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This paper is about index policies for minimizing (frequentist)
regret in a stochastic multi-armed bandit model, that are inspired
by a Bayesian view on the problem. Our main contribution is to
prove that the Bayes-UCB algorithm, which relies on quantiles of
posterior distributions, is asymptotically optimal when the rewards
distributions belong to a one-dimensional exponential family, for a
large class of prior distributions. We also show that the Bayesian
literature gives new insight on what kind of exploration rates could
be used in frequentist, UCB-type algorithms. Indeed, approximations
of the Bayesian optimal solution or the Finite Horizon Gittins indices
provide a justification for the kl-UCB+ and kl-UCB-H+ algorithms,
whose asymptotic optimality is also established.

1. Introduction. This paper presents new analyses of Bayesian-flavored
strategies for sequential resource allocation in an unknown, stochastic envi-
ronment modeled as a multi-armed bandit. A stochastic multi-armed bandit
model is a set of K probability distributions, V1, . . . ,VK , called arms, with
which an agent interacts in a sequential way. At round t, the agent who does
not know the arms’ distributions, chooses an arm At. The draw of this arm
produces an independent sample Xt from the associated probability distri-
bution VAt , often interpreted as a reward. Indeed, the arms can be viewed
as those of different slot machines, also called one-armed bandit, generating
rewards according to some underlying probability distribution.

In several applications that range from the motivating example of clinical
trials [33] to the more modern motivation of online advertisement (e.g., [15]),
the goal of the agent is to adjust his strategy A = (At)t∈N, also called bandit
algorithm, in order to maximize the rewards accumulated during his inter-
action with the bandit model. The adopted strategy has to be sequential, in
the sense that the next arm to play is chosen based on past observation: let-
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2 E. KAUFMANN

ting Ft = σ(A1, X1, . . . , At, Xt) be the σ-field generated by the observations
up to round t, At is σ(Ft−1, Ut)-measurable, where Ut is a uniform random
variable independent from Ft−1 (as algorithms may be randomized).

More precisely, the goal is to design a sequential strategy maximizing
the expectation of the sum of rewards up to some horizon T . If µ1, . . . , µK
denote the means of the arms, and µ∗ = maxa µa, this is equivalent to
minimizing the regret, defined as the expected difference between the reward
accumulated by an oracle strategy always playing the best arm, and the
reward accumulated by a strategy A:

(1) R(T,A) := E

[
Tµ∗ −

T∑
t=1

Xt

]
= E

[
T∑
t=1

(µ∗ − µAt)

]
.

The expectation is taken with respect to the randomness in the sequence of
successive rewards from each arm a, denoted by (Ya,s)s∈N, and the possible
randomization of the algorithm, (Ut)t. We denote by Na(t) =

∑t
s=1 1(As=a)

the number of draws from arm a at the end of round t, so that Xt =
YAt,NAt (t).

This paper focuses on good strategies in parametric bandit models, in
which the distribution of arm a depends on some parameter θa: we write
Va = νθa . Like in every parametric model, two different views can be adopted.
In the frequentist view, θ = (θ1, . . . , θK) is an unknown parameter. In the
Bayesian view, θ is a random variable, drawn from a prior distribution Π.
More precisely, we define Pθ (resp. Eθ) the probability (resp. expectation)
under the probabilistic model in which for all a, (Ya,s)s∈N is i.i.d. distributed
under νθa and PΠ (resp. EΠ) the probabilistic (resp. expectation) under the
probabilistic model in which for all a (Ya,s)s∈N is i.i.d. conditionally to θa
with conditional distribution νθa , and θ ∼ Π. The expectation in (1) can
thus be taken under any of these two probabilistic models. In the first case
this leads to the notion of frequentist regret, that depends on θ:

(2) Rθ(T,A) := Eθ

[
T∑
t=1

(µ∗ − µAt)

]
=

K∑
a=1

(µ∗ − µa)Eθ[Na(T )].

In the second case, this leads to the notion of Bayesian regret, sometimes
called Bayes risk in the literature (see [24]), that depends on the prior
distribution Π:

(3) RΠ(T,A) := EΠ

[
T∑
t=1

(µ∗ − µAt)

]
=

∫
Rθ(T,A)dΠ(θ).
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The first bandit strategy was introduced by Thompson in 1933 [33] in a
Bayesian framework, and a large part of the early works on bandit mod-
els was adopting the same perspective [10, 7, 18, 8]. Indeed, as Bayes risk
minimization has an exact—yet often intractable—solution, finding ways
to efficiently compute this solution has been an important line of research.
Since 1985 and the seminal work of Lai and Robbins [25], there is also a
precise characterization of good bandit algorithms in a frequentist sense.
They show that for any uniformly efficient policy A (i.e. such that for all θ,
Rθ(T,A) = o(Tα) for all α ∈]0, 1]), the number of draws of any sub-optimal
arm a (µa < µ∗) is asymptotically lower bounded as follows:

(4) lim inf
T→∞

Eθ[Na(T )]

log T
≥ 1

KL(νθa , νθ∗)
,

where KL(ν, ν ′) denotes the Kullback-Leibler divergence between the distri-
butions ν and ν ′. From (2), this yields a lower bound on the regret.

This result holds for simple parametric bandit models, including expo-
nential family bandit models presented in Section 2, that will be our main
focus in this paper. It paved the way to a new line of research, aimed at
building asymptotically optimal strategies, that is, strategies matching the
lower bound (4) for some classes of distributions. Most of the algorithms
proposed since then belong to the family of index policies, that compute at
each round one index per arm, depending on the history of rewards observed
from this arm only, and select the arm with largest index. More precisely,
they are UCB-type algorithms, building confidence intervals for the means
of the arms and choosing as an index for each arm the associated Upper
Confidence Bound (UCB). The design of the confidence intervals has been
successively improved [1, 6, 5, 4, 20, 13] so as to obtain simple index policies
for which non-asymptotic upper bound on the regret can be given. Among
them, the kl-UCB algorithm [13] matches the lower bound (4) for expo-
nential family bandit models. As they use confidence intervals on unknown
parameters, all these index policies are based on frequentist tools. Neverthe-
less, it is interesting to note that the first index policy was introduced by
Gittins in 1979 [18] to solve a Bayesian multi-armed bandit problem and is
based on Bayesian tools, i.e. on exploiting the posterior distribution on the
parameter of each arm.

However, tools and objectives can be separated: one can compute the
Bayes risk of an algorithm based on frequentist tools, or the (frequentist)
regret of an algorithm based on Bayesian tools. In this paper, we focus on
the latter and advocate the use of index policies inspired by Bayesian tools
for minimizing regret, in particular the Bayes-UCB algorithm introduced in
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[21]. Bayes-UCB is an index policy based on quantiles of the posterior distri-
butions on the means, that has been analyzed only for Bernoulli or Gaussian
rewards, with specific choices of prior distributions. Our main contribution
is to prove that this algorithm is asymptotically optimal, i.e. that it matches
the lower bound (4), for any exponential bandit model and for a large class of
prior distributions. Our analysis relies on two new ingredients: tight bounds
on the tail of posterior distributions (Lemma 4), and a self-normalized devia-
tion inequality featuring an exploration rate that decreases with the number
of observations (Lemma 5). This last tool also allows us to prove the asymp-
totic optimality of two variants of kl-UCB, called kl-UCB+ and kl-UCB-H+,
that display improved empirical performance. Interestingly, the alternative
exploration rate used by these two algorithms is already suggested by asymp-
totic approximations of the Bayesian exact solution or the Finite-Horizon
Gittins indices.

Over the past few years, another Bayesian algorithm, Thompson Sam-
pling, has become increasingly popular for its good empirical performance.
This randomized algorithm, that draws each arm according to its posterior
probability of being optimal, was introduced in 1933 as the very first ban-
dit algorithm [33] but the first logarithmic upper bound on its regret dates
back to 2012 [2]. Now, this strategy is known to be asymptotically optimal
in exponential family bandit models, yet only for specific choices of prior
distributions [22, 3, 23]. Our experiments of Section 5 highlight that the
index policies presented in this paper are also competitive with Thompson
Sampling.

The paper is structured as follows. Section 2 introduces the class of ex-
ponential family bandit models that we consider in the rest of the paper,
and the associated frequentist and Bayesian tools. In Section 3, we present
the Bayes-UCB algorithm, and give a proof of its asymptotic optimality. We
introduce kl-UCB+ and kl-UCB-H+ in Section 4, in which we prove their
asymptotic optimality and also exhibit connections with existing Bayesian
policies. In Section 5, we illustrate numerically the good performance of
our three asymptotically optimal, Bayesian-flavored index policies in terms
of regret and we also investigate their ability to attain an optimal rate in
terms of Bayes risk. Some proofs are provided in the appendix.

Notation. Recall that Na(t) =
∑t

s=1 1(As=a) is the number of draws from

arm a at the end of round t. Letting µ̂a,s = 1
s

∑s
k=1 Ya,k be the empirical

mean of the first s rewards from a, the empirical mean of arm a after t
rounds of the bandit algorithm, µ̂a(t), satisfies µ̂a(t) = 0 if Na(t) = 0,
µ̂a(t) = µ̂a,Na(t) otherwise.
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2. (Bayesian) exponential family bandit models. In the rest of the
paper, we consider the important class of exponential family bandit models,
in which the arms belong to a one-parameter canonical exponential family.

2.1. Exponential family bandit model. A one-parameter canonical expo-
nential family is a set P of probability distributions, indexed by a real pa-
rameter θ called the natural parameter, that is defined by

P = {νθ, θ ∈ Θ : νθ has a density fθ(x) = exp(θx− b(θ)) w.r.t ξ},

where Θ = (θ−, θ+) ⊆ R is an open interval, b a twice-differentiable and
convex function (called the log-partition function) and ξ a reference measure.
Examples of such distributions are given in Table 1 below.

Distribution Density Mean µ Parameter θ b(θ)

Bernoulli B(λ) λx(1− λ)1−x1{0,1}(x) λ log λ
1−λ log(1 + eθ)

Poisson P(λ) λx

x!
e−λ1N∗(x) λ log(λ) eθ

Gaussian N
(
λ, σ2

)
1√

2πσ2
e
− (x−λ)2

2σ2 λ λ
σ2

σ2θ2

2
(σ2 known)

Gamma Γ(k, λ) λk

Γ(k)
xk−1e−λx1R+(x) k/λ −λ −k log(−θ)

(k known)
Table 1

Examples of exponential families and associated divergence.

If X ∼ νθ, it can be shown that E[X] = ḃ(θ) and Var[X] = b̈(θ) > 0,
where ḃ (resp. b̈) is the derivative (resp. second derivative) of b with respect
to the natural parameter θ. Thus there is a one-to-one mapping between
the natural parameter θ and the mean µ = ḃ(θ), and distributions in an
exponential family can be alternatively parametrized by their mean. Letting
J := ḃ(Θ), for µ ∈ J we denote by νµ the distribution in P that has mean
µ : νµ = νḃ−1(µ). The variance V(µ) of the distribution νµ is related to its
mean in the following way:

(5) V(µ) = b̈(ḃ−1(µ)).

In the sequel, we fix an exponential family P and consider a bandit model
νµ = (νµ1 , . . . , νµK ), where νµa belongs to P and has mean µa. When con-
sidering Bayesian bandit models, we restrict our attention to product prior
distributions on µ = (µ1, . . . , µK), such that µa is drawn from a prior distri-
bution on J = ḃ(Θ) that has density fa with respect to the Lebesgue mea-
sure. We let πta be the posterior distribution on µa after the first t rounds of
the bandit game. With a slight abuse of notation, we will identify πta with
its density, for which a more precise expression is provided in Section 2.3.
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2.2. Kullback-Leibler divergence and confidence intervals. For distribu-
tions that belong to a one-parameter exponential family, the large deviation
rate function has a simple and explicit form, featuring the Kullback-Leibler
(KL) divergence, and one can build tight confidence intervals on their means.
The KL-divergence between two distributions νθ and νλ in an exponential
family has a closed form expression as a function of the natural parameters
θ and λ, given by

(6) K(θ, λ) := KL(νθ, νλ) = ḃ(θ)(θ − λ)− b(θ) + b(λ).

We also introduce d(µ, µ′) as the KL-divergence between the distributions
of means µ and µ′:

d(µ, µ′) := KL(νµ, νµ
′
) = K(ḃ−1(µ), ḃ−1(µ′)).

Applying the Cramér-Chernoff method (see e.g. [9]) in an exponential family
yields an explicit deviation inequality featuring this divergence function: if µ̂s
is the empirical mean of s samples from νµ and x > µ, one has P (µ̂s > x) ≤
exp(−sd(x, µ)). This inequality can be used to build a confidence interval
for µ based on a fixed number of observations s. Inside a bandit algorithm,
computing a confidence interval on the mean of an arm a requires to take into
account the random number of observations Na(t) available at round t. Using
a self-normalized deviation inequality (see [13] and references therein), one
can show that, at any round t of a bandit game, the kl-UCB index, defined
as

(7) ua(t) := sup {q ∈ J : Na(t)d(µ̂a(t), q) ≤ log(t logc(t))} ,

where c ≥ 3 is a real parameter, satisfies P (ua(t) > µa) & 1− 1/(t logc−2 t)
and is thus an upper confidence bound on µa. The exploration rate, which
is here log(t logc(t)), controls the coverage probability of the interval.

Closed-form expression for the divergence function d in the examples of
exponential families given in Table 1 are available (see [13]), and using the
fact that y 7→ d(x, y) is increasing when y > x, an approximation of ua(t)
can be obtained using for example binary search.

2.3. Posterior distributions in Bayesian exponential family bandits. It is
well known that the posterior distribution on the mean of a distribution
that belongs to an exponential family depends on two sufficient statistics:
the number of observations and the empirical means of these observations.
With fa the density of the prior distribution on µa, introducing

πa,n,x(u) :=
exp

(
n
[
ḃ−1(u)x− b(ḃ−1(u))

])
fa(u)∫

J exp
(
n
[
ḃ−1(u)x− b(ḃ−1(u))

])
fa(u)du

for u ∈ J,



ON BAYESIAN INDEX POLICIES 7

the density of the posterior distribution on µa after t rounds of the bandit
game can be written

πta = πa,Na(t),µ̂a(t).

While our analysis holds for any choice of prior distribution, in practice
one may want to exploit the existence of families of conjugate priors, some
of which are recalled in Table 2. With a prior distribution chosen in such
a family, the associated posterior distribution is well-known and its quan-
tiles are easy to compute, which is of particular interest for the Bayes-UCB
algorithm, described in the next section.

Distribution Prior distribution Posterior distribution on µ after n
on µ observations with empirical mean x

B(µ) Beta(a, b) Beta(a+ nx, b+ n(1− x))

P(µ) Γ(c, d) Γ(c+ nx, d+ n)

N
(
µ, σ2

)
N

(
µ0,m

−1
0

)
N

(
m0µ0+nxσ−2

m0+nσ−2 , (m0 + nσ−2)−1
)

Γ(k, k/µ) InvΓ(c, d) InvΓ(c+ kn, d+ knx)

Table 2
Conjugate prior on the mean and associated posterior distributions.

Finally, we give below a rewriting of the posterior distribution that will be
very useful in the sequel to obtain tight bounds on the tail of the posterior
distribution.

Lemma 1.

πa,n,x(u) =
exp(−nd(x, u))fa(u)∫

J exp(−nd(x, u))fa(u)du
, for all u ∈ J.

Proof. Let u ∈ J. One has

πa,n,x(u) =
exp

(
n
[
ḃ−1(u)x− b(ḃ−1(u))

])
fa(u)∫

J exp
(
n
[
ḃ−1(u)x− b(ḃ−1(u))

])
fa(u)du

× e−n[xḃ
−1(x)−b(ḃ−1(x))]

e−n[xḃ
−1(x)−b(ḃ−1(x))]

=
exp

(
−n
[
x(ḃ−1(x)− ḃ−1(u))− b(ḃ−1(x)) + b(ḃ−1(u))

])
fa(u)∫

J exp
(
−n
[
x(ḃ−1(x)− ḃ−1(u))− b(ḃ−1(x)) + b(ḃ−1(u))

])
fa(u)du

=
exp(−nd(x, u))fa(u)∫

J exp(−nd(x, u))fa(u)du
,

using the closed form expression (6) and the fact that θ = ḃ−1(µ).
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3. Bayes-UCB: a simple and optimal Bayesian index policy.

3.1. Algorithm and main result. The Bayes-UCB algorithm is an index
policy that was introduced by [21] in the context of parametric bandit mod-
els. Given a prior distribution on the parameters of the arms, the index used
for each arm is a well-chosen quantile of the (marginal) posterior distribu-
tions of its mean. For exponential family bandit models, given a product
prior distribution on the means, the Bayes-UCB index is

qa(t) := Q

(
1− 1

t(log t)c
;πta

)
= Q

(
1− 1

t(log t)c
;πa,Na(t),µ̂a(t)

)
,

where Q(α;π) is the quantile of order α of the distribution π (that is,
PX∼π(X ≤ Q(α;π)) = α) and c is a real parameter. In the particular case of
bandit models with Gaussian arms, [30] have introduced a variant of Bayes-
UCB with a slightly different tuning of the confidence level, under the name
UCL (for Upper Credible Limit).

While the efficiency of Bayes-UCB has been demonstrated even beyond
bandit models with independent arms, regret bounds are available only in
very limited cases. For Bernoulli bandit models, asymptotic optimality is
established by [21] when a uniform prior distribution on the mean of each
arm is used, while for Gaussian bandit models, [30] give a logarithmic re-
gret bound when a uniformative prior is used. In this section, we provide
new finite-time regret bounds that hold in general exponential family ban-
dit models, showing that a slight variant of Bayes-UCB is asymptotically
optimal for a large class of prior distributions.

We fix an exponential family, characterized by its log-partition function
b and the interval Θ =]θ−, θ+[ of possible natural parameters. We analyze
Bayes-UCB for exponential bandit models satisfying the following assump-
tion.

Assumption 2. There exists µ−0 > ḃ(θ−) and µ+
0 < ḃ(θ+) such that

∀a ∈ {1, . . . ,K}, µ−0 ≤ µa ≤ µ
+
0 .

For the exponential families of Table 1, this assumption requires that
the means of all arms are different from zero, and included in ]0, 1[ in the
Bernoulli case. We now introduce a regularized version of the Bayes-UCB
index, that relies on the knowledge of µ−0 and µ+

0 , as

(8) qa(t) := Q

(
1− 1

t(log t)c
;πa,Na(t),µ̄a(t)

)
,
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where µ̄a(t) = min
(
max(µ̂a(t), µ

−
0 ), µ+

0

)
. Note that µ−0 and µ+

0 can be cho-
sen arbitrarily close to µ− and µ+ respectively, in which case, qa(t) often
coincides with the original Bayes-UCB index qa(t).

Theorem 3. Let νµ be an exponential bandit model satisfying Assump-
tion 2. Assume that for all a, π0

a has a density fa with respect to the Lebesgue
measure such that fa(u) > 0 for all u ∈ J = ḃ(Θ). Let ε > 0. The algorithm
that draws each arm once and for t ≥ K selects at time t+ 1

At+1 = argmax
a

qa(t),

with qa(t) defined in (8), satisfies

∀a 6= a∗, E[Na(T )] ≤ 1 + ε

d(µa, µ∗)
log(T ) + oε (log(T )) .

From Theorem 3, taking the lim sup and letting ε go to zero show that
(this slight variant of) Bayes-UCB satisfies

∀a 6= a∗, lim sup
T→∞

E[Na(T )]

log(T )
≤ 1

d(µa, µ∗)
.

Thus this index policy is asymptotically optimal, as it matches the Lai and
Robbins’ lower bound (4). From a practical point of view, Bayes-UCB out-
performs kl-UCB and performs similarly (sometimes slightly better, some-
times slightly worse) as Thompson Sampling, as we shall see in Section 5.

3.2. Tail bounds for posterior distributions. Just like the analysis of [21],
the analysis of Bayes-UCB that we give in the next section relies on tight
bounds on the tails of posterior distributions, that permit to control quan-
tiles. These bounds are expressed with the Kullback-Leibler divergence func-
tion d. Therefore, an additional tool in the proof is the control of the devia-
tions of the empirical mean rewards from the true mean reward, measured
with this divergence function, which follows from the work of [13].

In the particular case of Bernoulli bandit models, Bayes-UCB uses quan-
tiles of Beta posterior distributions, and a specific argument, namely the fact
that Beta(a, b) is the distribution of the a-th order statistic among a+ b− 1
uniform random variables, permits to relate a Beta distribution (and its
tails) to a Binomial distribution (and its tails). This ‘Beta-Binomial trick’
is also used extensively in the analysis of Thompson Sampling for Bernoulli
bandits proposed by [2, 22, 3]. Note that this argument can only be used
for Beta distribution with integer parameters, which rules out many possi-
ble prior distributions. The analysis of [30] in the Gaussian case also relies
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on specific tails bounds for the Gaussian posterior distributions. For expo-
nential family bandit models, an upper bound on the tail of the posterior
distribution was obtained by [23] when the Jeffrey’s prior is used.

Lemma 4 below present more general results, that hold for any class of
exponential family bandit models and any prior distribution with a density
that is positive on J = ḃ(Θ). For such (proper) prior distributions, we give
deterministic upper and lower bounds on the corresponding posterior proba-
bilities πa,n,x([v, µ+[). Compared to the result of [23], which is not presented
in this deterministic way, Lemma 4 is based on a different rewriting of the
posterior distribution, given in Lemma 1.

Lemma 4. Let µ−0 , µ
+
0 be such that ḃ(µ−0 ) > θ− and ḃ(µ+

0 ) < θ+.

1. There exists two positive constants A and B such that for all x, v that
satisfy µ−0 < x < v < µ+

0 , for all n ≥ 1, for all a ∈ {1, . . . ,K},

An−1e−nd(x,v) ≤ πa,n,x([v, µ+[) ≤ B
√
ne−nd(x,v).

2. There exists a constant C such that for all x, v that satisfy µ−0 < v ≤
x < µ+

0 , for all n ≥ 1, for all a ∈ {1, . . . ,K},

πa,n,x([v, µ+[) ≥ C√
n
.

The constants A,B,C depend on µ−0 ,µ+
0 , b and the prior densities.

3.3. Finite-time analysis. We give here the proof of Theorem 3. To ease
the notation, assume that arm 1 is an optimal arm, and let a be a suboptimal
arm.

E[Na(T )] = E

[
T−1∑
t=0

1(At+1=a)

]
= 1 + E

[
T−1∑
t=K

1(At+1=a)

]
.

We introduce a truncated version of the KL-divergence, d+(x, y) := d(x, y)1(x<y)

and let gt be a decreasing sequence, that will be specified later.
Using that, by definition of the algorithm, if a is played at round t+ 1, it

holds in particular that qa(t) ≥ q1(t), one has

(At+1 = a) ⊆ (µ1 − gt ≥ q1(t))
⋃

(µ1 − gt ≤ q̄1(t), At+1 = a)

⊆ (µ1 − gt ≥ q1(t))
⋃

(µ1 − gt ≤ q̄a(t), At+1 = a) .

This yields

E[Na(T )] ≤ 1 +
T−1∑
t=K

P (µ1 − gt ≥ q̄1(t)) +
T−1∑
t=K

P (µ1 − gt ≤ q̄a(t), At+1 = a).
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The posterior bounds established in Lemma 4 permit to further upper
bound the two sums in the right-hand side of the above inequality. With C
defined in Lemma 4, we introduce t0, defined by

t ≥ t0 ⇒
(
µ1 − gt ≥ µ−0 and C2t log(t)2c > 1

)
.

On the one hand, for t ≥ t0,

(µ1 − gt ≥ q̄1(t)) =

(
π1,N1(t),µ̄1(t)([µ1 − gt, µ+[) ≤ 1

t logc t

)
=

(
π1,N1(t),µ̄1(t)([µ1 − gt, µ+[) ≤ 1

t logc t
, µ̄1(t) ≤ µ1 − gt

)
,

since by the lower bound in the second statement of Lemma 4,(
π1,N1(t),µ̄1(t)([µ1 − gt, µ+[) ≤ 1

t logc t
, µ̄1(t) ≥ µ1 − gt

)
⊂

(
C√
N1(t)

≤ 1

t logc t

)
⊂
(
N1(t) ≥ C2t2 log2c t

)
⊂ (N1(t) > t) = ∅.

Now using the lower bound in the first statement of Lemma 4,

(µ1 − gt ≥ q̄1(t)) ⊆

(
Ae−N1(t)d(µ̄1(t),µ1−gt)

N1(t)
≤ 1

t logc t
, µ̄1(t) ≤ µ1 − gt

)

⊂
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

))
.

On the other hand,

T−1∑
t=K

P (µ1 − gt ≤ q̄a(t), At+1 = a)

=
T−1∑
t=K

P
(
πa,Na(t),µ̄a(t)([µ1 − gt, µ+[) ≥ 1

t logc t
, At+1 = a

)

≤
T−1∑
t=K

P
(
µ̄a(t) < µ1 − gt, πa,Na(t),µ̄a(t)([µ1 − gt, µ+[) ≥ 1

t logc t
, At+1 = a

)(9)

+
T−1∑
t=K

P (µ̄a(t) ≥ µ1 − gt, At+1 = a) .
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Using Lemma 4, the first sum in (9) is upper bounded by

T−1∑
t=K

P
(
B
√
Na(t)e

−Na(t)d+(µ̄a(t),µ1−gt) ≥ 1

t logc t
, At+1 = a

)

≤
T−1∑
t=K

t∑
s=1

P
(
B
√
se−sd

+(µ̄a,s,µ1−gt) ≥ 1

t logc t
,Na(t) = s,At+1 = a

)

≤
T−1∑
t=K

t∑
s=1

P
(
sd+(µ̄a,s, µ1 − gs) ≤ log(T logc T ) + log(B) +

1

2
log s,

Na(t) = s,At+1 = a
)

≤
T∑
s=1

P
(
sd+(µ̄a,s, µ1 − gs) ≤ log T + c log log T + log(B) +

1

2
log s

)

≤
T∑
s=1

P
(
sd+(µ̂a,s, µ1 − gs) ≤ log T + c log log T + log(B) +

1

2
log s

)

+

T∑
s=1

P(µ̂a,s < µ−0 ).

To third inequality follows from exchanging the sums over s and t and using
that

∑N
t=1 1(Na(t)=s)∩(At+1=a) is smaller than 1 for all s. The last inequality

uses that if µ̂a,s ≥ µ0, µa,s ≤ µ̂a,s and d+(µa,s, µ1 − gs) ≥ d+(µ̂a,s, µ1 − gs).
Then by Chernoff inequality,

T∑
s=1

P(µ̂a,s < µ−0 ) ≤
∞∑
s=1

exp(−sd(µ−0 , µa)) =
1

1− e−d(µ−0 ,µa)
.

Still using Chernoff inequality, the second sum in (9) is upper bounded by

T−1∑
t=K

P (µ̂a(t) ≥ µ1 − gt, At+1 = a) ≤
T−1∑
t=K

P
(
µ̂a(t) ≥ µ1 − gNa(t), At+1 = a

)
≤

T−1∑
t=K

t∑
s=1

P (µ̂a,s ≥ µ1 − gs, Na(t) = s,At+1 = a)

≤
T∑
s=1

P (µ̂a,s ≥ µ1 − gs) ≤
∞∑
s=1

exp(−sd(µ1 − gs, µa)) := N0 < +∞.
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Putting things together, we showed that there exists some constant N =
max(t0, N0 + (1− e−d(µ−0 ,µa))−1) + 1 such that

E[Na(T )] ≤ N +

T−1∑
t=K

P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

))
︸ ︷︷ ︸

T1

+

T∑
s=1

P
(
sd+(µ̂a,s, µ1 − gs) ≤ log T + c log log T + log(B) +

1

2
log s

)
︸ ︷︷ ︸

T2

Term T1 is shown below to be of order o(log(T )), as µ̂1(t) cannot be too far
from µ1−gt. Note however that the deviation is expressed with log(t/N1(t))
in place of the traditional log(t), which makes the proof of Lemma 5 more
intricate. In particular, Lemma 5 applies to a specific sequence (gt) defined
therein, and a similar result could not be obtained for the choice gt = 0,
unlike Lemma 6 below.

Lemma 5. Let gt be such that d(µ1 − gt, µ1) = 1
log(t) . If c ≥ 7, for all A,

if t is larger than exp(max(
√

3, A−1/7)),

P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

At logc t

N1(t)

)
≤ e

(
1

At log t
+

3 log log t+ logA

At log2 t
+

1

At log3 t

)
+

1

t2
.

From Lemma 5, one has

(T1) ≤ e
T−1∑
t=K

log2 t+ 3(log t) log log(t) + logA log t+ 1

At(log3 t)
+

T−1∑
t=K

1

t2

≤ e

A

(
2 +

3

e
+

logA

logK

) T−1∑
t=K

1

t log(t)
+
π2

6

≤ e

A

(
2 +

3

e
+

logA

logK

)
log log T +

π2

6
.

The following lemma permits to give an upper bound on Term T2.

Lemma 6. Let f, g, h be three functions such that

f(s) −→
s→∞

∞, g(s) −→
s→∞

0 and
h(s)

s
−→
s→∞

0,
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with g and s 7→ h(s)/s non-increasing for s large enough.
For all ε > 0 there exists a (problem-dependent) constant Na(ε) such that

for all T ≥ Na(ε),

T∑
s=1

P
(
sd+(µ̂a,s, µ1 − g(s)) ≤ f(T ) + h(s)

)
≤ 1 + ε

d(µa, µ1)
f(T ) +

√
f(T )

√
8V2

aπ(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3

+ 8(1 + ε)2V2
a

(
d′(µa, µ1)

d(µa, µ1)

)2 1

1− e−d(µ−0 ,µa)
+ 1,

with Va = supµ∈[µa,µ1] V(µ), where the variance function is defined in (5).

Let ε > 0. Using Lemma 6, with f(s) = log(s) + c log log(s) + log(B),
g(s) = gs defined in Lemma 5 and h(s) = 1

2 log(s), there exists problem
dependent constants C0 and D0(ε) such that

(T2) ≤ 1 + ε

d(µa, µ1)
(log T + c log log T ) + C0

√
log T + c log log T +D0(ε).

Putting together the upper bounds on (T1) and (T2) yields the conclusion:
for all ε > 0,

E[Na(T )] ≤ 1 + ε

d(µa, µ∗)
log(T ) +Oε(

√
log(T )).

4. A Bayesian insight on alternative exploration rates. The kl-
UCB index of an arm, ua(t), introduced in (7), uses the exploration rate
log(t logc(t)), that does not depend on arm a. Some alternative to this uni-
versal exploration rate have been suggested in the literature, and we formally
introduce two variants of kl-UCB, called kl-UCB+ and kl-UCB-H+ using an
exploration rate that decreases with the number of draws of arm a. The tools
developed for the analysis of Bayes-UCB allow use to prove the asymptotic
optimality of both algorithms. Then we show that the Bayesian literature
on the multi-armed bandit problem provides a natural justification for these
algorithms, that are related to approximations of the Bayesian optimal op-
timal solution or the Gittins indices.

4.1. The kl-UCB+ and kl-UCB-H+ algorithms. We introduce in Defini-
tion 7 two new index policies, and prove their asymptotic optimality. The
indices indices uH,+a (t) and u+

a (t) both rely on an exploration rate that de-
creases with the number of plays of arm a. kl-UCB-H+ additionally requires
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the knowledge of the horizon T . In practice, both algorithms outperform
kl-UCB, as can be seen in Section 5.

Definition 7. Let c ≥ 0. We define kl-UCB-H+ and kl-UCB+ with
parameter c ≥ 0 as the index policies respectively associated to the indices

uH,+a (t) = sup

{
q ≥ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ log

(
T logc T

Na(t)

)}
,(10)

u+
a (t) = sup

{
q ≥ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ log

(
t logc t

Na(t)

)}
.(11)

A key step in the analysis of Bayes-UCB is the control of the probability
of the event (

N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

))
,

in which an exploration rate of order log(t/N1(t)) appears. This control is
obtained in Lemma 5 which can also be used to analyze the kl-UCB-H+ and
kl-UCB+ algorithms, that are based on such alternative exploration rates.
The following theorem proves the asymptotic optimality of these two index
policies. The proof is provided in Appendix B.

Theorem 8. Let c ≥ 7. Each of the index policy associated to the indices
defined by (11) and (10) satisfies, for all ε > 0,

E[Na(T )] ≤ 1 + ε

d(µa, µ∗)
log(T ) +Oε(

√
log(T )).

The use of alternative exploration rates in UCB-type algorithms has ap-
peared before in the bandit literature. For example the MOSS algorithm [4],
associated to the index

µ̂a(t) +

√
log (T/(KNa(t)))

Na(t)

is designed to be optimal in a minimax sense for bandit models with sub-
gaussian rewards: the algorithm achieves aO(

√
KT ) distribution-independent

upper bound on the regret. Besides, it was already noted by [16] that the
use of the exploration rate log(t/Na(t)) in place of log(t) in the kl-UCB al-
gorithm leads to better empirical performance. In this paper, additionally
to proving the asymptotic optimality of these approaches, we now provide a
new insight on the use of such alternative exploration rates by relating the
kl-UCB-H+ algorithm to other Bayesian (index) policies.
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4.2. Bayesian optimal solution and Gittins indices. The alternative ex-
ploration rate discussed in Section 4.1 happens to be related to two other
Bayesian strategies for the multi-armed bandit problem: the Bayesian op-
timal solution and the Finite-Horizon Gittins index policy, that we present
here.

In a Bayesian framework, the interaction of an agent with a multi-armed
bandit can be modeled by a Markov Decision Process (MDP), in which the
state Πt is the current posterior distribution over the parameter of the arms.
In exponential bandit models, the posterior over µ is Πt =

⊗
πta. There are

K possible actions and when action At is chosen in state Πt, the observed
reward Xt is a sample from arm At, that satisfies, conditionally to the past,
Xt ∼ νµ and µ ∼ Πt(At). The new state is Πt+1 =

⊗
πt+1
a with πt+1

a = πta
for all a 6= At and the density of πt+1

At
gets updated according to

πt+1
At

(u) ∝ exp(−(ḃ−1(u)Xt − b(ḃ−1(u))))πtAt(u).

Bayes risk minimization, or reward maximization under the Bayesian prob-
abilistic model, is equivalent to solving this MDP for the finite-horizon cri-
terion, which boils down to finding a strategy of the form At = g(Πt) for
some deterministic function g, that maximizes

(12) EΠ

[
T∑
t=1

Xg
t

]
,

where (Xg
t )t is the sequence of rewards obtained under policy g. From the

theory of MDPs (see e.g., [29]), the optimal policy is solution of dynamic
programming equations and can be computed by induction. However, due
to the very large, if not infinite, state space (the set of possible posterior
distributions over µ), the computation is often intractable.

In a slightly different setting, Gittins proved in 1979 [18] that the ap-
parently intractable optimal policy reduces to an index policy, with corre-
sponding indices later called the Gittins indices. He considers the discounted
Bayesian multi-armed bandit problem, in which the goal is to find a policy
g that minimizes

EΠ

[ ∞∑
t=1

αt−1Xg
t

]
,

for some discount parameter α ∈]0, 1[. Interestingly, it was proved in [8] that
the discount is necessary for this reduction to hold: in particular, the policy
maximizing (12) is not an index policy. However, the notion of Gittins indices
is a powerful concept, that can also be defined in a finite horizon multi-armed
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bandit. The Finite-Horizon Gittins index of an arm depends on the current
posterior distribution on its mean (π = πta) and on the remaining time to
play (r = T − t). It can be interpreted as the price worth paying for playing
an arm with posterior π at most r times. Indeed, for λ > 0 consider the
following game, called Cλ, in which a player can either pay λ and draw the
arm to receive a sample Yt, which results in a reward Yt−λ, or stop playing,
which yields no reward. As precisely defined below, the Gittins index is the
critical value of λ for which the optimal policy in Cλ is to stop playing the
arm from the beginning. This definition transposes to the non-discounted
case one of the equivalent definitions of the discounted Gittins index that
can be found in [19].

Definition 9. The Finite-Horizon Gittins index for a current posterior
π and remaining time r is G(π, r) = inf{λ ∈ R : V ∗λ (π, r) = 0}, with

V ∗λ (π, r) = sup
0≤τ≤r

E
Yt

i.i.d∼ νµ
µ∼π

[
τ∑
t=1

(Yt − λ)

]
,

where the supremum is taken over all stopping time τ smaller than r a.s.,
with the convention

∑0
t=1 · = 0.

Computing the FH-Gittins indices requires to compute V ∗λ (π, r) for several
values of λ in order to find the critical value (using, e.g., binary search). Each
computation requires to solving a MDP, but on a smaller state space: the
possible posterior distributions on the mean of a single arm. Hence the FH-
Gittins algorithm, that is the index policy associated to the Finite-Horizon
Gittins indices,

At+1 = argmax
a=1,...,K

G(πta, T − t),

is a more practical algorithm than the Bayesian optimal solution. Although
FH-Gittins does not coincide with the Bayesian optimal solution, we believe
it is a good approximation. This is supported by simulations performed in
a two-armed Bernoulli bandit problem, for which we compute the Bayes
risk of the optimal strategy and that of the FH-Gittins algorithm up to
horizon T = 70, as presented in Figure 1. For small horizons, [17] propose a
comparison of different algorithms with the Bayesian optimal solution and
similarly notice that the Bayes risk of FH-Gittins (called Λ-strategy) is very
close to the optimal value, for various choices of prior and horizons.

Compared to a simple index policy like Bayes-UCB, the computational
cost of the FH-Gittins algorithm (not to mention that of the Bayesian op-
timal strategy) is still very high. In particular, the complexity of these two



18 E. KAUFMANN

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

B
a
y
e
s
 R

is
k

 

 

Dynamic Programming solution

FH−Gittins algorithm

Fig 1. Bayes risk of the optimal strategy (blue) and FH-Gittins (dashed red) estimated
using N = 106 replications of a bandit game, for which the means are drawn from U([0, 1])

approaches grows dramatically when the horizon T increases, which mo-
tivates some approximations that have been proposed for large horizons,
described in the next sections.

However, when the FH-Gittins algorithm is efficiently implementable (that
is, for relatively small horizons), we would like to advocate its use for min-
imizing the frequentist regret. Indeed our experiments of Section 5 report
good empirical performance in Bernoulli bandit models. In this particular
case, using a uniform prior on the means, the set of (Beta) posterior is
parametrized by two integers (number of zeros and ones observed so far),
and we could implement FH-Gittins up to horizon T = 1000. An efficient im-
plementation of FH-Gittins for Gaussian bandits, up to horizon T = 10000,
has been recently given by [26]. More generally, finding efficient methods to
compute Finite-Horizon Gittins indices is still an area of investigation [28].
Interestingly, [26] provides the first theoretical elements supporting the use
of FH-Gittins for regret minimization, by giving the first logarithmic upper
bound on its regret in the particular case of Gaussian bandit models. How-
ever, the asymptotic optimality of this algorithm for Gaussian bandits and
more general model remains a conjecture.

4.3. Approximation of the Bayesian optimal solution. In the paper [24],
Lai shows that, in exponential family bandit models, the Bayes risk of any
strategy is asymptotically lower bounded by C0(π) log2(T ), when C0(π) is
a prior-dependent constant. He also provides matching strategies, which
implies in particular that the Bayes risk of the Bayesian optimal solution is
of order log2(T ). Any strategy matching this lower bound can be viewed as
an asymptotic approximation of the Bayesian optimal solution.
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In the particular case of product prior distributions, we provide in The-
orem 10 a Bayes risk lower bound that is slightly more general than Lai’s
result in the sense that it does not require the prior distribution on the
natural parameter of each arm to have a compact support. The proof of
this result, provided in Appendix D, follows however closely that of [24].
The lower bound is expressed in terms of the prior distribution on the nat-
ural parameters θ = (θ1, . . . , θK) of the arms, with the following notation.
For a = 1, . . . ,K, we let θ−a = (θ1, . . . , θa−1, θa+1, . . . , θK) be the vector of
ΘK−1 that consists of all components of θ except component number a. We
let θ∗a = maxi 6=a θi, so that θ∗a only depends on θ−a.

Theorem 10. Let H be a prior distribution on ΘK that has a product
form, such that each marginal has a density ha with respect to the Lebesgue
measure λ that satisfies ha(θ) > 0 for all θ ∈ Θ. Letting H−a the marginal
distribution of θ−a, that has density

∏
i 6=a hi(θi) with respect to λ⊗K−1, one

assume that

∀a = 1, . . . ,K,

∫
ΘK−1

ha(θ
∗
a)dH−a(θ−a) <∞.

Under the prior distribution H, the Bayes risk of any strategy A satisfies

lim inf
T→∞

RH(T,A)

log2(T )
≥ 1

2

K∑
a=1

∫
ΘK−1

ha(θ
∗
a)dH−a(θ−a).

For exponential family bandit models with a product prior, Lai provides
the first (asymptotic) prior-dependent Bayes risk upper bounds, when Θ is
compact. Letting [µ−, µ+] = ḃ(Θ), he shows in particular that the index
policy associated to

(13) Ia(t) = sup

{
q ∈ [µ−, µ+] : Na(t)d(µ̂a(t), q) ≤ log

(
T

Na(t)

)}
,

where d(x, y) = d (max(µ−,min(µ+, x)), y)), has a Bayes risk that asymp-
totically matches the lower bound of Theorem 10. This index policy is very
similar to kl-UCB-H+ and differs only from the use of a regularized version
of the divergence function d.

While a recent line of research on Bayesian randomized algorithms (e.g.
Thompson Sampling) has provided Bayes risk upper bound in quite general
settings ([32, 31]), to the best of our knowledge, no upper bound scaling
in log2(T ) has been obtained for exponential family bandit models since
the work of Lai. [11, 27] give the first prior-dependent upper bounds on
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the Bayes risk of Thompson Sampling, in a particular case quite different
from our setting: a two-armed bandit model in which the means of the
arms are known up to a permutation and the joint prior distribution is thus
supported on (µ1, µ2) and (µ2, µ1). In Section 5.2, we investigate numerically
the optimality of the Bayesian index policies discussed in the paper with
respect to the lower bound of Theorem 10.

4.4. Approximation of the Finite-Horizon Gittins indices. As discussed
Section 4.2, the FH-Gittins algorithm, that is the index policy associated to

Ja(t) = G(πta, T − t),

is conjectured to be a good approximation of the Bayesian optimal policy, yet
the above indices remain difficult to compute. Building on approximations of
the Finite-Horizon Gittins indices that can be extracted from the literature
permits to obtain a related efficient index policy.

Recall from Definition 9 that the Finite-Horizon Gittins index takes the
form

G(π, r) = inf {λ ∈ R : V ∗λ (π, r) = 0} ,

where V ∗λ (π, r) corresponds to the optimal value function associated to a
calibration game Cλ. In the paper [12], Burnetas and Katehakis propose tight
bounds on the value function V ∗λ (πa,n,x, r) for exponential family bandits.
These bounds permit to derive asymptotic approximations of the FH-Gittins
indices, when r is large, and to show that, for large values of the remaining
time T − t,

(14) Ja(t) ' sup

{
q ∈ [µ−, µ+] : Na(t)d̃(µ̂a(t), q) ≤ log

(
T − t
Na(t)

)}
.

This approximation is valid under the assumption that Θ is compact: [µ−, µ+] =
ḃ(Θ) and d̃ is another regularization of the divergence function d, such that,
for any y, d̃(x, y) = d(x, y) for x > µ− and for x ≤ µ−,

d̃(x, y) = d(µ−, y) + (ḃ−1(y)− ḃ−1(µ−))(µ− − x).

In the particular case of Gaussian bandit models, the work of Chang and Lai
[14] on the approximation of discounted Gittins indices can also be adapted
to obtain approximations of the Finite-Horizon Gittins indices, showing the
same tendency as in (14): compared to the corresponding kl-UCB index, here
the log t is replaced by log((T − t)/Na(t)). This alternative exploration rate
also appears in the non-asymptotic lower bound on the Gaussian Gittins
index obtained by [26].
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These approximations of the Finite-Horizon Gittins indices provide an-
other justification for exploration rates of the form log(h(t, T )/Na(t)), with
some function h, which are also used by the kl-UCB-H+ and kl-UCB+ al-
gorithms. These two algorithms can thus be viewed as Bayesian (inspired)
index policies.

5. Numerical experiments.

5.1. Regret minimization. We first perform experiments with a moder-
ate horizon T = 1000, which permits to include the Finite-Horizon Gittins
algorithm discussed in Section 4.2. Figure 2 displays the regret of kl-UCB,
Thompson Sampling and the four Bayesian (or Bayesian inspired) index
policies discussed in this paper, in two instances of two-armed Bernoulli
bandit problems. The Bayesian index policies display comparable, if not
better, performance than kl-UCB and Thompson Sampling. In particular,
FH-Gittins appears to be significantly better than the other algorithms on
the instance with small rewards.
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Fig 2. Regret on two-armed Bernoulli bandits (µ = [0.05 0.15] (left) µ = [0.75 0.8] (right))
up to horizon T = 1000, averaged over N = 10000 simulations

For a larger horizon T = 20000, we then run experiments on a bandit
model in which rewards follow an exponential distribution (which is a partic-
ular case of Gamma distribution, with parameter k = 1, see Table 1). Bayes-
UCB and Thompson Sampling are implemented using a InvGamma(1, 1)
prior on the means. Results are displayed in Figure 3. In this setting, Bayes-
UCB, kl-UCB+ and kl-UCB-H+ improve over kl-UCB, and are also compet-
itive with Thompson Sampling. As already noted in several works (e.g. [13]),
the Lai and Robbins lower bound, that is asymptotic, is quite pessimistic
for finite (even large) horizons.
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Fig 3. Regret on a five-armed bandit with Exponential distributions with means µ =
[1 1.5 2 2.5 3] up to horizon T = 20000, averaged over N = 50000 simulations

5.2. Bayes risk minimization. In this paper, Bayes risk minimization
and its exact solution is mostly presented as a justification for improved
algorithms for regret minimization. However, it is also interesting to un-
derstand whether the proposed algorithm are good approximations of the
Bayesian solution, i.e. whether they match the asymptotic lower bound of
Theorem 10.

We report here results of experiments in Bernoulli bandit models with
a uniform prior of the means. In this setting, some computations (see Ap-
pendix D.4) show that the lower bound rewrites

lim inf
T→∞

R(T,A)

log2(T )
≥ K − 1

K + 1
.

In particular, we see that the asymptotic rate of the Bayesian regret is
(almost) independent of the number of arms. For several values of K, we
display on Figure 4 the Bayes risk RT (A(T )) of several algorithms, together

with the theoretical lower bound, as a function of log2(T ).
For each value of K, we observe that all the algorithms have a Bayes

risk that seems to be affine in log2(T ). For Thompson Sampling, kl-UCB+

and kl-UCB-H+ the slope is close to (K − 1)/(K + 1), whereas for kl-UCB
and Bayes-UCB it is strictly larger. This leads to the conjecture that the
first three algorithms are asymptotically optimal in a Bayesian sense. It is
to be noted that, while the Bayes risk of these algorithms seems to be of
order (K−1)/(K+1) log2(T )+C(K) for large values of T , the second-order
term C(K) appears to be increasing significantly with the number of arms.
Compared to Lai and Robbins lower bound on the regret, this lower bound
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does not appear to be over-pessimistic in finite time.
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Fig 4. Bayes risk up to T = 20000 on a Bernoulli bandit model with a uniform prior on
the K arms, for K = 5, 10, 15, 20, averaged over N = 50000 simulations.

6. Conclusion. In the context of exponential family bandit models,
this paper provides the first analysis of a Bayesian algorithm that holds for
a wide class of prior distributions, namely all distributions that have positive
density with respect to the Lebesgue measure. It also provides theoretical
justifications for the use of the kl-UCB-H+ and kl-UCB+ algorithms to-
gether with a new insight on the alternative exploration rate used by these
algorithms. An interesting future direction of research would be to better
understand the Finite-Horizon Gittins strategy, which performs well in prac-
tice, but whose asymptotic optimality is still to be established.
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The appendix is structured as follows. Appendix A presents Pinsker-like
inequalities, that is quadratic approximations of the Kullback-Leibler diver-
gence functions, when the natural parameters of the distributions belong to
some compact interval. These inequalities will be useful at several places of
this supplementary material. Appendix B gathers the proof of Theorem 8
and the proofs of the lemmas introduced in the finite-time analysis of Bayes-
UCB. Appendix C and Appendix D are respectively dedicated to establish-
ing the posterior tail bounds of Lemma 4 and proving the asymptotic lower
bound on the Bayes risk stated in Theorem 10.

APPENDIX A: PINSKER-LIKE INEQUALITIES

For on any compact C ⊂ Θ, one can obtain quadratic approximations
of the KL-divergence as a function of either the natural parameters or the
means. These useful inequalities are stated in Proposition 11

Proposition 11. Let C be a compact subset of Θ. Introducing

(15) c1 := inf
θ∈C

b̈(θ) > 0 and c2 := sup
θ∈C

b̈(θ) <∞,
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one has

∀(θ, θ′) ∈ (C)2,
c1

2
(θ − θ′)2 ≤ K(θ, θ′) ≤ c2

2
(θ − θ′)2,(16)

∀(x, v) ∈ (ḃ(C))2,
1

2c2
(x− v)2 ≤ d(x, v) ≤ 1

2c1
(x− v)2.(17)

If (x, v) ∈ (ḃ(C))2 are such that x < v, one has

(18) ḃ−1(v)− ḃ−1(x) ≤ 1

c1
(v − x).

Proof. These three statements follow from Lagrange formulas. For example
to derive (17), given that d(x, y) = K(ḃ−1(x), ḃ−1(y)), it can be shown, using
the close form expression (6), that

d

dx
d(x, v) = ḃ−1(x)− ḃ−1(v) and

d2

d2x
d(x, v) =

1

b̈(ḃ−1(x))
.

From the second-order Lagrange formula applied to x 7→ d(x, v), there exists
c ∈]x, v[ (or ]v, x[) such that

d(x, v) =
1

2

1

b̈(ḃ−1(c))
(x− v)2 ≤ 1

2c1
(x− v)2.

The other inequalities are obtained using similar arguments.

APPENDIX B: FINITE-TIME ANALYSIS

B.1. Proof of Theorem 8. We first give an analysis of the index policy
associated to u+

a (t). Introducing gt defined by d(µ1−gt, µ1) = 1
log(t) , one can

write a decomposition similar to that used in the proof of Theorem 3:

E[Na(T )] ≤ 1 +
T−1∑
t=K

P
(
µ1 − gt ≥ u+

1 (t)
)

+
T−1∑
t=K

P(µ1 − gt ≤ u+
a (t), At+1 = a)

≤ 1 +

T−1∑
t=K

P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
t logc(t)

Na(t)

))
(19)

+
T−1∑
t=K

P
(
Na(t)d

+(µ̂a(t), µ1 − gt) ≤ log (T logc(T )) , At+1 = a
)
,(20)



ON BAYESIAN INDEX POLICIES 27

using the definition of u+
a (t) and the fact that t logc t/Na(t) ≤ T logc T .

Lemma 5 can be applied (with A = 1) to show that the sum in (19) is of
order o(log(T )), while the sum in (20) can be rewritten and upper bounded
using Lemma 6: for all ε > 0, the result follows from

E
T−1∑
t=K

t∑
s=1

1(sd+(µ̂a,s,µ1−gt)≤log(T logc T ))1(At+1=a,Na(t)=s)

≤
T−1∑
s=1

P
(
sd+(µ̂a,s, µ1 − gt) ≤ log (T logc(T ))

)
≤ 1 + ε

d(µa, µ1)
log(T logc(T )) + oε(log(T )).

For the index policy associated to uH,+a (t), using a similar decomposition,

E[Na(T )] ≤ 1 +
T−1∑
t=K

P
(
µ1 − gt ≥ uH,+1 (t)

)
+
T−1∑
t=K

P(µ1 − gt ≤ uH,+a (t), At+1 = a)

≤ 1 +
T−1∑
t=K

P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
T logc(T )

Na(t)

))
(21)

+

T−1∑
t=K

P
(
Na(t)d

+(µ̂a(t), µ1 − gt) ≤ log (T logc(T )) , At+1 = a
)
.(22)

The sums in (22) and (20) are the same, and lower bounding T logc T by
t logc t in each term of the sum in (21) shows that it is upper bounded by
(19). Thus, this index policy is also asymptotically optimal.

B.2. Proof of Lemma 5. To upper bound

(A) := P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

At logc t

N1(t)

)
,

we consider two cases in which arm 1 has or not been drawn a lot.

(A) ≤ P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

)
, N1(t) ≤ log4(t)

)
︸ ︷︷ ︸

A1

+ P
(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

)
, N1(t) > log4(t)

)
︸ ︷︷ ︸

A2
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To upper bound term A1, we write(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

)
, N1(t) ≤ log4(t)

)
⊆
(
N1(t)d+ (µ̂1(t), µ1) ≥ log(At) + c log log(t)− 4 log log(t),

N1(t) ≤ log4(t)
)

⊆
(
N1(t)d+ (µ̂1(t), µ1) ≥ log(At) + 3 log log t

)
,

using that c ≥ 7. The self-normalized concentration inequality proved in [13]
and stated in Lemma 12 permits to further upper bound A1:

(A1) ≤ e log2 t+ 3(log t) log log(t) + log(A) log t+ 1

At log3 t
.

Lemma 12.

P
(
∃s ∈ {1, . . . , t} : sd+ (µ1,s, µ1) ≥ δ

)
≤ (δ log(t) + 1) exp(−δ + 1).

To upper bound term A2, if t is such that log7 t ≥ A−1, we write(
N1(t)d+(µ̂1(t), µ1 − gt) ≥ log

(
At logc t

N1(t)

)
, N1(t) ≥ log4(t)

)
⊆
(
N1(t)d+ (µ̂1(t), µ1 − gt) ≥ 0, N1(t) ≥ log4(t)

)
⊆
(
µ̂1(t) ≤ µ1 − gt, N1(t) ≥ log4(t)

)
,

Thus, if t is such that t ≥ exp(
√

3) (which implies log3 t ≥ 3 log t),

(A2) ≤ P
(
µ̂1(t) ≤ µ1 − gt, N1(t) ≥ log4(t)

)
≤ P

(
∃s ∈ [dlog(t)4e; t] : µ̂1,s ≤ µ1 − gt

)
≤

t∑
s=dlog(t)4e

P (µ̂1,s ≤ µ1 − gt) ≤
t∑

s=dlog(t)4e

e−sd(µ1−gt,µ1)

≤ te−(log t)4d(µ1−gt,µ1) = te−(log t)3 ≤ te−3 log t =
1

t2
.

Combining this with the upper bound on A1 yields the result.

B.3. Proof of Lemma 6. The quantity to be upper bounded is

(B) :=

T∑
s=1

P
(
sd+ (µ̂a,s, µ1 − g(s)) ≤ f(T ) + h(s)

)
.
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The function w(q) = d+(µ̂a,s, q) is convex. Moreover it is differentiable on

the interval ]µ̂a,s, µ
+[ with w′(q) =

q−µ̂a,s
V(q) 1(µ̂a,s≤q). Thus, if µ̂a,s ≥ µ−0 ,

d+(µ̂a,s, µ1−g(s)) ≥ d+(µ̂a,s, µ1)−g(s)
µ1 − µ̂a,s

V(µ1)
≥ d+(µ̂a,s, µ1)−g(s)

µ1 − µ−0
V(µ1)

.

Therefore

(B) ≤
T∑
s=1

P
(
d+(µ̂a,s, µ1) ≤ f(T )

s
+ g(s)

µ1 − µ−0
V(µ1)

+
h(s)

s

)
+

T∑
s=1

P(µ̂a,s < µ−0 )

≤
T∑
s=1

P
(
d+(µ̂a,s, µ1) ≤ f(T )

s
+ r(s)

)
+

1

1− e−d(µ−0 ,µa)
,

using Chernoff inequality and introducing

r(s) := g(s)
µ1 − µ−0
V(µ1)

+
h(s)

s
.

Let ε > 0. One also introduce

KT (ε) :=

⌈
(1 + ε)f(T )

d(µa, µ1)

⌉
.

From the assumptions on f, g and h, there exists s0 such that r is non-
increasing for s ≥ s0 and one has

KT (ε) −→
T→∞

∞ and r(s) −→
s→∞

0.

For T such that KT ≥ s0,

(B) ≤ KT +

T∑
s=KT+1

P
(
d+(µ̂a,s, µ1) ≤ f(T )

s
+ r(KT )

)
+ Ca,

with Ca = 1/
(

1− e−d(µ−0 ,µa)
)

. As r(KT )→ 0, there exists Na(ε) such that

T ≥ Na(ε) ⇒ r(KT ) ≤ d(µa, µ1)
ε

1 + ε
.

Then, if T ≥ Na(ε), one has, for all s ≥ KT + 1,

f(T )

s
+ r(KT ) ≤ d(µa, µ1)
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and there exists µ∗(s) ∈]µa;µ1[ such that d(µ∗(s), µ1) = f(T )
s +r(KT ). Then,

using Chernoff inequality and the inequality

∀µ > µ′, d(µ, µ′) ≥ 1

2 supµ∈[µ′,µ] V(µ)
(µ− µ′)2,

stated in [13] and that follows from Lagrange equality, one can write

(B) ≤ KT +

T∑
s=KT+1

P(µ̂a,s > µ∗(s)) + Ca ≤ KT +

T∑
s=KT+1

e−sd(µ∗(s),µa) + Ca

≤ KT +
T∑

s=KT+1

e
−s (µ∗(s)−µa)2

2V2
a + Ca ≤ KT +

∫ ∞
KT

e
−s (µ∗(s)−µa)2

2V2
a ds+ Ca,

where Va = supµ∈]µa,µ1[ V(µ). Using the convexity of x 7→ d(x, µ1), a lower
bound on µ∗(s)− µa can be obtained, as in Appendix 2 of [13]:

µ∗(s)− µa ≥
d(µa, µ1)−

[
f(T )
s + r(KT )

]
−d′(µa, µ1)

[13] also provide tight upper bound on the resulting integrals, and following
a similar approach allows us to conclude the proof:∫ ∞
KT

e
−s (µ∗(s)−µa)2

2V2
a ds

≤
∫ ∞
KT

exp

(
− s

2V2
ad
′(µa, µ1)2

(
d(µa, µ1)−

(
f(T )

s
+ r(KT )

))2
)
ds

≤ f(T )

∫ ∞
1+ε

d(µa,µ1)

exp

(
− uf(T )

2V2
ad
′(µa, µ1)2

(
d(µa, µ1)−

(
1

u
+ r(KT )

))2
)
du

≤ f(T )

∫ 2(1+ε)
d(µa,µ1)

1+ε
d(µa,µ1)

exp

(
−

(1 + ε)
(
d(µa, µ1)−

(
1
u + r(KT )

))2
2V2

ad(µa, µ1)d′(µa, µ1)2
f(T )

)
du

+ f(T )

∫ ∞
2(1+ε)
d(µa,µ1)

exp

(
− uf(T )

2V2
ad
′(µa, µ1)2

d(µa, µ1)2

4(1 + ε)2

)
du

≤ f(T )
4(1 + ε)2

d(µa, µ1)2

∫ ∞
0

exp

(
− (1 + ε)v2f(T )

2V2
ad(µa, µ1)d′(µa, µ1)2

)
dv

+ 8(1 + ε)2V2
a

(
d′(µa, µ1)

d(µa, µ1)

)2

≤
√
f(T )

√
8V2

aπ(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3
+ 8(1 + ε)2V2

a

(
d′(µa, µ1)

d(µa, µ1)

)2

.
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APPENDIX C: POSTERIOR TAIL BOUNDS

Let µ−, µ+ be such that J := ḃ(Θ) = (µ−, µ+). We give here the proof of
Lemma 4, that follows directly from bounds on

πn,x([v, µ+[) :=

∫ µ+

v exp(−nd(x, u))f0(u)du∫
J exp(−nd(x, u))f0(u)du

for a density function f0 satisfying f0(u) > 0 for all u ∈ J. We fix µ−0 , µ
+
0 :

ḃ(θ−) < µ−0 < µ+
0 < ḃ(θ+).

First, we fix a compact C included in Θ such that [µ−1 , µ
+
1 ] := ḃ(C) satisfy

ḃ(θ−) < µ−1 < µ−0 < µ+
0 < µ+

1 < ḃ(θ+).

We let JC = [µ−1 , µ
+
1 ] and c1 and c2 be the upper and lower bounds on b̈ on

C, defined as (15). We will often use the quadratic bounds on the Kullback-
Leibler divergence on this compact, that are stated in Proposition 11. Also,
we will use monotonicity properties of the divergence function: for all y ∈ J,
x 7→ d(x, y) is decreasing on ]µ−, y[ and increasing on ]y, µ+[ whereas for all
x ∈ J, y 7→ d(x, y) is decreasing on ]µ−, x[ and increasing on ]x, µ+[.

Let x, v such that µ−0 < x < v < µ+
0 . One has

(23) πn,x([v, µ+[) =

∫ µ+

v e−nd(x,u)f0(u)du∫ µ+

µ− e
−nd(x,u)f0(u)du

.

For any Vn,x ⊂ J,

πn,x([v, µ+[) ≤
e−nd(x,v)

∫ µ+

v f0(u)du∫
Vn,x

e−nd(x,u)f0(u)du
≤ e−nd(x,v)∫

Vn,x
e−nd(x,u)f0(u)du

.

We now choose Vn,x = {u ∈ JC : n(x−u)2

2c1
≤ 1}. From (17), nd(x, u) ≤ 1 on

Vn,x. Hence ∫
Vn,x

e−nd(x,u)f0(u)du ≥ e−1 inf
u∈JC

f0(u)

∫
Vn,x

1du

and ∫
Vn,x

1du = λ

(
[µ−1 , µ

+
1 ] ∩

[
x−

√
2c1

n
, x+

√
2c1

n

])

≥ min

(√
2c1

n
, µ+

1 − µ
−
1

)
.
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The following inequality yields the upper bound in statement 1:

πn,x([v, µ+[) ≤ e√
2c1 infu∈JC f0(u)

max

(√
n,

√
2c1

(µ+
1 − µ

−
1 )

)
e−nd(x,v).

As e−nd(x,u) ≤ 1, the denominator in (23) is upper bounded by 1, thus

πn,x([v, µ+[) ≥
∫ µ+

v
e−nd(x,u)f0(u)du ≥

∫ µ+
1

v
e−nd(x,u)f0(u)du.

This last integral can be lower bounded in the following way:∫ µ+
1

v
e−nd(x,u)f0(u)du = e−nd(x,v)

∫ µ+
1

v
e−n[d(x,u)−d(x,v)]f0(u)du

= e−nd(x,v)

∫ µ+
1

v
e−n[d(v,u)+(ḃ−1(u)−ḃ−1(v))(v−x)]f0(u)du

≥ e−nd(x,v)

∫ µ+
1

v
e
−n

[
1

2c1
(u−v)2+ 1

c1
(u−v)(v−x)

]
f0(u)du,(24)

where the last inequality follows from (17) and (18). We let

φ(u) =
1

2c1

[
(u− v)2 + 2(u− v)(v − x)

]
.

One has φ′(u) = (u−x)/c1, thus φ is strictly increasing on [v, µ+
1 ] and it can

be checked that φ−1(y) = x +
√

(v − x)2 + 2c1y. Thus letting y = nφ(u),
one has

du =
c1

n
√

(v − x)2 + 2c1y/n
dy,

and

(24) =
c1e
−nd(x,v)

n

∫ n
2c1

[(µ+
1 −v)2+2(µ+

1 −v)(v−x)]

0

e−y√
(v − x)2 + 2c1y/n

f0(y)dy

≥ c1e
−nd(x,v) minJC f0

n

∫ n
2c1

[(µ+
1 −v)2+2(µ+

1 −v)(v−x)]

0

e−ydy√
(v − x)2 + (µ+

1 − v)2 + 2(µ+
1 − v)(v − x)

≥ c1e
−nd(x,v) minJC f0

n(µ+
1 − x)

(
1− e−

n
2c1

(µ+
1 −v)2

)
.

Finally, using that µ−0 < x and v ≤ µ+
0 , one obtains

πn,x([v, µ+[) ≥

c1(1− e−
(µ+

1 −µ
+
0 )2

2c1 ) minJC f0

(µ+
1 − µ

−
0 )

 1

n
e−nd(x,v),
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which yields the lower bound in statement 1.
We now prove statement 2. Let x, v such that µ−0 < v ≤ x < µ+

0 . As
[x, µ+

1 ] ⊂ [v, µ+[, one has

πn,x([v, µ+[) ≥
∫ µ+

1

x
e−nd(x,u)f0(u)du

Fx : u 7→
√
d(x, u) is a one-to-one mapping between [x, µ+

1 ] and [0,
√
d(x, µ+

1 )].

Moreover, letting d′(x, u) = d
dud(x, u) = u−x

b̈(b−1(u))
= u−x

V(u) ,

F ′x(u) =
d′(x, u)

2
√
d(x, u)

∼
u→x

(u− x)/V(u)

2
√

1
2(x− u)2/V(x)

−→
u→x

√
V(x)

2
.

F ′x is continuous on [x, µ+
1 ] and strictly positive, thus the inverse mapping

φx : [0,
√
d(x, µ+

1 )] → [x, µ+
1 ] is well defined and differentiable. Letting u =

φx(y), one has∫ µ+
1

x
e−nd(x,u)f0(u)du =

∫ √d(x,µ+
1 )

0
e−ny

2
f0(φx(y))

2
√
d(x, φx(y))

d′(x, φx(y))
dy

≥ inf
u∈JC

f0(u)
2√
n

∫ √nd(x,µ+
1 )

0
e−y

2

√
d(x, φx

(
y√
n

)
)

d′(x, φx

(
y√
n

)
)
dy.

The mapping (x, u) 7→
√
d(x, u)/d′(x, u) is continuous and strictly positive

on the compact set S = {(x, u) ∈ [µ−0 , µ
+
0 ] × [µ−1 , µ

+
1 ] : x ≤ u ≤ µ+

1 }
therefore, one can define

c = inf
(x,u)∈S

√
d(x, u)

d′(x, u)
> 0.

For n ≥ 1, one has∫ µ+
1

x
e−nd(x,u)f0(u)du ≥ 1√

n

(
2c inf

u∈JC
f0(u)

∫ √d(µ+
0 ,µ

+
1 )

0
e−y

2
dy

)
.

Thus there exists a constant C = C(µ−1 , µ
+
1 , f0) > 0 such that

πn,x([v, µ+[) ≥ C√
n
,

which concludes the proof.
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APPENDIX D: LOWER BOUND ON THE BAYESIAN REGRET

D.1. Proof of Theorem 10. Let A be a bandit algorithm. Introducing

Copt =
1

2

K∑
a=1

∫
ΘK−1

ha(θ
∗
a)dH−a(θ−a),

we assume that A satisfies the following: there exists constants C > Copt

and T0 > 0 such that

(25) ∀T ≥ T0, RH(T,A) ≤ C(log T )2.

Note that if A does not satisfy the above assumption, the desired conclusion
follows directly:

lim inf
T→∞

RH(T,A)

log2(T )
≥ Copt.

In the sequel denote by θ− and θ+ the lower and upper bounds of the
interval Θ : Θ =]θ−, θ+[.

The Bayes risk of A rewrites

RH(T,A) = E[Rθ(T,A)] = E

[
K∑
a=1

(ḃ(θ∗)− ḃ(θa))Eθ[Na(T )]

]

=

K∑
a=1

∫
{θ∈ΘK :θa<θ∗a}

(ḃ(θ∗a)− ḃ(θa))Eθ[Na(T )]dH(θ)

Letting Ta be the a-th term in this last sum, one has

Ta =

∫
ΘK−1

∫
{θa∈Θ:θa<θ∗a}

(ḃ(θ∗a)− ḃ(θa))Eθ[Na(T )]ha(θa)dθa dH−a(θ−a)

=

∫
ΘK−1

∫ θ∗a−θ−

0
(ḃ(θ∗a)− ḃ(θ∗a − t))Eθa,t [Na(T )]ha(θ

∗
a − u)du dH−a(θ−a),

where θa,u := (θ1, . . . , θa−1, θ
∗
a − u, θa+1, . . . , θK).

Let γ ∈]0, 1[ and let B = [b−, b+] be a compact subset of Θ. For T large
enough, such that

1/(b− − θ−) < log T < T
1−γ

2 ,

reducing the integration domain by first letting θ−a ∈ BK−1 and then u ∈
[T−(1−γ)/2, (log T )−1], one has

Ta ≥
∫
BK−1

∫ (log T )−1

T−(1−γ)/2

(ḃ(θ∗a)− ḃ(θ∗a − u))Eθa,u [Na(T )]ha(θ
∗
a − u)dudH−a(θ−a)

≥ (1− γ)

∫
BK−1

∫ (log T )−1

T−(1−γ)/2

2ha(θ
∗
a)K(θ∗a − u, θ∗a + ζu)Eθa,t [Na(T )]

u
dudH−a(θ−a).
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The last inequality follows from the technical lemma stated below, in which
the constant ζ is defined.

Lemma 13. Let γ > 0. There exists ζ ∈]0, 1[ and u0 > 0 such that for
all θ−a ∈ BK−1 and 0 ≤ u ≤ u0,

∀θ ∈ B, (ḃ(θ)− ḃ(θ − u))ha(θ − u)

K(θ − u, θ + ζu)
≥ (1− γ)

2ha(θ)

u
.

Now we need to give a lower bound on Eθa,u [Na(T )], that will subse-

quently be integrated over BK−1 × [T−(1−γ)/2, (log T )−1]. Lai and Robbins
provide such a lower bound in [25], but under the assumption (not satisfied
here) that, for all α ∈]0, 1[, A has a o(Tα) regret on every bandit model.
Moreover their lower bound is asymptotic, which makes it more complicated
to integrate. Lemma 14 below provides a non-asymptotic lower bound on
Eθa,u [Na(T )], that also follows from a change of distribution argument.

Lemma 14. Let ζ ∈]0, 1[ and B = [b−, b+] ⊂ Θ. Introducing

eT,u(θ−a) = inf {Eθ[T −Na(T )] : θa ∈ Θ, θ∗a + ζu/2 ≤ θa ≤ θ∗a + ζu} ,

for every γ ∈]0, 1[ there exists positive constants C1, u1 and T1 (that depend
on B, γ and ζ) such that if u ≤ u1 and Tu2 > T1, ∀θ−a ∈ BK−1,

Eθa,u [Na(T )] ≥ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

(
1− e−C1 log(Tu2) −

2u2eT,u(θ−a)

(Tu2)
γ
2

)
.

Using Lemma 14, if T satisfies moreover log(T ) ≥ 1/min(u0, u1, γ/ log(T1)),

Ta ≥ 2(1− γ)2(I1(T )− I2(T )− 2I3(T )),

where

I1(T ) :=

∫
BK−1

ha(θ
∗
a)

∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u
du dH−a(θ−a),

I2(T ) :=

∫
BK−1

ha(θ
∗
a)

∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u

1

(Tu2)C1
du dH−a(θ−a),

I3(T ) :=

∫
BK−1

ha(θ
∗
a)

∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u
t2(Tu2)−

γ
2 eT,u(θ−a)du dH−a(θ−a).

First, an explicit calculation yields

I1(T ) =
1

4

((
1− 2 log log(T )

log(T )

)2

− γ2

)
log2(T )

∫
BK−1

ha(θ
∗
a)dH−a(θ−a),
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which shows that

I1(T ) ∼
T→∞

1

4
(1− γ2)

(∫
BK−1

ha(θ
∗
a)dH−a(θ−a)

)
log2(T ).

Then, for every ε > 0, there exists T2(ε) such that for all T ≥ T2(ε), for
all u ≥ T−(1−γ)/2, 1/(Tu2)C1 ≤ ε. Hence, for T ≥ T2(ε),

I2(T ) ≤ εI1(T ).

This proves that I2(T ) = o
T→∞

(log2(T )).

Finally, to prove that I3(T ) = o
T→∞

(log2(T )), we start by writing

I3(T ) =

∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u
(Tu2)−

γ
2 u2

(∫
BK−1

eT,u(θ−a)ha(θ
∗
a)dH−a(θ−a)

)
du.

and we provide an upper bound on the inner integral. First note that if θ is
such that θa > θ∗a, one has

Rθ(T,A) ≥ (ḃ(θa)− ḃ(θ∗a))Eθ[T −Na(T )].

Using (25) together with this last inequality, one obtains, for every u,

C log2(T ) ≥
∫
{θ∈BK :θ∗a+ζu/2<θa<θ∗a+ζu}

RT (A,θ)dH(θ)

≥
∫
BK−1

∫ θ∗a+ζu

θ∗a+ζu/2
(ḃ(θa)− ḃ(θ∗a))Eθ[T −Na(T )]ha(θa)dθa dH−a(θ−a)

≥
∫
BK−1

eT,u(θ−a)

∫ θ∗a+ζu

θ∗a+ζu/2
(ḃ(θa)− ḃ(θ∗a))ha(θa)dθa dH−a(θ−a).

With B = [b−, b+], let u2 be such that the compact B′ = [b− + ζu2/2, b
+ +

ζu2] is included in Θ. As ha is uniformly continuous and bounded on B′,
there exists u2 such that and for all θ∗a ∈ B, for all u ≤ u2,

inf
[θ∗a+ζu/2,θ∗a+ζu]

ha(θ) ≥
2

3
ha(θ

∗
a).

Let u ≤ u2. Introducing c1 = infθ∈B′ b̈(θ) > 0, using the Lagrange formula,

C log2(T ) ≥ 2c1

3

∫
BK−1

eT,u(θ−a)

∫ θ∗a+ζu

θ∗a+ζu/2
(θa − θ∗a)ha(θ∗a)dθa dH−a(θ−a)

=
c1

4
ζ2u2

∫
BK−1

eT,u(θ−a)ha(θ
∗
a)dH−a(θ−a).
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Finally, if T−
1−γ

2 ≤ u ≤ u2,∫
BK−1

eT,u(θ−a)ha(θ
∗
a)dH−a(θ−a) ≤

4C

c1ζ2

log2(T )

u2
≤ 4C

c1ζ2γ2

(log(Tu2))2

u2
.

For T satisfying log(T )−1 ≤ u2, [T−(1−γ)/2, (log T )−1] ⊆ [T−
1−γ

2 , u2] and

I3(T ) ≤
∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u
(Tu2)−

γ
2 u2

(
4C

c1ζ2γ2

(log(Tu2))2

u2

)
du

=
4C

c1ζ2γ2

∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u

((
log(Tu2)

)2
(Tu2)

γ
2

)
du.

Let ε > 0. As x 7→ log2(x)/(xγ/2) tends to zero when x tends to infinity,
and Tu2 ≥ T γ for u ≥ T−(1−γ)/2, there exists a constant T3(ε) such that

for T ≥ T3(ε), for t ≥ T−(1−γ)/2,

(
log(Tu2)

)2
(Tu2)

γ
2

≤ ε.

Hence, for T ≥ T3(ε),

I3(T ) ≤ ε
4C

c1ζ2γ2

∫ (log T )−1

T−(1−γ)/2

log(Tu2)

u
du

= ε
C

c1ζ2γ2

((
1− 2 log log(T )

log(T )

)2

− γ2

)
log2(T ),

which proves that I3(T ) = o
(
log2(T )

)
.

Putting everything together, we proved that, for every algorithm A, for
every γ > 0, for every compact B ⊂ Θ,

lim inf
T→∞

RT (A, H)

log2(T )
≥ (1− γ)2(1− γ2)

1

2

K∑
a=1

∫
BK−1

ha(θ
∗
a)dH−a(θ−a).

Taking the supremum over all compact set B yields, for every γ > 0,

lim inf
T→∞

RT (A, H)

log2(T )
≥ (1− γ)2(1− γ2)

1

2

K∑
a=1

∫
ΘK−1

ha(θ
∗
a)dH−a(θ−a),

provided the integral in the right-hand side is finite. Letting γ go to zero
concludes the proof.
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D.2. Proof of Lemma 13. Let ζ ∈]0, 1[ be fixed . As B = [b−, b+] is
strictly included in Θ, there exists u1 such that C := [b− − u1, b

+ + ζu1] in
included in Θ. For (θ, u) ∈ B × [0, u1] we define

f(θ, u) =
(1 + ζ)2u

2

(ḃ(θ)− ḃ(θ − u))ha(θ − u)

K(θ − u, θ + ζu)ha(θ)
.

f is continuous on B × [0, t1] and it can be checked that

lim
(θ,u)→(θ0,0)

f(θ, u) = 1.

As f is uniformly continuous, there exists u0 ≤ u1, such that for all u ≤ u0,
for all θ ∈ B,

|f(θ, u)− 1| ≤ γ

2
,

which rewrites∣∣∣∣∣(ḃ(θ)− ḃ(θ − u))ha(θ − u)

K(θ − u, θ + ζu)
− 2ha(θ)

(1 + ζ)2u

∣∣∣∣∣ ≤ γ

2

2ha(θ)

(1 + ζ)2u

hence, for u ≤ u0, one has

(ḃ(θ)− ḃ(θ − u))ha(θ − u)

K(θ − u, θ + ζu)
≥

1− γ
2

(1 + ζ)2

2ha(θ)

u
.

Applying this to ζ such that 1 + ζ =
√

1− γ
2

1−γ concludes the proof.

D.3. Proof of Lemma 14. Let ζ ∈]0, 1[ be fixed and define u1 and
C = [b− − u1, b

+ + ζu1] ⊂ Θ as in the proof of Lemma 13. Let u ≤ u1 and
fix θ−a ∈ BK−1. First, using Markov inequality,

Eθa,u [Na(T )] ≥ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)
Pθa,u

(
Na(T ) ≥ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
.

Thus it is sufficient to prove that there exists C1 > 0 such that

(26) Pθa,u

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
≤ e−C1 log(Tu2) +

2u2eT,u(θ−a)

(Tu2)
γ
2

.

As u ≤ u1, the set {θa : θ∗a + ζu/2 ≤ θa ≤ θ∗a + ζu} is a compact set in-
cluded in C, therefore there exists λ ∈ BK−1 × C that attains the infimum
in the definition of eT,u(θ−a):

eT,u(θ−a) = Eλ[T −Na(T )],
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with λ−a = θ−a and λa = θ∗a + εu, for some ε ∈ [ζ/2, ζ]. Using Markov
inequality,

Pλ

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
≤ Eλ[T −Na(T )]

T − (1−γ) log(Tu2)
K(θ∗a−u,θ∗a+ζu)

=
eT,u(θ−a)

T
(

1− (1−γ) log(Tu2)
K(θ∗a−u,θ∗a+ζu)T

) .
Introducing c1 = infθ∈C b̈(θ), using (16) in Proposition 11, for u ≤ u1,

(1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)T
≤ 2(1− γ) log(Tu2)

c1(1 + ζ)2(Tu2)
≤ 1

2
,

where the last inequality holds to Tu2 large enough. Thus there exists T1 > 0
such that for u ≤ u1 and Tu2 ≥ T1,

(27) Pλ

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
≤

2eT,u(θ−a)

T
.

Introducing the log likelihood ratio Ln =
∑n

s=1 log
fθ∗a−t(Ya,s)

fλa (Ya,s)
, where Ya,s

are i.i.d. samples of the distribution of arm a, one can write

Pθa,u

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
≤ Pθa,u

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)
, LNa(T ) ≤

(
1− γ

2

)
log(Tu2)

)
(28)

+ Pθa,u

 max
n≤ (1−γ) log(Tu2)

K(θ∗a−u,θ∗a+ζu)

Ln ≥
(

1− γ

2

)
log(Tu2)

(29)

An upper bound on Term (28) follows from a change of distribution ar-
gument. Let E be the event

E :=

{
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)
, LNa(T ) ≤

(
1− γ

2

)
log(Tu2)

}
As E ∈ FNa(T ), one has

Pλ(E) = Eθa,u

[
1E exp

(
−LNa(T )

)]
≥ exp

(
−
(

1− γ

2

)
log(Tu2)

)
Pθa,u(E).

Thus, using moreover (27),

(28) ≤ (Tu2)1− γ
2 Pλ(E) ≤ (Tu2)1− γ

2 Pλ

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
≤ 2u2

(
Tu2

)− γ
2 eT,u(θ−a).
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An upper bound of Term (29) follows from a concentration inequality
specific to exponential families, stated as Lemma 15, whose proof is provided
below for the sake of completeness.

Lemma 15. Let the (Yi) be i.i.d with distribution νθ and mean µ = ḃ(θ).

P

(
max
n≤N

n∑
s=1

(µ− Yi) ≥ x

)
≤ exp

(
−Nd

(
µ− x

N
, µ
))

Introducing the notation θa = θ∗a − u and

KT =
(1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)
=

(1− γ) log(Tu2)

K(θa, θ∗a + ζu)
,

the log likelihood ratio can be made explicit, and satisfies, for n ≤ KT ,

Ln =

n∑
s=1

(θa − λa)Ya,s − b(θa) + b(λa)

= (θa − λa)
n∑
s=1

(Ya,s − ḃ(θa)) + nK(θa, λa).

≤ (λa − θa)
n∑
s=1

(ḃ(θa)− Ya,s) + (1− γ) log(Tu2).

Term (29) is upper bounded by

Pθa,u

(
max
n≤KT

[
(λa− θa)

n∑
s=1

(ḃ(θa)−Ya,s)+(1− γ) log(Tu2)

]
≥
(
1− γ

2

)
log(Tu2)

)

≤ Pθa,u

(
max
n≤KT

n∑
s=1

(ḃ(θa)− Ya,s) ≥
γ

2

log(Tu2)

λa − θa

)
.

Under θa,u, the sequence Ya,s is i.i.d with distribution νθa . Therefore, using

Lemma 15 one obtains, with the notation µa = ḃ(θa),

(29) ≤ exp

(
−KTd

(
µa −

γK(θ∗a − t, θ∗a + ζu)

2(1− γ)(ε+ 1)u
, µa

))
.

Letting c1 = infθ∈C b̈(θ) and c2 = infθ∈C b̈(θ), from (16) in Proposition 11,

γK(θ∗a − u, θ∗a + ζu)

2(1− γ)(ε+ 1)u
∈
[

γ

2(1− γ)

c1

2
(ζ + 1)2u2;

γ

2(1− γ)

c2

2
(ζ + 1)2u2

]
.
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Thus, for u small enough, µa and µa −
γK(θ∗a−u,θ∗a+ζu)

2(1−γ)(ε+1)u belong to a compact

C′ satisfying C ⊆ C′ ⊆ Θ. Letting c′2 = supθ∈C′ b̈(θ), using (17),

(29) ≤ exp

(
−KT

2c′2

(
γK(θ∗a − u, θ∗a + ζu)

2(1− γ)(ε+ 1)u

)2
)

= exp

(
− log(Tu2)

γ2

8(1− γ)c′2

K(θ∗a − u, θ∗a + ζu)

(1 + ε)2u2

)
≤ exp

(
− log(Tu2)

γ2c1

8(1− γ)c′2

c1(1 + ζ)2

(1 + ε)2

)
.

Letting C1 = γ2c1
8(1−γ)c′2

c1(1+ζ)2

(1+ε)2 , from the upper bounds obtained on (28) and

(29), it follows that

Pθa,u

(
Na(T ) ≤ (1− γ) log(Tu2)

K(θ∗a − u, θ∗a + ζu)

)
≤ 2u2

(
Tu2

)− γ
2 eT,u(θ−a)+e

−C1 log(Tu2),

provided that u ≤ u1 and Tu2 ≥ T1, which concludes the proof.

�

Proof of Lemma 15. The proof follows from the Chernoff technique and a
maximal inequality.

Let Sn =
∑n

s=1(µ− Yi). For every λ > 0,

(30) P
(

max
n≤N

Sn ≥ x
)

= P
(

max
n≤N

eλSn ≥ eλx
)
≤ e−λxE

[
eλSN

]
,

where the last inequality is a consequence of Doob’s maximal inequality
applied toMn = eλSn , which is a sub-martingale with respect to the filtration
generated by the (Yi). Indeed, using the convexity of the mapping x 7→ eλx,

E [Mn −Mn−1|Fn−1] = eλSnE
[
eλ(Sn−Sn−1) − 1|Fn−1

]
≥ eλSnλE [Sn − Sn−1|Fn−1] = 0.

Using the independence of the Yi and E[eλYi ] = exp(b(θ + λ)− b(θ) for any
λ ∈ R, it can be show that

e−λxE
[
eλSN

]
= exp

(
−N

[
λ
( x
N
− ḃ(θ)

)
+ b(θ)− b(θ − λ)

])
.

The exponent is minimized of λ∗ satisfying ḃ(θ − λ∗) = ḃ(θ)− x/N and

e−λ
∗xE

[
eλ
∗SN
]

= exp
(
−N

[
ḃ(θ − λ∗)(−λ∗)− ḃ(θ − λ∗) + b(θ)

])
= exp(−NK(θ − λ∗, θ)) = exp

(
−Nd

(
µ− x

N
, µ
))

.

The conclusion follows by plugging λ∗ in (30).
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D.4. The lower bound for Bernoulli bandits. As pointed out by
[24], in the particular case in which ha(θ) = q(θ) for all a = 1, . . . ,K, using
the fact that the distribution of maxa∈S θa has density kq(θ)Qk−1(θ) where
Q is the c.d.f. of the distribution with density q and k = |S|, the constant
in the lower bound can be expressed

(31)
1

2

K∑
a=1

∫
ΘK−1

ha(θ
∗
a)dH−a(θ−a) =

K(K − 1)

2

∫
Θ
q2(θ)QK−2(θ)dθ.

Now consider a Bernoulli bandit model with K arms, with a uniform prior
distribution on the mean of each arm. The set of Bernoulli distribution
of means µ ∈ [0, 1] form an exponential family when each distribution is
parametrized by the natural parameter θ = log(µ/(1−µ)). This exponential
family is characterized by

Θ = R, b(θ) = log(1 + eθ),

and the reference measure is the Lebesgue measure. As each mean µa is
drawn from a uniform distribution on [0, 1], the associated natural parameter
θa is drawn from a distribution on R having respectively density and c.d.f.

q(θ) =
eθ

(1 + eθ)2
and Q(θ) =

eθ

1 + eθ
.

Using the formula (31), the constant of the lower bound is

K(K − 1)

2

∫ +∞

−∞

eKθ

(1 + eθ)K+2
dθ =

K(K − 1)

2

∫ ∞
0

xK−1

(1 + x)K+2
dx

=
K(K − 1)

2

1

K(K + 1)
,

where the integral is computed using by inducting, using a by part integra-
tion. Finally, the asymptotic rate of the Bayes risk for a Bernoulli bandit
model with K arms and a uniform prior on their means is

1

2

K − 1

K + 1
log2(T ).

Emilie Kaufmann
Inria Lille, Equipe SequeL
40, avenue Halley
Villeneuve d’Ascq, France
E-mail: emilie.kaufmann@univ-lille1.fr

mailto:emilie.kaufmann@univ-lille1.fr

	Introduction
	(Bayesian) exponential family bandit models
	Exponential family bandit model
	Kullback-Leibler divergence and confidence intervals
	Posterior distributions in Bayesian exponential family bandits

	Bayes-UCB: a simple and optimal Bayesian index policy
	Algorithm and main result
	Tail bounds for posterior distributions
	Finite-time analysis

	A Bayesian insight on alternative exploration rates
	The kl-UCB+ and kl-UCB-H+ algorithms
	Bayesian optimal solution and Gittins indices
	Approximation of the Bayesian optimal solution
	Approximation of the Finite-Horizon Gittins indices

	Numerical experiments
	Regret minimization
	Bayes risk minimization

	Conclusion
	References
	Pinsker-like inequalities
	Finite-time analysis
	Proof of Theorem 8
	Proof of Lemma 5
	Proof of Lemma 6

	Posterior tail bounds
	Lower bound on the Bayesian regret
	Proof of Theorem 10
	Proof of Lemma 13
	Proof of Lemma 14
	The lower bound for Bernoulli bandits

	Author's addresses

