Universal constructions for spaces of traffics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Universal constructions for spaces of traffics

Guillaume Cébron
Antoine Dahlqvist
Camille Male

Résumé

We investigate questions related to the notion of traffics introduced in [8] as a noncommu-tative probability space with numerous additional operations and equipped with the notion of traffic independence. We prove that any sequence of unitarily invariant random matrices that converges in noncommutative distribution converges in distribution of traffics whenever it fulfills some factorization property. We provide an explicit description of the limit which allows to recover and extend some applications (on the freeness from the transposed ensembles [12] and the freeness of infinite transitive graphs [1]). We also improve the theory of traffic spaces by considering a positivity axiom related to the notion of state in noncom-mutative probability. We construct the free product of spaces of traffics and prove that it preserves the positivity condition. This analysis leads to our main result stating that every noncommutative probability space endowed with a tracial state can be enlarged and equipped with a structure of space of traffics.
Fichier principal
Vignette du fichier
UCST_Arxiv.pdf (676.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01249890 , version 1 (04-01-2016)
hal-01249890 , version 2 (05-12-2019)

Identifiants

  • HAL Id : hal-01249890 , version 1

Citer

Guillaume Cébron, Antoine Dahlqvist, Camille Male. Universal constructions for spaces of traffics. 2016. ⟨hal-01249890v1⟩

Collections

MAP5
158 Consultations
97 Téléchargements

Partager

More