) := ρ k (u) = k(1 -u) k-1 1 I [0,1] (u), with k ≥ 1 and the sequences (X i ), (U i ) are independent. For k = 1, i.e. if U i has uniform density on [0, 1], model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] is refered to as the multiplicative censoring model and has been widely investigated in the past decades. It was first introduced in [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF] and covers several important statistical problems, such as estimation under monotonicity constraints or deconvolution of an exponential variable. Such a model is usually applied in survival analysis (see e.g. van Es et al. (2000)). Numerous papers deal with the estimation of f by various nonparametric methods. A nonparametric maximum likelihood approach is investigated in [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF], [START_REF] Vardi | Large sample study of empirical distributions in a random-multiplicative censoring model[END_REF], [START_REF] Asgharian | Large-sample study of the kernel density estimators under multiplicative censoring[END_REF]. However, in the latter papers, authors assume that a m-sample of direct observations X 1 , . . . , X m is available in addition to the Y -sample and the method does not apply to the case m = 0. Using only the Y -sample, projection methods have been proposed. In [START_REF] Andersen | Multiplicative censoring: density estimation by a series expansion approach[END_REF], considering the estimation of f as an inverse problem, the authors apply singular value decomposition in different bases. Their procedure is not adaptive. [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF][START_REF] Abbaszadeh | Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk[END_REF] use projection estimators on wavelets bases to estimate the density f and its derivatives. They provide adaptive estimators, upper bounds of the L p -risks but no lower bounds. Kernel estimators of f and of the survival function F (x) = 1 -F (x), where F is the cumulative distribution function, are studied in [START_REF] Brunel | Nonparametric density and survival function estimation in the multiplicative censoring model[END_REF]. Extensions of model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] are considered in [START_REF] Chesneau | Wavelet estimation of a density in a GARCH-type model[END_REF] who assumes that the U i 's are a product of independent uniform variables and the sequence (X i ) is α-mixing.

In this paper, we consider the extension of the multiplicative sensoring model to the case where U i has β(1, k) distribution and propose nonparametric estimators of f built as projection estimators on a Laguerre basis under the assumption that f ∈ L 2 (R + ). Laguerre bases, which are orthonormal bases of L 2 (R + ), are well fitted for nonparametric estimation of R + -supported functions. Moreover, the support of the density under estimation being hidden by the noise, it is an advantage to have basis functions with non compact support. These bases have been recently used by several authors, for instance, in [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF], for Laplace deconvolution of a signal observed with noise, in [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF], for estimation of the mixing distribution of a Poisson mixture model, in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF], for deconvolution of densities on R + . Laguerre bases are related to Sobolev-Laguerre spaces which were introduced in [START_REF] Shen | Stable and efficient spectral methods in unbounded domains using Laguerre functions[END_REF] and with more details in Bongioanni and Torrea (2007). The regularity properties of a function f belonging to a Sobolev-Laguerre space are characterized by the rate of decay of the coefficients of the development of f in the Laguerre basis. The link between projection coefficients and regularity conditions in these spaces has been described in [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF]. In the present paper, we choose a Laguerre basis and first establish explicit formulae linking the projection coefficients of f k,Y , the density of Y in model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF], in the Laguerre basis to those of f . This allows to define a collection ( fm ) of estimators of f . We obtain a L 2 -risk bound for fm . Then, we propose a data-driven choice mk of the dimension m leading to an adaptive estimator f mk . Using Sobolev-Laguerre regularity spaces, we determine upper bounds for the rate of convergence of the L 2 -risk. Then, we study lower bounds and prove that upper and lower bounds match up to a logarithmic term. The lower bound on Sobolev-Laguerre balls is difficult to obtain and follows several technical steps. We start proving it in the case of direct observations of the X i 's, that is in the simple density model and then we obtain it for model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] when k = 1. To avoid more technical developments, we just indicate how to extend it for all integer k.

In Section 2, we describe the Laguerre basis, build the projection estimators of f and provide the upper bound of their L 2 -risk. This leads to the adaptive procedure. In Section 3, we introduce the Sobolev-Laguerre regularity spaces and obtain upper bounds on the rate of convergence of the projection estimators on Sobolev-Laguerre balls. To prove lower bounds, one can follow the general scheme described, e.g. in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]. However, in the considered situation it is more natural to construct alternatives as finite combinations of Laguerre functions with coefficients taking values in {0, 1}. Such a construction makes the problem of attributing a hypothesis to Sobolev-Laguerre ball straightforward. Then the lower bounds are obtained via a modification of the Hamming distance and a corresponding extension of the Varshamov-Gilbert bound. In Section 4, we implement the adaptive estimators of f , based on direct observations X 1 , . . . , X n and on multiplicative censored observations Y 1 , . . . , Y n for k = 1, 2 and for various densities f . The method provides very good results for direct observations, which remain convincing for censored data. Extensions and concluding remarks are given in Section 5.

Projection estimators in the Laguerre basis

2.1. Laguerre basis. Below we denote the scalar product and the L 2 -norm on L 2 (R + ) by:

∀s, t ∈ L 2 (R + ), s, t = +∞ 0 s(x)t(x)dx, t 2 = +∞ 0 t 2 (x)dx.
Consider the Laguerre polynomials (L j ) and the Laguerre functions (ϕ j ) given by

L j (x) = j k=0 (-1) k j k x k k! , ϕ j (x) = √ 2L j (2x)e -x 1 I x≥0 , j ≥ 0.
The collection (ϕ j ) j≥0 constitutes a complete orthonormal system on L 2 (R + ), and is such that (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]):

(

2) ∀j ≥ 1, ∀x ∈ R + , |ϕ j (x)| ≤ √ 2.
We assume that f ∈ L 2 (R + ), so that we can develop f on the Laguerre basis:

f = j≥0 a j (f )ϕ j , a j (f ) = f, ϕ j .
Let S m be the m-dimensional subspace of L 2 (R + ) spanned by (ϕ 0 , ϕ 1 , . . . , ϕ m-1 ). The function

(3) f m = m-1 j=0 a j (f )ϕ j
is the orthogonal projection of f on S m . Below, we define estimators âj of a j (f ) from the observations Y 1 , . . . , Y n . This leads to a collection of projection estimators ( fm = m-1 j=0 âj ϕ j , m ≥ 1).

2.2.

Preliminary properties and formulas. Let f k,Y denote the density of Y i given by [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF].

A straightforward computation leads to

(4) f k,Y (y) = k ∞ y 1 - y u k-1 f (u) u du 1 I y≥0 .
Moreover, another simple computation yields:

(5)

f k,Y ≤ f E( 1 √ U 1 ) < +∞.
Thus, f k,Y belongs to L 2 (R + ). In this paragraph, we prove that the coefficients (a j (f ), j ≥ 0) are linked with the coefficients (a j (f k,Y ) = f k,Y , ϕ j , j ≥ 0) of the density f k,Y on the Laguerre basis by a linear relation. This requires preliminary steps.

Let us remark that a density satisfying (4) is k-monotone, i.e. that (-1) ℓ f

(ℓ)
k,Y is nonincreasing and convex for ℓ = 0, . . . , k-2 if k ≥ 2 and simply nonincreasing if k = 1. This property is proved in [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF]. Therefore, model (1) covers the case of observations with k-monotone densities. Note that k-monotone densities are considered in Balabdaoui andWellner (2007, 2010) or Chee and Wang (2014), from the point of view of estimating f k,Y (not f ) under the k-monotonicity constraint.

In Proposition 2.1 below, we state an inversion formula giving f from f k,Y defined by (4) proved in [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF]. For convenience of the reader, we give a proof in the appendix. Proposition 2.1. Let f k,Y and f be linked by formula (4) and set

F (x) = x 0 f (t) dt (resp. F k,Y (y) = y 0 f k,Y (t) dt). Then we have, for any y ≥ 0, for k ≥ 1, (6) f (y) = (-1) k k! y k f (k) k,Y (y), (7) 
F (y) = F k,Y (y) -yf k,Y (y) + • • • + (-1) k-1 (k -1)! y k-1 f (k-2) k,Y (y) + (-1) k k! y k f (k-1)
k,Y (y).

Note that, setting f 0,Y = f, F 0,Y = F , these formulae contain the case where Y i = X i (U i = 1). So, below, we consider the case k = 0 in our results as the case of direct observations of the X i 's. With the two following propositions, we give the links between the coefficients of f and f k,Y on the Laguerre basis. Proposition 2.2. Assume that EX k-1 < +∞. Then, for all j ≥ 0 and k ≥ 1, (8)

a j (f ) = f, ϕ j = 1 k! f k,Y , (y k ϕ j ) (k)
Proposition 2.2 provides a simple way of defining estimators of a j (f ) by replacing the righthand side of ( 8) by its empirical counterpart based on the observed Y -sample. Moreover, the proof relies explicitly on the fact that the ϕ j 's are not compactly supported. This is due to the integrations by parts used to obtain the result. Proposition 2.3 hereafter gives another way of expressing the coefficients and is helpful for studying the rates of estimators. Define the matrices

H (k)
m with size m × (m + k) by

H (0) m = Id m , and for k ≥ 1, [H (k) m ] j,ℓ = h j,k ℓ for ℓ = sup((j -k), 1), . . . , j + k, [H (k) m ] j,ℓ = 0 otherwise, where (9) h j,k ℓ = k p=|ℓ-j| b j,p ℓ k p 1 p! ,
and the (b j,p ℓ )'s can be recursively computed by

b j,0 ℓ = δ ℓ,j , b j,p+1 ℓ = - ℓ + 1 2 b j,p ℓ+1 -(p + 1 2 )b j,p ℓ + ℓ 2 b j,p ℓ-1
for p ≥ 0.

Proposition 2.3. By convention, we set ϕ j = 0 if j ≤ -1 and define the column vectors of coefficients of f on (ϕ 0 , . . . , ϕ m-1 ) and of f k,Y on (ϕ 0 , . . . , ϕ m+k-1 ):

a m-1 (f ) := (a j (f )) 0≤j≤m-1 , a m+k-1 (f k,Y ) = (a j (f k,Y )) 0≤j≤m+k-1 .
Then, a m-1 (f ) = H (k) m a m+k-1 (f k,Y ). Moreover, the coefficients h ℓ j,k satisfy

(10) ∀ℓ ≤ j + k, |h j,k ℓ | ≤ C ′ k (j + k) k .
For each k, the coefficients have to be computed. In our simulations (Section 4), we use the two values k = 1, 2 and the coefficients are the following. For k = 1, [H

m ] j,ℓ = 0 if ℓ = j, j -1, j + 1, [START_REF] Brunel | Nonparametric density and survival function estimation in the multiplicative censoring model[END_REF] [H (1) m ] j,j-1 = -

j 2 , [H (1) m ] j,j = 1 2 , [H (1) m ] j,j+1 = j + 1 2 . For k = 2, [H (2) 
m ] j,ℓ = 0 if ℓ = j, j -1, j + 1, j -2, j + 2 and [H (2) m ] j,j-2 = j(j -1) 8 , [H (2) m ] j,j-1 = - 1 2 j, [H (2) m ] j,j = - j 2 + j -1 4 , [H (2) m ] j,j+1 = 1 2 (j + 1), [H (2) m ] j,j+2 = (j + 1)(j + 2) 8 .
For the study of the risk bounds, we need evaluate two norms of the matrix H m | F . We recall their definitions. The squared spectral radius of the matrix A, ρ 2 (A) = λ max (A t A), is equal to the largest eigenvalue of A t A, where A t denotes the transpose of A. The Frobenius squared norm of A is given by |A| 2 F = Tr(A t A) where Tr(M ) is the trace of matrix M . The following result is deduced from Proposition 2.3. 

(k)m 2k+1 ≤ |H (k) m | 2 F ≤ mρ 2 (H (k) m ) ≤ C(k)m(m + k) 2k . 2.
3. Projection estimator and upper risk bound. Proposition 2.3 leads us to define a collection of projection estimators of f by:

(12) fm = m-1 j=0 âj ϕ j , âm-1 = (â j ) 0≤j≤m-1 = H (k) m âm+k-1 (Y ), m ≥ 1 where âm+k-1 (Y ) = [(â j (Y )) 0≤j≤m+k-1
] and âj (Y ) is defined by

(13) âj (Y ) := 1 n n i=1 ϕ j (Y i ).
Note that, by Proposition 2.2, we have the other formula

: âj = (1/n) n i=1 1 k! (y k ϕ j ) (k) (Y i ).
The following proposition gives the risk bound for the estimator fm .

Proposition 2.4. Let fm , f m be given by ( 12) and (3). Then we have, for all k, m ≥ 0,

E( fm -f 2 ) ≤ f -f m 2 + 2 [(m + k)ρ 2 (H (k) m )] ∧ [ f k,Y ∞ |H (k) m | 2 F ] n ,
where x ∧ y = inf(x, y). Moreover, it holds

E( fm -f 2 ) ≤ f -f m 2 + ζ k (m + k) 2k+1 n with ζ k = 2[(2k + 1)C ′ k ] 2 where C ′ k is the constant in Proposition 2.2, formula (10) 
. Let us discuss the two terms in the infimum appearing in the first bound of Proposition 2.4. In light of Corollary 2.1, we have

|H (k) m | 2 F ≤ mρ 2 (H (k)
m ) but f k,Y ∞ may be infinite. On the other hand, the two terms have the same order, given in second inequality of Proposition 2.4.

Adaptive estimation.

The risk bound decomposition of Proposition 2.4 classically involves a squared bias term f -f m 2 = j≥m a 2 j (f ) which is decreasing with m and a variance term of order m 2k+1 /n which is increasing with m. Therefore, to select relevantly m, we have to perform a compromise. This can be done asymptotically by evaluating rates of convergence (see below), or, as we do now, on finite sample by a model section strategy. In view of the discussion on the risk bound, we define for k ≥ 0, [START_REF] Comte | Laplace deconvolution and its application to Dynamic Contrast Enhanced imaging[END_REF] mk = arg min

m∈M (k) n -fm 2 + pen k (m) , pen k (m) = κ mρ 2 (H (k) m ) n ,
where

M (k) n = {m ∈ N * , mρ 2 (H (k) m ) ≤ n}.
Note that the definition of mk mimicks the squared-bias variance compromise as -fm

2 is an estimator of -f m 2 which is, up to the constant f 2 , equal to f -f m 2 and pen k (m) is proportional to the variance term. As H

(k) m is explicit, the computation of ρ 2 (H (k)
m ) is obtained by a numerical algorithm (function eigs applied to (H

(k) m ) t (H (k) m ) in Matlab). Theorem 2.1.
Assume that E(1/X) < +∞. Let fm be given by [START_REF] Chee | Least squares estimation of a k-monotone density function[END_REF] and mk by [START_REF] Comte | Laplace deconvolution and its application to Dynamic Contrast Enhanced imaging[END_REF]. There exists a constant κ 0 such that for any κ ≥ κ 0 , we have

E( f mk -f 2 ) ≤ C 1 inf m∈M (k) n f -f m 2 + pen k (m) + C 2 n .
where C 1 is a numerical constant (C 1 = 4 suits) and C 2 depends on k and E(1/X).

It follows from Theorem 2.1 that the estimator f mk is adaptive in the sense that its risk automatically realizes the squared bias-variance compromise.

The constant κ 0 provided by the proof is generally not optimal; finding the optimal theoretical value of κ in the penalty is far from easy (see for instance [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] in a Gaussian regression model). This is why it is standard to calibrate the value κ in the penalty by preliminary simulations.

Rates of convergence on Sobolev-Laguerre balls

We now study the asymptotic point of view to find the dimension m opt which realizes the bias variance compromise of the risk bound given in Proposition 2.4. We have already identified the rate of the variance term as m 2k+1 /n. We now look at the bias term f -f m 2 . Classically, the bias rate is evaluated by choosing a regularity space for the function f . Sobolev-Laguerre spaces are well fitted to our framework.

3.1. Sobolev-Laguerre spaces. For s ≥ 0, the Sobolev-Laguerre space with index s (see Bongioanni and Torrea (2007)) is defined by: ( 15)

W s = {h : (0, +∞) → R, h ∈ L 2 ((0, +∞)), |h| 2 s := k≥0 k s a 2 k (h) < +∞}.
where

a k (h) = +∞ 0 h(u)ϕ k (u)du.
For s integer, the property |h| 2 s < +∞ can be linked with regularity properties of the function h. We give details in the Appendix. We define the ball W s (D) :

W s (D) = h ∈ W s , |h| 2 s ≤ D . 3.2.
Upper rates. We can deduce from Proposition 2.4 the rates of convergence of the estimator on Sobolev-Laguerre balls. For

f ∈ W s (D), we have f -f m 2 = j≥m a 2 j (f ) ≤ Dm -s
. This yields: Corollary 3.1. Assume that f ∈ W s (D). Let fm be given by [START_REF] Chee | Least squares estimation of a k-monotone density function[END_REF]. Then choosing

m opt = [n s+2k+1 ] gives E( fmopt -f 2 ) ≤ C(D, s, k)n -s/(s+2k+1)
where C(D, s, k) is a constant depending on D, s and k.

The rate may be interpreted as follows: we have an inverse problem, where s measures the smoothness and k the ill-posedeness.

For direct observations of X 1 , . . . , X n (k = 0), this rate is the same as the one obtained by Juditsky and Lambert-Lacroix (2004) for estimation of a density on R, over Hölder classes of densities.

Faster rates of convergence may be obtained if the bias is smaller. Exponential distributions provide examples of such a case. If X has exponential distribution E(θ), θ > 0, then the coefficients are given by a

k (f ) = √ 2[θ/(θ + 1)] ((θ -1)/(θ + 1)
) k and the bias can be explicitly computed,

f -f m 2 = ∞ k=m a 2 k (f ) = θ 2 θ -1 θ + 1 2m .
Then the bias is exponentially decreasing and the rate of convergence is of order

[log(n)] 2k+1 /n for m opt = log(n)/ρ, ρ = | log[|(θ -1)/(θ + 1)|]|.
The result can be extended to Gamma and mixed Gamma densities, see Comte and Genon-Catalot (2015), [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]. Thus, the Laguerre basis method provides excellent rates for the class of mixed gamma densities. Nevertheless, we stress that the adaptive procedure does not require any knowledge on the rate of the bias and still automatically realizes the finite sample bias-variance compromise and also automatically reaches the best possible asymptotic rate. So far, we have used that the ϕ j s are bounded. However, [START_REF] Szegö | Orthogonal polynomials[END_REF] p.198 and p. 241. gives the following asymptotic bound: ∀a > 0, sup x>a |ϕ j (x)| ≤ Cj -1/4 . Therefore, for densities with support [a, +∞[ with a > 0, we have j 0 ≤j≤m E(ϕ 2 j (Y 1 )) ≤ C ′ m 1/2 and the variance term of fm has order O(m 2k+1/2 /n) instead of O(m 2k+1 /n). By choosing m opt = [n s+2k+(1/2) ], the upper rate becomes on this restricted class of densities, of order O(n -s/(s+2k+(1/2)) ). Lower bounds for this class would require a completely different proof.

Lower bounds.

We prove that the upper rate obtained in Proposition 3.1 is optimal on Sobolev-Laguerre balls. This reveals unexpectedly difficult. We first treat the case k = 0 (U i = 1, direct observations of X i ). Then, we deal with k = 1 and give indications on how to extend the result to all k > 1. The upper bound matches the lower bound up to a logarithmic term. Theorem 3.1. Assume that s is an integer, s > 1 and X 1 , . . . , X n are observed. Then for any estimator fn , for any ǫ > 0 and for n large enough,

sup f ∈W s (D) E f fn -f 2 ψ n , ψ n = n -s/(s+1) / log (1+ǫ)/(s+1) (n).
The proof is based on Theorem 2.7 in Tsybakov (2009), and induces several steps. The main difficulty of the construction is to ensure that the density alternative proposal is really a density on R + , and is in particular nonnegative.

Next we consider the case k = 1, but the step from k = 0 (case of direct observation of X) to k = 1 suggests how to get a general result, see Remark 6.1 in the proof. However, given technicalities of the proof, we detail only the case k = 1. Theorem 3.2. Assume that s is an integer, s > 1 and consider the model Y = XU , for X and U independent, U ∼ U ([0, 1]) with only Y observed. Then for any estimator fn of f the density of X, for any ǫ > 0 and for n large enough,

sup f ∈W s (D) E f fn -f 2
ψn , ψn = n -s/(s+3) (log n) (1+ǫ)/(1+s/3) .

Simulation results

We implement the adaptive estimators f mk of f based

• on direct observations X 1 , . . . , X n , • on multiplicative censored observations Y 1 , . . . , Y n , Y i = X i U i with U i ∼ U ([0, 1]), • on multiplicative censored observations Y 1 , . . . , Y n , Y i = X i U i with U i ∼ β(1, 2 
). We consider for f the densities (i) Gamma(3, 1/2), (ii) a Gamma mixture: cX with X ∼ 0.4 Gamma(2,1/2)+0.6 Gamma(16,1/4) and c = 5/8. (iii) Lognormal(0.5, 0.5) (exponential of a Gaussian with mean 0.5 and variance 0.5 2 ).

(iv) 5X with X ∼ Beta(4, 5), a beta distribution.

All factors and parameters are chosen to have the true densities with the same scales. After preliminary simulation experiments, direct estimation is penalized with κ 1 = 0.75. For U following a uniform distribution on [0, 1], we use κ 2 = 0.25 and κ 3 = 0.025 for U following a

β(1, 2) distribution on [0, 1].
Beam of estimators are given in Figures 12and show clearly the performance of the method via variability bands. The Laguerre basis provides excellent estimation when using direct data, and the problem gets more difficult in presence of censoring. Increasing k (we have k = 1 when U ∼ U ([0, 1]) and k = 2 when U ∼ β(1, 2)) makes the problem more difficult. This is why Gamma mixtures are hard to reconstruct in presence of multiplicative censoring (see Figure 2). Selected dimensions can be of various orders (between 3 and 12 in our examples) and vary or be very stable (see the standard deviations). 

n = 400 n = 2000 density Kernel Laguerre U ([0, 1]) β(1, 2) Kernel Laguerre U ([0, 1]) β(1, 2) γ(3,
U is U ([0, 1]) or β(1, 2).
Table 1 gives the Mean Integrated Squared Error (MISE) for two sample sizes (n = 400 and n = 2000) and the three cases for the same X sample; ISE are computed on the interval of observation. The kernel estimator implemented for comparison is obtained via the function ksdensity of Matlab. The projection method is in general better than the kernel estimator, mX = 12.32 (2.32) mY,1 = 6.72 (0.45) mY,2 = 6.58 (0.50) with slight improvement for models (iii) and (iv), and a much more important one in the Gamma and in the mixed Gamma case of models (i) and (ii). This was expected as theoretical rates are better for Gamma or mixed Gamma when using Laguerre projection method. Clearly, the inverse problem faced in the multiplicative censoring case makes the problem more difficult and the MISEs higher.

Extensions and concluding remarks

In this paper, we propose a nonparametric adaptive estimator of the density f of X i in the model Y i = X i U i where X i are i.i.d. nonnegative random variables and the sequences (U i ) i and (X i ) i are independent. We develop the case of U i ∼ β(1, k) for k ∈ N, where k = 0 corresponds to the direct observation of the X i 's (i.e. U i ≡ 1). Using a Laguerre basis a collection of projection estimators is built and a date driven procedure is proposed to select the dimension of the projection space. The risk bound of the adaptive estimator provides a an automatic bias variance compromise which is non asymptotic. From the asymptotic point of view, we prove upper rates over Sobolev Laguerre balls. We obtain lower bounds matching with the previous rates up to a logarithmic factor, the proof of which requires specific extensions of the classical scheme.

The method can be extended to other noise distributions. As in Chesneau (2013), we can consider that U i = U 

a m-1 (f ) = H (1)
m H

(1)

m+1 . . . H (1) 
m+ℓ-1 a m+ℓ-1 (f

(ℓ)
Y ). Propositions 2.4 and 2.1 can be generalized without difficulty.

Another possible extension of the noise distribution is to consider that U i follows a β(r, k) distribution, r ≥ 1. Indeed, an inversion formula extending Proposition 2.1 holds. Denoting by f r,k,Y the density of

Y i = X i U i with U i ∼ β(r, k), we can prove (see Section 6) that if E(1/X r-1 ) < +∞ (16) f (x) = (-1) k x k+r-1 (r + k -1)(r + k -2) . . . r d k dx k f r,k,Y (x)
x r-1 .

Therefore, we can obtain an analogous of Proposition 2.3 and develop a complete study.

It is worth stressing that the model Z i = X i U i + V i can be treated by our approach. Indeed Laguerre functions are a convenient tool for deconvolution on R + , as done in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]. Moreover we provide a precise description of the strategy in the model

Z i = X i U i + V i in Belomestny et al. (2016).
Another way of treating the subject could be to take the logarithm of (1) and estimate the density of log(X) by deconvolution (mainly Fourier methods). This method can work for a large class of noise distributions. On the other hand, the function which is estimated is f log(X) , the density of log(X). The relation f X (x) = f log(X) (log(x))/x implies that the estimator is not defined in 0 and the integrated risk has to be computed on [a, +∞[, with a > 0. This is a significant drawback and justifies the use of the Laguerre strategy.

6. Proofs 6.1. Proof of Propositions 2.2 and 2.3 for k = 1. We first look at the case k = 1 before the general k-monotone case.

Set

f 1 = f 1,Y . We have f 1 , (yϕ j ) ′ = [f 1 (y)yϕ j (y)] y=+∞ y=0 + +∞ 0 f (y) y × yϕ j (y)dy = f, ϕ j .
This yields (8) for k = 1.

As yϕ ′ j (y)e y = √ 2y[2L ′ j (2y) -L j (2y)] is a polynomial with degree j + 1, it can be decomposed in the Laguerre polynomial basis of degree j + 1. There exist coefficients b j,1 ℓ such that

yϕ ′ j (y) = j+1 ℓ=0 b j,1 ℓ ϕ ℓ (y)
and using the specific properties of Laguerre polynomials we can compute the coefficient b j,1 ℓ . Let L (α) j be the generalized Laguerre polynomials given by Formula (22.3.9) in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] and L j = L (0) j . By (22.5.17) for m = 1 in Abramowitz and Stegun (1964), we have

(17) L ′ j (x) = -L (1) 
j-1 (x). Moreover, Formula (22.7.31) in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] gives [START_REF] Van Es | Isotonic inverse estimators for nonparametric deconvolution[END_REF] xL

(1) j (x) = (j + 1)[L j (x) -L j+1 (x)], and Formula (22.7.12) therein [START_REF] Jirak | Adaptive function estimation in nonparametric regression with one-sided errors[END_REF] xL j (x) = -(j + 1)L j+1 (x) + (2j + 1)L j (x) -jL j-1 (x).

We have to compute 2yL ′ j (2y) -yL j (2y) or tL ′ j (t) -t 2 L j (t). Combining relations ( 17)-( 19), we get

tL ′ j (t) - t 1 L j (t) = j + 1 2 L j+1 (t) - 1 2 L j (t) - j 2 L j-1 (t).
Thus, b j,1 ℓ = 0 for ℓ = j -1, j, j + 1 and

(20) b j,1 j-1 = - j 2 , b j,1 j = - 1 2 , b j,1 j+1 = j + 1 2 . Finally, ( 21 
) (yϕ j ) ′ = ϕ j (y) + yϕ ′ j (y) = - j 2 ϕ j-1 (y) + 1 2 ϕ j (y) + j + 1 2 ϕ j+1 (y).
This gives the result for k = 1. ✷

6.2. Proof of Proposition 2.2 for k ≥ 2. Let f k = f k,Y . Using (6), we write f, ϕ j = (-1) k k! +∞ 0 f (k) k (y)(y k ϕ j (y))dy
and by integration by part we have

f, ϕ j = - (-1) k k! +∞ 0 f (k-1) k (y)(y k ϕ j (y)) (1) dy = • • • = (-1) k (-1) k k! +∞ 0 f k (y)(y k ϕ j (y)) (k) dy
provided that all terms appearing in the integration by parts are null, i.e.:

k ℓ=1 f (k-ℓ) k (y)(y k ϕ j (y)) (ℓ-1) (-1) ℓ-1 +∞ 0 = 0 (22) 
Therefore, we obtain Formula (8) after proving that ( 22) holds.

Proof of ( 22): Let

S(y) = k ℓ=1 f (k-ℓ) k (y)(y k ϕ j (y)) (ℓ-1) (-1) ℓ-1 = k-1 p=0 f (p) k (y)(y k ϕ j (y)) (k-p-1) (-1) k-p-1 .
Using the Leibniz formula and interchanging sums yields

S(y) = k-1 t=0 ϕ (t) j (y)Σ t (y) with Σ t (y) = k-1-t p=0 (-1) k-p-1 f (p) k (y)y p+1+t k + p -1 t k × (k -1) . . . × (p + t + 2).
As ϕ (t) j (y) is continuous at 0 and tends to 0 at +∞, we only need to prove that Σ t (y) tends to 0 at 0 and +∞. We look at the coefficient of ϕ

(0) j = ϕ j : Σ 0 (y) = (-1) k k! k-1 p=0 y p+1 (-1) p+1 f (p) k (y) 1 (p + 1)! .
By [START_REF] Balabdaoui | Estimation of a k-monotone density: characterizations, consistency and minimax lower bounds[END_REF], Σ 0 (y) = (-1) k k!(F (y) -F k,Y (y)). As F and F k,Y are continuous c.d.f. on R + , they are null at 0 and both tend to 1 at +∞. Therefore, as y tends to 0 and +∞, Σ 0 (y) → 0.

For the term Σ 1 (y), we prove that each term f (p) k (y)y p+2 , p = 0, . . . , k -2 tends to 0 at both 0 and +∞. Indeed,

f (p) k (y)y p+2 ∝ y p+2 +∞ y (u -y) k-1-p u k f (u)du. (23) |f (p) k (y)y p+2 | +∞ y y p+2 u p+1 f (u)du ≤ y +∞ y f (u)du
which tends to 0 as y tends to 0. Also, ( 24)

|f (p) k (y)y p+2 | +∞ y y p+2 u p+1 f (u)du ≤ +∞ y uf (u)du
which tends to 0 as y tends to +∞ as E(X) < +∞. We proceed analogously for all terms Σ t (y), t ≤ k -1. We prove that f (p) k (y)y p+t+1 , p = 0, . . . , k -t -1 tends to 0 at both 0 and +∞. The convergence at 0 is already done. For the convergence at +∞, we use that [START_REF] Szegö | Orthogonal polynomials[END_REF] |f

(p) k (y)y p+t+1 | +∞ y y p+t+1 u p+1 f (u)du ≤ +∞ y u t f (u)du
which tends to 0 at +∞ by the moment assumption E(X t ) < +∞. The proof of ( 22) is complete.✷ 6.3. Proof of Proposition 2.3. The function (y k ϕ j ) (k) /k! belongs to S j+k , and therefore admits a decomposition on the basis of the ϕ ℓ , for ℓ = 0, 1, . . . , j + k:

1 k! (y k ϕ j ) (k) = j+k ℓ=0 h j,k ℓ ϕ ℓ (y).
This decomposition is obtained as follows. The Leibnitz formula yields:

(26) 1 k! (y k ϕ j ) (k) = k p=0 k p 1 p! y p ϕ (p) j .
Next, the development of y p ϕ (p) j (y) is given in the following lemma. Lemma 6.1. We have 

Moreover

(29) ∀ℓ ≤ j + p, |b j,p ℓ | ≤ C p (j + p) p . Applying Lemma 6.1, and interchanging sums in (26) yields formula [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. Next, we use Formula (29) to get

|h j,k ℓ | ≤ k p=|ℓ-j| C p (j + p) p k p 1 p! ≤ max p≤k (C p )(j + k + 1) k ≤ C ′ k (j + k) k .
This gives the bound [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function system?[END_REF].

Proof of Lemma 6.1 Initialization of ( 27) for p = 0 is obvious. Formula [START_REF] Juditsky | On minimax density estimation on R[END_REF] shows that the induction formula (28) holds for p = 0 (p = 0 to p = 1). Next, we differentiate [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF] and multiply by y, to get

y y p ϕ (p+1) j (y) + py p-1 ϕ (p) j (y) = p+j ℓ=0∨j-p b j,p ℓ yϕ ′ ℓ (y)
Now using [START_REF] Juditsky | On minimax density estimation on R[END_REF], we get

y p+1 ϕ (p+1) j (y) = -py p ϕ (p) j (y) + j+p ℓ=0∨j-p b j,p ℓ - ℓ 2 ϕ ℓ-1 (y) - 1 2 ϕ ℓ (y) + ℓ + 1 2 ϕ ℓ+1 (y) .
Taking into account that -py p ϕ (p) j (y) = -j+p ℓ=0∨(j-p) p b j,p ℓ ϕ ℓ (y) gives formula [START_REF] Vardi | Large sample study of empirical distributions in a random-multiplicative censoring model[END_REF]. Inequality ( 29) is obtained by straightforward induction. The proof of Proposition 2.2 is now complete. ✷ 

2 (H (k) m ) = sup x∈R m+k , x 2 =1 x t (H (k) m ) t H (k) m x = sup x∈R m+k , x 2 =1 m j=1 ( j+k ℓ=(j-k) + [H (k) m ] j,ℓ x ℓ ) 2
We consider first m ≥ k and use [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function system?[END_REF] to get m j=1

( j+k ℓ=(j-k) + ∨1 [H (k) m ] j,ℓ x ℓ ) 2 ≤ (C ′ k ) 2 (2k + 1) m j=1 (j + k) 2k j+k ℓ=(j-k) + ∨1 x 2 ℓ ≤ (C ′ k ) 2 (2k + 1)(m + k) 2k m j=1 j+k ℓ=(j-k) + ∨1 x 2 ℓ .
Next write that x 2 ℓ ≤ (2k + 1) m+k ℓ=1

x 2 ℓ Therefore we get

ρ 2 (H (k) m ) ≤ C(k)(m + k) 2k with C(k) = (C ′ k ) 2 (2k + 1)(3k + 1).
If m < k, the bound obviously holds. Now we prove the lower bound on

|H (k) m | 2 F . First |H (k) m | 2 F = m j=1 j+k ℓ=(j-k) + ∨1 [H (k) m ] 2 j,ℓ ≥ m j=1 [H (k) m ] 2 j,j+k . Now, Proposition 2.2 yields [H (k) m ] j,j+k = h j,k j+k = b j,k j+k /k! and b j,k j+k = ((j + k)/2)b j,k j+k-1 . Indeed, coefficients b j,p
ℓ are zero if ℓ > j + p (see formula ( 27)). Therefore, as h j,1 j+1 = (j + 1)/2, we get, by elementary induction that

h j,k j+k = 1 k! (j + 1)(j + 2) . . . (j + k) 2 k .
We obtain

|H (k) m | 2 F ≥ m j=1 1 k! (j + 1)(j + 2) . . . (j + k) 2 k 2 ≥ 1 (k!2 k ) 2 m j=1 (j + 1) 2k ≥ 1 (k!2 k ) 2 m 1 x 2k dx = m 2k+1 (2k + 1)(k!2 k ) 2 ,
which ends the proof. ✷ 6.5. Proof of Proposition 2.4. The risk bound of the estimator can be written as follows

fm -f 2 = f -f m 2 + fm -f m 2
where f m = m-1 j=0 a j (f )ϕ j is the projection of f on S m = span(ϕ 0 , . . . , ϕ m-1 ) and f -f m 2 is the usual bias of a projection estimate. Next we have, see [START_REF] Chee | Least squares estimation of a k-monotone density function[END_REF],

fm -f m 2 = m-1 j=0 (â j -a j (f )) 2 = H (k) m ( â(Y ) m+k-1 -E( â(Y ) m+k-1 )) 2 .
So,

E( fm -f m 2 ) ≤ ρ 2 (H (k) m )E( â(Y ) m+k-1 -E( â(Y ) m+k-1 ) 2 ) ≤ ρ 2 (H (k) m ) m+k-1 j=0 Var(â j (Y )) = 1 n ρ 2 (H (k) m ) m+k-1 j=0
Var(ϕ j (Y 1 ))

≤ 1 n ρ 2 (H (k) m ) m+k-1 j=0 E(ϕ 2 j (Y 1 )) ≤ 2(m + k)ρ 2 (H (k) m ) n , as m+k-1 j=0 ϕ 2 j (x) ≤ 2(m + k), ∀x ∈ R + .
This gives a first bound. For the second one, we can write, if f Y ∞ < +∞,

E( fm -f m 2 ) = E ℓ H (k) m ( â(Y ) m+k-1 -E( â(Y ) m+k-1 )) 2 ℓ = E   ℓ   j [H (k) m ] ℓ,j [ â(Y ) m+k-1 -E( â(Y ) m+k-1 ))] j   2   = ℓ j,j ′ [H (k) m ] ℓ,j [H (k) m ] ℓ,j ′ cov(â j (Y ), âj ′ (Y )) = 1 n ℓ j,j ′ [H (k) m ] ℓ,j [H (k) m ] ℓ,j ′ cov(ϕ j (Y 1 ), ϕ j ′ (Y 1 )) = 1 n ℓ Var   j [H (k) m ] ℓ,j ϕ j (H 1 )   ≤ 1 n ℓ E     j [H (k) m ] ℓ,j ϕ j (Y 1 )   2   ≤ f Y ∞ n ℓ   j [H (k) m ] ℓ,j ϕ j (y)   2 dy = f Y ∞ n ℓ j [H (k) m ] 2 ℓ,j = f Y ∞ n |H (k) m | 2 F ,
which gives the second part of the bound. It follows from Corollary 2.1 that mρ 2 (H

(k) m ) and |H (k) m | 2
F are both of orders m 2k+1 , but the second bound involves f Y ∞ . This term is unknown, difficult to estimate and additional assumption is required to ensure its finiteness, for instance E(1/X) < +∞ for k = 1. ✷ 6.6. Proof of Theorem 2.1. In the proof, we omit the index k in M (k) n , pen k (m) and mk . Let M = max M n the maximal element of the collection. Let for m ≤ M , S m = { t ∈ R M t = (t 1 , . . . , t m , 0, . . . , 0)} and for any t ∈ R M , let

γ n ( t) = t 2 M -2 t, H (k) 
M âM+k-1 (Y ) M , where x 2 M is the Euclidean norm in R M and •, • M the associated scalar product. For t ∈ S m , we denote by t m the vector of R m with the m first coordinates of t (those which are not necessarily zero). Thanks to the particular form of the matrices

H (k) m (band), we have, for t ∈ S m , t, H (k) M âM+k-1 (Y ) M = t m , H (k) m âm+k-1 (Y ) m = t m , âm-1 m .
Therefore the vector f(m) in R M with m first coordinates âm-1 and following coordinates null

is such that f(m) = arg min t∈Sm γ n ( t) and γ n ( f(m) ) = -fm 2 . Therefore m = arg min m∈Mn γ n ( f(m) ) + p en(m)).
Now for m, m ′ ∈ M n , and t ∈ S m , s ∈ S m ′ , we have

γ n ( t) -γ n ( s) = t -f M 2 M -s -f M 2 M -2 t -s, H (k) M âM+k-1 (Y ) -f M M = t -f M 2 M -s -f M 2 M -2 t -s, H (k) M ( âM+k-1 (Y ) -a M +k-1 (f Y ) M where f M = (a j (f )) 0≤j≤M -1 . Let us define ν n ( t) = t, H (k) M ( âM+k-1 (Y ) -a M +k-1 (f Y ) M , and note that (30) fm -f 2 = f(m) -f M 2 M + ∞ j=M a 2 j (f ), f m -f 2 = f m -f M 2 M + ∞ j=M a 2 j (f ).
By definition of m, we have

γ n ( f( m) ) + pen( m) ≤ γ n ( f m ) + pen(m), which writes (31) f( m) -f M 2 M ≤ f m -f M 2 M + pen(m) + 2ν n ( f( m) -f m ) -pen( m). Let B( m, m) = { t ∈ S m∨ m, t M = 1} and note that 2ν n ( f( m) -f m ) ≤ 2 f( m) -f m M sup t∈B( m,m) |ν n ( t)| ≤ 1 4 f( m) -f m 2 M + 4 sup t∈B( m,m) ν 2 n ( t) ≤ 1 2 f( m) -f M 2 M + 1 2 f m -f M 2 M + 4 sup t∈B( m,m) ν 2 n ( t).
We get by plugging this in (31),

1 2 f( m) -f M 2 M ≤ 3 2 f m -f M 2 M + pen(m) + 4 sup t∈B( m,m) ν 2 n ( t) -pen( m)
Let p(m, m ′ ) be such that 4p(m, m ′ ) ≤ pen(m) + pen(m ′ ) and use (30), to get

1 2 f m -f 2 ≤ 3 2 f m -f 2 + 2pen(m) + 4 sup t∈B( m,m) ν 2 n ( t) -p(m, m) + Now, we have (32) E   sup t∈B( m,m) ν 2 n ( t) -p(m, m) +   ≤ c n ,
where c depends on k and f Y ∞ = E(1/X). The proof of (32) follows the line of the proof of Proposition 7.1 in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] and delivers the value of κ 0 . Thus, we obtain the result announced in Theorem 2.1.

6.7. Proof of Theorem 3.1.

6.7.1. Main steps. Define f 0 as the density

f 0 (x) = c α,β (e + x) α log β (e + x) 1 R + (x)
where α > 1, and β = (1 + ǫ)/2 > 1/2 with ǫ < 1, and c α,β is such that f 0 = 1. Note that as ∀x ≥ 0, 1 ≤ log(e + x) ≤ e + x, we have, as

β < 1, (33) c α,β (e + x) α+1 ≤ f 0 (x) ≤ c α,β (e + x) α .
Next we consider the functions

f θ (x) = f 0 (x) + δ 2K k=K+1 θ k-K ϕ k (x)
for some δ > 0, K ∈ N and θ = (θ 1 , . . . , θ K ) ∈ {0, 1} K . Lemma 6.2. Let s integer, s > 1. Then f 0 and f θ belong to W s (D) provided that α ≥ (s + 1)/2(> 1) and δ 2 K s+1 ≤ D/C for some constant C = C(s) > 0. Lemma 6.3. Suppose that K k=1 θ k (-1) k = 0 and all partial sums p k=1 θ k (-1) k , p = 1, . . . , K, are uniformly bounded by 1, then under the choice δ = δ ′ K -α log -β (K) for small enough constant δ ′ > 0 not depending on K, we have that f θ is a probability density on R + .

Next we have for any

θ, θ ′ ∈ {0, 1} K , ( 34 
) ∞ 0 (f θ (x) -f θ ′ (x)) 2 dx = δ 2 K k=1 θ k -θ ′ k 2 = δ 2 ρ(θ, θ ′ ), where ρ(θ, θ ′ ) = K k=1 1 θ k =θ ′
k is the so-called Hamming distance. Now to apply Theorem 2.7 p.101 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF], we need to extend the Varshamov-Gilbert bound (see Lemma 2.9 p. 104 in Tsybakov ( 2009)) as follows.

Lemma 6.4. Fix some even integer K > 0. There exists a subset {θ (0) , . . . , θ (M ) } of {0, 1} K and a constant A 1 > 0, such that θ (0) = (0, . . . , 0), all partial sums N k=1 θ

(j) k (-1) k , N = 1, . . . , K, are uniformly bounded by 1, K k=1 θ (j) k (-1) k = 0 and ρ(θ (j) , θ (l) ) ≥ A 1 K, for all 0 ≤ j < l ≤ M. Moreover it holds that, for some constant A 2 > 0, (35) M ≥ 2 A 2 K .
Then we have the following Lemma.

Lemma 6.5.

1 M M j=1 χ 2 (f θ (j) ) ⊗n , (f 0 ) ⊗n nδ 2 K α+4 and for 0 ≤ j = l ≤ M, f θ (j) -f θ (l) 2 δ 2 K.
Now we are in position to end the proof of Theorem 3.3. Under the choices

δ 2 = (δ ′ ) 2 K -2α (log K) -(1+ǫ) and K ≍ (n/ log 1+ǫ (n)) 1/(2α)
using inequality (35), K ≤ log M/(A 2 log 2), we get 2 (n/ log 1+ǫ (n)) (1-2α)/2α for all 0 ≤ j = l ≤ M. Finally, by taking α = (s + 1)/2 (recall that α ≥ (s + 1)/2) and arbitrary small ǫ > 0, we derive

1 M M j=1 χ 2 (f θ (j) ) ⊗n , (f 0 ) ⊗n log α+4 (M ) and f θ (j) -f θ (l)
f θ (j) -f θ (l) 2 (n/ log 1+ǫ (n)) -s/(s+1) log -(1+ǫ)) (n) = n -s/(s+1) [log(n)] -(1+ǫ)/(s+1) .
This ends the proof of Theorem 3.1. ✷ Proof of Lemma 6.2. We have

f 0 2 s = +∞ 0   x s/2 s j=0 s j f (j) 0 (x)   2 dx ≤ 2 s s j=0 s j +∞ 0 x s/2 f (j) 0 (x) 2 dx.
The "worst" term in the above sum is x s/2 (e + x) -α log -β (e + x). Thus, as α ≥ (s + 1)/2 and

β > 1/2, x s/2 f (j) 0 (x) ∈ L 2 (R + )
for j = 0, . . . , s and there exists a constant B(s, α) such tat

f 0 2 s ≤ B(s, α). It follows that |f 0 | 2 s ≤ B(s, α
), B(s, α) := (s + 1)B(s, α)A(s) where A(s) is defined by (49). We take D/4 ≥ B(s, α). Next

|f θ | s ≤ |f 0 | s + δ 2K k=K+1 θ k-K ϕ k s . Let us define for f, g ∈ W s , f, g s = (1/2)(|f + g| 2 s -|f | 2 s -|g| 2 s ) so that |ϕ k | 2 s = k s and ϕ k , ϕ ℓ s = 0 for k = ℓ. Therefore 2K k=1+K θ k-K ϕ k 2 s = 2K k=1+K k s θ 2 k-K ≤ 2K k=1+K k s ≤ 2K k=1+K k+1 k x s ds = (2K + 1) s+1 -(1 + K) s+1 s + 1 ,
and |f θ | 2 s ≤ 2|f 0 | 2 s + Cδ 2 K s+1 /(s + 1) for some constant C = C(s) > 0. Hence |f θ | 2 s ≤ D if δ 2 K s+1 /(s + 1) ≤ D/(2C). ✷ Proof of Lemma 6.3. First, noting that ϕ k (x)dx = √ 2(-1) k , we have ∞ 0 f θ (x) dx = 1 + δ 2K k=1+K θ k-K ∞ 0 ϕ k (x) dx = 1 + √ 2δ 2K k=1+K θ k-K (-1) k = 1,
so that our conditions ensure that ∞ 0 f θ (x) dx = 1. Next we prove that f θ is nonnegative, which is surprisingly difficult. We have

f θ (x)/f 0 (x) = 1 + δ (e + x) α log β (e + x) c α,β 2K k=K+1 θ k-K ϕ k (x).
For any fixed a > 0, for any x ∈ [0, a], we have

|f θ (x)/f 0 (x) -1| ≤ δK √ 2(e + a) α log β (e + a)/c α,β δK = δ ′ K 1-α log -β (K) which is small as α ≥ (s + 1)/2 > 1.
Without loss of generality, we assume that a > 1.

Thus, in order to prove that f θ is a nonnegative function, it is enough to show that (36) sup

x>a x λ log µ (x) • 2K k=K+1 θ k-K ϕ k (x) K λ log µ (K), K → ∞
for any fixed λ > 0, µ > 0 and for sufficiently large a > 0. Then by taking λ = α, µ = β and δ = δ ′ K -α log -β (K) for small enough constant δ ′ > 0 not depending on K, we get f θ (x) ≥ 0, x ∈ R + .

We proceed in two steps for the proof of (36). First we study the supremum for large values of x, 2x ≥ cν, ν = 4K + 2, c > 0 and then for intermediate values of x (2a < 2x ≤ bν with b < 1).

Step 1. Suppose that the sequence θ = (θ 1 , . . . , θ K ) ∈ {0, 1} K satisfies m k=1 θ k (-1) k ≤ A for all m = 1, . . . , K, and some constant A > 0. Fix some real numbers λ, µ with 0 < λ < K, and µ > 0, then it holds for any 2x > 4K + 2λ + 1, (37)

x λ log µ (x)

• 2K k=K+1 θ k-K ϕ k (x) ≤ AC λ,µ K λ log µ (K), K → ∞,
where ϕ k (x) = √ 2e -x L k (2x) and the constant C λ,µ depends only on λ, µ.

To prove (37), we first study the case µ = 0 and λ integer.

Lemma 6.6. It holds for any integers n and λ ≤ n,

(38) x λ L n (x) = λ k=-λ c (λ) k,n L n+k (x),
where the coefficients c

(λ)
k,n can be computed via the relation

c (λ) k,n = c (λ-1) k,n (2(n + k) + 1) -c (λ-1) k-1,n (n + k) -c (λ-1)
k+1,n (n + k + 1)

for |k| < λ with c (0) k,n = δ 0,k and c (λ) λ,n = -c λ-1 λ-1,n (n + λ), c (λ) 
-λ,n = -c λ-1 -λ+1,n (n -λ + 1). Proof. For λ = 0, (38) obviously holds. Suppose that it holds for some λ = K, then due to formula [START_REF] Jirak | Adaptive function estimation in nonparametric regression with one-sided errors[END_REF], we have

x K+1 L n (x) = K k=-K c (K) k,n xL n+k (x) = K k=-K c (K) k,n [(2(n + k) + 1)L n+k (x) -(n + k + 1)L n+k+1 -(n + k)L n+k-1 (x)] = K k=-K c (K) k,n (2(n + k) + 1)L n+k (x) - K+1 k=-K+1 c (K) k-1,n (n + k)L n+k - K-1 k=-K-1 c (K) k+1,n (n + k + 1)L n+k (x) = K+1 k=-K-1 c (K+1) k,n L n+k (x).
This ends the proof of Lemma 6.6.

We deduce by induction from Lemma 6.6 the following Corollary. The following property is given e.g. in Muckenhoupt (1970). Lemma 6.7. Set ν = 4N = 4n + 2, t = x/ν, then it holds for all x ≥ dν for any d > 0

e -x/2 L n (x) = (-1) n N N +1/6 e -N n!(-xφ ′ (t)) 1/2 Ai(-ν 2/3 φ(t)) + O Ai(-ν 2/3 φ(t)) x ,
where

φ(t) = -[3γ(t)/2] 2/3 , γ(t) = 1 2 (t 2 -t) 1/2 - 1 2 cosh -1 (t 1/2 )
and Ai(t) is the Airy function (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]).

Corollary 6.2. Under conditions of the previous lemma, we have a representation

(40) e -x/2 L n (x) = (-1) n a n (x),
where for any x > cν with c > 1 the sequence a n is bounded (uniformly in x), positive and increasing in n for ν = 4n + 2 ≤ x.

Proof. The function Ai -ν 2/3 φ(x/ν) /(-xφ ′ (x/ν)) 1/2 is monotone increasing in ν for any x ≥ ν = 4n + 2. Moreover, the function N N +1/6 e -N /n! is monotone increasing in n. The uniform boundedness of a n (x) follows from the boundedness of e -x/2 L n (x) .

Proof of Step 1. First we prove (37) for µ = 0 and λ integer. From (38), ( 39) and (40), we have

x λ 2K k=K+1 θ k-K e -x/2 L k (x) = r=(r 1 ,...,r λ ),r i ∈S λ λ,1/2 λ ℓ=-λ (-1) ℓ b (λ) ℓ,r Σ K (ℓ, r) with Σ K (ℓ, r) = 2K k=K+1 θ k-K (-1) k a ℓ+k (x)ρ (λ) k (r), ρ (λ) 
k (r) = λ i=1 (k + r i ). Note that k → ρ (λ)
k (r)a ℓ+k (x) is nonnegative and nondecreasing and a ℓ+k (x) is bounded. Inequality (37) for µ = 0 and λ an integer follows from the next Lemma. Lemma 6.8. Let K 1 < K 2 be two integers and let ρ n an increasing sequence of nonnegative numbers, then for any x > 4K 2 + 2, we have

K 2 n=K 1 +1 e -x/2 θ n ρ n L n (x) ≤ ρ K 2 a K 2 (x) max K 1 +1≤n≤K 2 n n=K 1 +1
θ n (-1) n .

Proof. Due to the Abel summation theorem, we get

K 2 n=K 1 +1 e -x/2 θ n ρ n L n (x) = K 2 n=K 1 +1 θ n ρ n (-1) n a n (x) = S K 2 ρ K 2 a K 2 (x) + K 2 -1 n=K 1 +1 S n (ρ n+1 a n+1 (x) -ρ n a n (x)),
where S n .

= n j=K 1 +1 (-1) j θ j for n > K 1 . Since the sequence ρ n a n (x) is non-decreasing and non-negative, we get the desired estimate. Now consider the case of λ a real number and write that λ = [λ] + {λ} where {λ} is the fractional part of λ and belongs to (0, 1). For any 2x > 4K + 2[λ] + 3,

x λ 2K k=K+1 θ k-K ϕ k (x) = |x {λ}-1 | x [λ]+1 2K k=K+1 θ k-K ϕ k (x) ≤ (4K + 2λ + 3) {λ}-1 AC [λ]+1 K [λ]+1 ,
and the result follows.

Now we study the case µ > 0 and we want to prove that, for 2x > 4K + 2[λ] + 3,

x λ log µ (x) 2K k=K+1 θ k-K ϕ k (x) log µ (K)K λ .
If λ is an integer, we write

[x -1 log µ (x)]x λ+1 2K k=K+1 θ k-K ϕ k (x) log µ (K) K K λ+1 = log µ (K)K λ , since x → log µ (x)/x is decreasing for x large enough (x > e µ ). If λ is not an integer, [x {λ}-1 log µ (x)]x [λ]+1 2K k=K+1 θ k-K ϕ k (x) log µ (K) K 1-{λ} K [λ]+1 = log µ (K)K λ ,
since for any ω > 0, x → log µ (x)/x ω is decreasing for x large enough (x > e µ/ω ). ✷

Step 2. Now we want to prove (37) for x ≤ bν, b < 1, ν = 4K + 2. It holds that (see Muckenhoupt (1970) p.288)

e -x/2 L n (x) ≍ 1 2 ψ(x/ν) x ν ψ ′ (x/ν) 1/2 J 0 (νψ(x/ν)) + O x 1/ ν 3/2 J0 (νψ( x ν )
for x ≤ bν for some b < 1 and ν = 4n + 2, where

ψ(t) = 1 2 (t -t 2 ) 1/2 + 1 2 arcsin( √ t), J 0 is the Bessel function and J0 (u) = 1 ]0,1] (u) + u -1/2 1 u>1 . Since ψ(t) tψ ′ (t) = 2 + 2 3 t + O(t 3/2 ), ψ(t) = √ t + O t 3/2 , t → 0,
it follows from the asymptotic behavior of the Bessel function J 0 , that

e -x/2 L n (x) = J 0 √ xν (1 + o(1)) = 2 π (xν) -1/4 cos( π 4 - √ xν) - 1 4 1 2π (xν) -3/4 sin( π 4 - √ xν) + O((xν) -5/4 ),
provided xν is large. Suppose that x > 1 and λ ≥ 1, then

x λ 2K n=K+1 e -x/2 θ n L n (x) = 2K n=K+1 θ n x λ cos π 4 -x(4n + 2) (x(4n + 2)) 1/4 + R n (x). Since 2K n=K+1 1 (4n + 2) 3/4 2K K 1 (1 + s) 3/4 ds K 1/4 , we have |R n (x)| x λ-3/4 K 1/4 ≤ K λ for x ≤ K. So we need to investigate the series S K (x) . = 2K n=K+1 θ n x λ cos π 4 -x(4n + 2) (x(4n + 2)) 1/4 .
It is clear that we can restrict our attention to the case x > K

λ-3/4 λ-1/4 , because if x λ-1/4 ≤ K λ-3/4 , then |S K (x)| ≤ x λ-1/4 2K n=K+1 1 (4n + 2) 1/4 x λ-1/4 K 3/4 ≤ K λ .
Now, as S K (x) is a harmonic sum, its asymptotic behaviour can be analysed using the Mellin transform approach, which yields that |S K (x)| ≤ K λ for x > K λ-3/4 λ-1/4 . This yields (37) for µ = 0 and 2x < 4K + 2. The case µ = 0 is here straightforward. This ends the proof of Step 2. ✷ Therefore (36) is proved so the proof of Lemma 6.3 is complete. ✷ Proof of Lemma 6.4. Set for any j ∈ N 0 = {1, 2, . . . , },

Θ 2j := (θ 1 , . . . , θ 2j ) ∈ {0, 1} 2j : 2l k=1 θ k (-1) k = 0, l = 1, . . . , j , then it obviously holds Θ 2(j+1) = 2 |Θ 2j | , |Θ 2 | = 1.
Indeed Θ 2(j+1) = {(θ 1 , . . . , θ 2j , 0, 0); (θ 1 , . . . , θ 2j , 1, 1), (θ 1 , . . . , θ 2j ) ∈ Θ 2j } .

Thus |Θ 2j | = 2 j .
And, for any sequence θ ∈ Θ 2j , it holds l k=1 θ k (-1) k ≤ 1 for any l = 1, . . . , 2k. Hence the set

Ω K . = (θ 1 , . . . , θ K ) ∈ {0, 1} K : l k=1 θ k (-1) k ≤ 1, l = 1, . . . , K, K k=1 θ k (-1) k = 0 satisfies |Ω K | ≥ 2 K/2
for all even K. Next we follow the proof of the Varshamov-Gilbert bound (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]) applied to the set Ω K and get that for any even K ≥ 16 there exists a subset {θ (0) , . . . ,

θ (M ) } of Ω K such that ρ(θ (j) , θ (l) ) ≥ K/16, 0 ≤ j < l ≤ M,
and M ≥ 2 K/16 . ✷ Proof of Lemma 6.5. Equality (34) and Lemma 6.4 imply f θ

(j) -f θ (l) 2 ≥ A 1 δ 2 K, for 0 ≤ j = l ≤ M . From (33), we have χ 2 (f θ , f 0 ) = ∞ 0 (f θ (x) -f 0 (x)) 2 f 0 (x) dx ≤ C 1 ∞ 0 (f θ (x) -f 0 (x)) 2 dx + C 2 ∞ 0 x (α+1)/2 f θ (x) -x (α+1)/2 f 0 (x) 2 dx for some constants C 1 , C 2 > 0. First ∞ 0 (f θ (x) -f 0 (x)) 2 dx = δ 2 K k=1 θ 2 k ≤ δ 2 K
Next, using the relation [START_REF] Jirak | Adaptive function estimation in nonparametric regression with one-sided errors[END_REF], we derive that for (α + 1)/2 integer,

x (α+1)/2 (f θ (x) -f 0 (x)) = δ 2K+(α+1)/2 k=K+1-(α+1)/2 ψ(k, K, α, θ)ϕ k (x)
where |ψ(k, K, α, θ)| K (α+1)/2 . Now, with the orthonormality of the system {ϕ k } , we get

χ 2 (f θ , f 0 ) δ 2 K α+2 , K → ∞ uniformly in θ ∈ {0, 1} K .
If (α + 1)/2 is not an integer, splitting the last integral between 0 and 1 and 1 and ∞, we get a bound δ 2 K α 0 +1 where α 0 is the smallest even integer larger than α + 1. Therefore,

χ 2 (f θ , f 0 ) δ 2 K α+4 , K → ∞
uniformly in θ ∈ {0, 1} K and we get Lemma 6.5. ✷ 6.8. Proof of Theorem 3.2. The proof follows the same steps as the proof of Theorem 3.1. First we define proposals f0 and fθ for the densities of X 1 , . . . , X n and compute the corresponding densities f Y,0 and f

Y,θ of Y 1 , . . . , Y n . Let us choose f0 such that f Y,0 (x) = +∞ x f0 (u) u du = f 0 (x) = c α,β (e + x) α log β (e + x) 1 R + (x),
where β = (1 + ǫ)/2, with 0 < ǫ < 1 and α > 1. By derivation, we get

f0 (x) = -xf ′ Y,0 (x) = c α,β
x (e + x) α+1 log β+1 (e + x)

[α log(e + x)

+ β]1 R + (x),
Then we can compute by formula (4) for k = 1, Next, let

fθ (x) = f0 (x) + δ 2K k=K+1 θ k-K xϕ ′ k (x).
We have, as

ϕ k (x)dx = √ 2(-1) k that xϕ ′ k (x)dx = [xϕ k (x)] +∞ 0 - +∞ 0 ϕ k (x)dx = √ 2(-1) k+1 .
Therefore fθ (x)dx = 1 under the condition θ k (-1) k = 0, as previously. Thanks to formula (21), we have

xϕ ′ k (x) = - k 2 ϕ k-1 (x) - 1 2 ϕ k (x) + k + 1 2 ϕ k+1 (x)
and we can write fθ as follows in the (ϕ k ) k basis:

fθ (x) = f0 (x) + δ 2K+1 k=K µ k (θ)ϕ k (x)
with for k = K, K + 1, . . . , 2K + 1,

µ k (θ) = - k + 1 2 θ k-K+1 - θ k-K 2 + k 2 θ k-K-1
under initial and final conditions θ -1 = θ 0 = θ K+1 = θ K+2 = 0. Lemma 6.12.

1 M M j=1 χ 2 (f Y,θ (j) ) ⊗n , (f Y,0 ) ⊗n nδ 2 K α+4 and for 0 ≤ j = l ≤ M, fθ (j) -fθ (l) 2 δ 2 K 3 . Now we end the proof of Theorem 3.2. We choose α = (s+1)/2, δ 2 = (δ ′ ) 2 K -2(α+1) log -(1+ǫ) (K), K = [n/ log 1+ǫ (n)] 1/[2(α+1)] and we obtain 1 M M j=1 χ 2 (f Y,θ (j) ) ⊗n , (f Y,0 ) ⊗n log α+4 (M ). and fθ (j) -fθ (l) 2 n -s/(s+3) [log(n)] (1+ǫ)/(1+s/3) .

Note that δ 2 K s+3 = [log(n)] -(1+ǫ) is bounded (constraint from Lemma 6.9). This ends the proof of Theorem 3.2. ✷ Proof of Lemma 6.9. For f0 we follow the same line as in the proof of Lemma 6. k (r), see Step 1 of the proof of Lemma 6.3). Then by taking λ = α, µ = β and δ = δ ′ K -α-1 log -β (K) for small enough constant δ ′ > 0 not depending on K, we get fθ (x) ≥ 0, x ∈ R + . ✷ Proof of Lemma 6.11. Let Θ = {(θ 0 , . . . , θ 2K+1 ), θ 0 = θ 1 = 0, θ j ∈ {0, 1}, for j = 2, . . . , 2K + 1}.

We prove that ρ 1 (., .) is a distance on Θ. Due to the initial conditions θ 0 = θ 1 = 0, ρ 1 (θ, θ ′ ) = 0 implies that θ = θ ′ .

For θ ∈ Θ, we separate θ = (θ 0 , . . . , θ 2K+1 ) as θ (even) := (θ 2j , 0 ≤ j ≤ K) and θ (odd) accordingly. Let ρ 2 (ω, ω ′ ) = K k=0 1 ω k+1 -ω k =ω ′ k+1 -ω ′ k , then ρ 1 (θ, θ ′ ) = ρ 2 ((θ) (even) , (θ ′ ) (even) ) + ρ 2 ((θ) (odd) , (θ ′ ) (odd) ).

Now we can check that ρ 2 satisfies the triangular inequality on Ω = {(ω 0 , . . . , ω K ), ω 0 = 0, ω j ∈ {0, 1}, j = 1, . . . , K}. For ǫ, ǫ ′ ∈ {-1, 0, 1}, we note that

1 ǫ =ǫ ′ = 1 2 |ǫ -ǫ ′ | + ||ǫ| -|ǫ ′ || = d(ǫ, ǫ ′ )
where d(., .) satisfies the triangular inequality. Setting ǫ k = ω k+1 -ω k , we get that ρ 2 (ω, ω ′ ) = K k=0 d(ǫ k , ǫ ′ k ) satisfies the triangular inequality on Ω. Thus, it is enough to prove the Lemma for the set Ω and the distance ρ 2 . Noting that E(1/U r-1 ) = 1/(kB(r, k)), under the assumption E(1/X r-1 ) < +∞, we have Y (x). This gives Formula (16). ✷ 7.2. Norms in Sobolev-Laguerre spaces. For s ≥ 0, the Sobolev-Laguerre space with index s (see Bongioanni and Torrea (2007)) is defined in [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF]. The following results have been proved in Section 7 of Comte and Genon-Catalot (2015). For s integer, if h : (0, +∞) → R belongs to L 2 ((0, +∞)), (47)

|h| 2 s := k≥0 k s a 2 k (h) < +∞.
is equivalent to the property that h admits derivatives up to order s -1, with h (s-1) absolutely continuous and for m = 0, . . . , s -1, the functions

x (m+1)/2 (he x ) (m+1) e -x = x (m+1)/2 m+1 j=0 m + 1 j h (j) belong to L 2 ((0, +∞)). Moreover, for m = 0, 1, . . . , s -1,

x (m+1)/2 (he x ) (m+1) e -x 2 = k≥m+1 k(k -1) . . . (k -m)a 2 k (h).

For h ∈ W s with s integer, we set h 2 0 = h 2 and for s ≥ 1 Then the following property holds. 

  first one is the spectral radius ρ(H (k) m ) and the second one is the Frobenius norm |H (k)
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 21 For m ≥ 1 and k ≥ 0, there exist constants c(k), C(k) depending on k only, such that c

Figure 1 .

 1 Figure 1. True density f of Model (i) (Gamma distribution) in bold (blue). 50 estimators of f , left: from direct observation of X in dotted (red); middle: from observation of Y = XU with U ∼ U ([0, 1]), in dotted (green); right: from observation of Y = XU with U ∼ β(1, 2), in dotted (green). First line: n = 400. Second line: n = 2000. Above each plot, mX (resp. mY,1 , resp mY,2 ) is the mean of the selected dimensions from X (resp. from Y ) with standard deviation in parenthesis.

  mX = 8.62 (1.55) mY,1 = 4.60 (1.12) mY,2 = 5.58 (1.16)

Figure 2 .

 2 Figure 2. True density f of Model (ii) (Mixed Gamma) on the first line, Model (iii)(Lognormal) on the second line, and Model (iv) on the third line (Beta distribution) in bold (blue). Left: 50 estimators of f from direct observation of X in dotted (red). Middle: 50 estimators of f from observation of Y , in dotted (red) with U ∼ U ([0, 1]). Right: 50 estimators of f from observation of Y , in dotted (red) with U ∼ β(1, 2), n = 2000 in all cases. Above each plot, mX (resp. mY,1 , resp mY,2 ) is the mean of the selected dimensions for X (resp. for Y ) with standard deviation in parenthesis.

  i 's i.i.d. and uniform. Then denoting the density of Y i by f (ℓ) Y , Proposition 2.3 applies and yields

  ℓ ϕ ℓ (y), where b j,0 ℓ = δ ℓ,j and for p ≥ 0,
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 42 Proof of Corollary 2.1. The general inequality |H (k) m | ≤ mρ 2 (H (k) m ) holds for all m × (m + k) matrices. For k = 0, H (0) m = I m the m × m identity matrix, and the two above terms are equal to m. First we prove the upper bound for ρ 2 (H (k) m ), k ≥ 1.

  ρ

  j=(ℓ-k)∨1

Corollary 6 . 1 . 2 b

 612 Each coefficient c (λ) k,n in (38) can be represented in the form (39) c (λ) k,n = r=(r 1 ,...,r λ ),r i ∈S λ λ,1/r i )with n ≥ λ, S λ,1/2 = {-λ, . . . , λ} ∪ {-λ + 1/2, . . . , λ + 1/2} and some coefficients b (λ) k,r not depending on n.

2 2K k=K+1 (

 2k=K+1 2 and omit the details. Next fθ belongs toW s (D) if δ 2 2K+1 k=K µ 2 k (θ)k s ≤ D/4 i.e. for C = C(s) a constant, δ 2 K s+3 ≤ D/C. ✷ Proof of Lemma 6.10. First note that f0 (0) = fθ (0) = 0 and f ′ 0 (0) = c α,β (α + β)/e α+1 > 0 and f ′ θ (0) = f ′ 0 (0) + δ 2K k=K+1 θ k-K ϕ ′ k (0) = cα -δ √ 2k + 1)θ k-K . Now f ′ θ (0) > 0 if δK 2 << 1.Under this condition, fθ is nonnegative on an interval [0, a], a > 0. For x > a, we follow the arguments in the proof of Lemma 6.3 for each of the three terms involved in the definition of µ k (θ). Thus we must prove that sup x>a x λ log µ (e + x)2K+1 k=K θ k-K kϕ k (x) K λ+1 log µ (K).This is obtained as previously (just change ρ (λ) k (r) into kρ (λ)

+∞ 0 θ

 0 Y (y)dy = +∞ 0 θ X (x)dx. Therefore, relation (44) implies (see formula[START_REF] Balabdaoui | Estimation of a k-monotone density: limit distribution theory and the spline connection[END_REF] in Proposition 2.1) θ X (x) = ((-1) k /k!)x k θ (k)

  -1) . . . (k -s + 1)a 2 k (h)] 1/2 ,

Lemma 7 . 1 .

 71 When s is integer, the two norms |h | s and |h| s are equivalent. Proof of lemma 7.1. Obviously |h| 0 = |h | 0 and h 2 j ≤ |h| 2 j for all j. Moreover j → |h| j is increasing. Therefore |h | 2 s ≤ (s + 1)|h| 2 s . On the other hand, let b j,s the coefficients such that X s = s j=1 b j,s X(X -1) . . . (X -j + 1). Then |h| 2 s = s j=1 b j,s h 2 j ≤ A(s) |h | 2 s , with (49) A(s) = max(|b j,s |, j = 1, . . . , s). ✷

Table 1 .

 1 MISE × 1000 with std × 1000 in parenthesis for 100 estimation of f with kernel or Laguerre projection estimators in the case of direct observation of X and with Laguerre projection in case Y = XU is observed and

	1/2)	3.66	3.38	6.9	12.55	1.20	0.58	4.05	4.67
	(i)	(2.19)	(1.35)	(7.77) (14.95) (0.47)	(0.51)	(1.28)	(3.21)
	Mixed	22.25	6.17	51.07	41.54	12.00	1.82	9.47	12.62
	Gamma (ii) (2.69)	(1.98)	(16.84) (19.50) (1.24)	(0.69)	(4.29)	(5.95)
	Lognormale	3.93	2.54	19.54	22.34	1.28	1.13	6.21	7.07
	(iii)	(2.25)	(1.61)	(8.42) (19.43) (0.51)	(0.45)	(2.66)	(4.40)
	5β(4, 5)	2.51	2.06	11.87	18.52	0.71	0.67	8.21	8.40
	(iv)	(1.31)	(1.64)	(8.36) (14.49) (0.36)	(0.46)	(2.18)	(4.56)

k-1 f (v) v r-1

Computing

We stress that by our construction, f Y,0 = f 0 and f Y,θ = f θ , so that χ 2 (f Y,θ , f Y,0 ) = χ 2 (f θ , f 0 ) is already computed in the previous section (proof of Theorem 3.1). Lemma 6.9. Let s integer, s > 1. Then f0 and fθ belong to W s (D), provided that α ≥ (s + 1)/2 ≥ 1 and δ 2 K s+3 ≤ D/C for some constant C = C(s) > 0.

Next, we have to see under which condition fθ ≥ 0. Lemma 6.10. Suppose that K k=1 θ k (-1) k = 0 and all partial sums p k=1 θ k (-1) k , p = 1, . . . , K, are uniformly bounded 1, then under the choice δ = δ ′ K -(α+1) log -β (K) for small enough constant δ ′ > 0 not depending on K, we have that fθ is a probability density on R + .

Next, we have

Write that for k = K, K + 1, . . . , 2K + 1, we have

We notice that for j = 0, 1, . . . , K + 1, we have

where

Therefore, we need to check that ρ 1 (., .) is a distance and that the Varshamov-Gilbert Lemma holds with the Hamming distance replaced by ρ 1 (., .). Lemma 6.11. Fix some even integer K > 0. There exists a subset

Next we prove

Following the proof of the Varshamov-Gilbert Lemma as given in Tsybakov, this amounts to proving that for ω

Note that

As A 1,0 = A 1,1 = 1, we deduce A K,i = K i by the definition of the binomial coefficients. ✷ Proof of Lemma 6.12. The first inequality follows from Lemma 6.5 and f Y,θ = f θ and f Y,0 = f 0 . The second inequality follows from (41), (42) and Lemma 6.11. ✷ Remark 6.1. For k > 1, we choose f k,Y,0 (x) = f Y,0 and deduce f X,0 , via formula (6). Similarly we set f k,Y,θ = f Y,0 + δ 2K j=K+1 θ j-K ϕ j . This leads to f X,θ = f X,0 + δ 2K j=K+1-k ν j (θ)ϕ j , with ν j (θ) to be computed. The proof can be completed analogously but with more tedious computations.

6.9. Proof of Formula ( 16). We have

and thus

1. Proof of ( 6) and [START_REF] Balabdaoui | Estimation of a k-monotone density: characterizations, consistency and minimax lower bounds[END_REF]. For simplicity, set

(f (u)/u)du1 y≥0 . Derivating yields the first equality in [START_REF] Balabdaoui | Estimation of a k-monotone density: limit distribution theory and the spline connection[END_REF]. Integrating between 0 and y gives the second equality which implies:

To get (6), we proceed by induction and prove that, for any p such that 1

The formula is true for p = 0 as (4) implies

Now if we admit the formula for order p, we can deduce that, derivating once more,

The last sum is equal to

and for the first one, we note that

and setting j ′ = j -1 in the sum gives the result at order p + 1. Therefore Formula (46) is proved for all p = 0, . . . k -1. Taking p = k -1 and derivating once more gives Formula (6).

To obtain (7), we integrate (6) between 0 and y. The successive integrations by part give the result provided that, for ℓ = 0, . . . , k, y k-ℓ f (k-ℓ-1) k (y) → 0, as y → 0.

For this notice that, as for u ≥ y ≥ 0, u -y ≤ u and y/u ≤ 1,

The r.h.s. above is equal to yf 1 (y) and tends to 0 as y tends to 0 by (45).✷