On Bayesian index policies for sequential resource allocation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

On Bayesian index policies for sequential resource allocation

Résumé

This paper is about index policies for minimizing (frequentist) regret in a stochastic multi-armed bandit model, that are inspired by a Bayesian view on the problem. Our main contribution is to prove that the Bayes-UCB algorithm, which relies on quantiles of posterior distributions, is asymptotically optimal when the rewards distributions belong to a one-dimensional exponential family, for a large class of prior distributions. We also show that the Bayesian literature gives new insight on what kind of exploration rates could be used in frequentist, UCB-type algorithms. Indeed, approximations of the Bayesian optimal solution or the Finite Horizon Gittins indices provide a justification for the kl-UCB+ and kl-UCB-H+ algorithms, whose asymptotic optimality is also established.
Fichier principal
Vignette du fichier
BayesianHaL.pdf (605.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01251606 , version 1 (06-01-2016)
hal-01251606 , version 2 (12-09-2016)
hal-01251606 , version 3 (06-11-2017)

Identifiants

Citer

Emilie Kaufmann. On Bayesian index policies for sequential resource allocation. 2016. ⟨hal-01251606v2⟩
428 Consultations
281 Téléchargements

Altmetric

Partager

More