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Universal constructions for spaces of traffics

Guillaume Cébron* Antoine Dahlqvist! Camille Male*

ABSTRACT:

We investigate questions related to the notion of traffics introduced in [8] as a noncommu-
tative probability space with numerous additional operations and equipped with the notion
of traffic independence. We prove that any sequence of unitarily invariant random matrices
that converges in noncommutative distribution converges in distribution of traffics when-
ever it fulfills some factorization property. We provide an explicit description of the limit
which allows to recover and extend some applications (on the freeness from the transposed
ensembles [12] and the freeness of infinite transitive graphs [1]). We also improve the theory
of traffic spaces by considering a positivity axiom related to the notion of state in noncom-
mutative probability. We construct the free product of spaces of traffics and prove that
it preserves the positivity condition. This analysis leads to our main result stating that
every noncommutative probability space endowed with a tracial state can be enlarged and
equipped with a structure of space of traffics.
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1 Introduction

1.1 Motivations for traffics

Thanks to the fundamental work of Voiculescu [15], it is now understood that noncommutative
probability is a good framework for the study of large random matrices. Here are two important
considerations which sum up the role of noncommutative probability in the description of the
macroscopic behavior of large random matrices:

1. A large class of families of random matrices Ay € My(C) converge in noncommutative
distribution as N tends to oo (in the sense that the normalized trace of any polynomial in
the matrices converges).

2. If two independent families of random matrices Ay and By converge separately in non-
commutative distribution and are invariant in law when conjugating by a wunitary matrix,
then the joint noncommutative distribution of the family Ay U By converges as well. More-
over, the joint limit can be described from the separate limits thanks to the relation of free
independence introduced by Voiculescu.

In [8, 9, 10], it was pointed out that there are cases where other important macroscopic con-
vergences occur in the study of large random matrices and graphs. The notion of noncommutative
probability is too restrictive and should be generalized to get more information about the limit in
large dimension. This is precisely the motivation to introduce the concept of space of traffics, which
comes together with the notion of distribution of traffics and the notion of traffic independence:
it is a non-commutative probability space where one can consider not only the usual operations of
algebras, but also more general n-ary operations called graph operations. We will introduce those
concept in details, but let us first describe the role of traffics enlightened in [8] for the description
of large N asymptotics of random matrices:

1. A large class of families of random matrices Ay € My (C) converge in distribution of traffics
as N tends to o (in the sense that the normalized trace of any graph operation in the matrices
converges).

2. If two independent families of random matrices Ay and By converge separately in distribu-
tion of traffics, satisfy a factorization property and are invariant in law when conjugating by
a permutation matrix, then the joint distribution of traffics of the family A n u By converges
as well. Moreover, the joint limit can be described from the separate limits thanks to the
relation of traffic independence introduced in [8].

In general, asymptotic traffic independence is different than Voiculescu’s notion. Nevertheless,
they coincide if one family has the same limit in distribution of traffics as a family of random
matrices invariant in law by conjugation by any unitary matrix. We now present our main results
in the three next subsections.

1.2 Distribution of traffics of random matrices

Let us first describe how we encode new operations on space of matrices. For all K > 0, a K-graph
operation is a connected graph g with K oriented and ordered edges, and two distinguished vertices
(one input and one output, not necessarily distinct). The set G of graph operations is the set of
all K-graph operations for all n > 0. A K-graph operation g has to be thought as an operation
that accepts K objects and produces a new one.

For example, it acts on the space My (C) of N by N complex matrices as follows. For each
K-graph operation g € G, we define a linear map Z;, : My(C) ® --- ® My (C) — Mp(C) (or
equivalently a K-linear map on My (C)%) in the following way. Denoting by V the vertices of g,
by (v1,w1),..., (vk,wk) the ordered edges of g, and by Ej; the matrix unit (5ik5jl)£\fj:1 e My (C),
we set, for all A, ... A e My (C),

1 K)\ _ (1) (K)
Zy(AV @ @A) = ) (Ak<w1>,k<v1>"'Ak<wx>,k<vx>) + Bk(out) (in):
k:V—{1,...,N}



Following [13], we can think of the linear map CV — C associated to Z,(AV) ® --- ® AF)) as
an algorithm, where we are feeding a vector into the input vertex and then operate it through the
graph, each edge doing some calculation thanks to the corresponding matrix A, and each vertex
acting like a logic gate, doing some compatibility checks. Those operations encode naturally the
product of matrices, but also other natural operations, like the Hadamard (entry-wise) product
(A, B) — Ao B, the real transpose A — A' or the degree matrix deg(A) = diag(Zj.\;l A;)i=1,..N-

Starting from a family A = (A;),es of random matrices of size N x N, the smallest algebra
closed by the adjointness and by the action of the K-graph operations is the space of traffics
generated by A . The distribution of traffics of Ay is the data of the noncommutative distribution
of the matrices which are in the space of traffics generated by Ay. More concretely, it is the
collection of the quantities

1 €1 €
SE| (2,45 © - @ A51) |

for all K-graph operations g € G, indices ji,...,jx € J and labels €1,--- ,ex € {1,%}. Those
quantities appear quite canonically in investigations of random matrices and have been first con-
sidered in [13]. The following theorem shows that the unitarily invariance is sufficient to deduce
the convergence in distribution of traffics from the convergence in #-distribution.

Theorem 1.1. For all N > 1, let Ay = (Aj)jes be a family of random matrices in My (C). We
assume

1. The unitary invariance: for all N = 1 and all U € Myn(C) which is unitary, UANU* :=
(UA;U*)jes and A have the same law.

2. The convergence in *-distribution of Ay : for all indices ji,...,jx € J and labels €1, -+ Jex €
{1, %}, the quantity (1/N)E[Tr(Aj; - AS¥)] converges.

8. The factorization property: for all x-monomials mq, ..., my, we have the following conver-
gence

lim E U]Tr (mi(AN))--- %Tr (mk(AN))]

N—x0

. 1 . 1
= ]\}EHOOIE [NTr (ml(AN))] . 'A}linOOIE [NTr (mk(AN))] .
Then, A N converges in distribution of traffics: for all K-graph operation g € G, indices j1,...,jKk €
J and labels €1, -+ ,ex € {1, =}, the following quantity converges

%E[Tr(Zg(A; ®...®45))].

It has to be noticed that a similar result about the convergence of observables related to traffic
distributions, for unitarily invariant random matrices, is also proved independently by Gabriel in
[6]. More generally, the framework developed by Gabriel in [5, 6, 4] is related to the framework
of traffic, and will certainly lead to further investigations in order to understand the precise link
between both theories.

In practice, the limit of the distribution of traffic of Ay depends explicitely on the limit of the
noncommutative #-distribution of A . For example, a recent result of Mingo and Popa [12] tells
that for all sequence of unitarily invariant random matrices A y the family A% of the transposes of
Ay has the same noncommutative #-distribution as Ay and is asymptotically freely independent
with Ay (under assumptions stronger than those of Theorem 1.1 that also imply the asymptotic
free independence of second order). Thanks to the description of the limiting distribution of traffics
of unitarily invariant matrices, we will get that for a family Ay = (4;),es as in Theorem 1.1, Ay,
AL and deg(An) are asymptotically free independent, as well as Ay ® Ay := (A; ® Ajr)j e,
deg(Any ® Ay) and their transpose.



1.3 Spaces of traffics and their free product

Recall that a non commutative probability space is a pair (A, ®), where A is unital algebra and ® is
a trace, that is a unital linear form on A such that ®(ab) = ®(ba) for any a,b € A. A *-probability
space is a non commutative probability space equipped with an anti-linear involution -* satisfying
(ab)* = b*a* and such that ® is a state, that is ®(a*a) = 0 for any a € A.

The *-distribution of a family a of elements of A is the linear form ®, : P — ®(P(a))
defined for non commutative polynomials in elements of a and their adjoint. The convergence in
*-distribution of a sequence ay is the pointwise convergence of @, .

In [8], the notion of space of traffics was defined in an algebraic framework as a non-commutative
probability space (A, 7), with a collection of K-linear map indexed by the K-graph operations in
a consistent way. It allows to consider the additional operations for matrices as the Hadamard
(entry-wise) product, or the real transpose for non commutative random variables, and hopefully
will lead to new probabilistic investigations in the general theory of quantum probability theory.
More precisely, the set of graph operation G can be endowed naturally with a structure of operad,
and we say that the operad G acts on a vector space A if to each K-graph operation g € G, there
is a linear map

Zg  AQ--- @A - A
—
K times

(or equivalently a K-ary multilinear operation) subject to some requirements of compatibility (see
Definition 2.2).

In Definition 2.8 of Section 2, we go further defining a space of traffics as a *-probability space
(A, 7) on which acts the graph operations G, with two additional properties: the compatibility of
the involution -* with graph operations, and a positivity condition on 7 which is stronger than
saying that it is a state. Moreover, in Section 3, we define the free product (#;ecs.A;,*jes7;) of
a family (Aj,7;)jes of algebraic spaces of traffics, in such a way that the algebras A; seen as
subspaces of traffics of #;c;.4; are traffic independent. The free product of spaces is compatible
with the positivity condition for spaces of traffics, as the following theorem shows.

Theorem 1.2. The free product of distributions of traffics satisfies the positivity condition for
spaces of traffics, i.e. the free product of a family of spaces of traffics is well-defined as a space of

traffic.

One may be surprised by this additional positivity condition for spaces of traffics. Let us give
a short explanation. The fact that the traces 7; are states is not sufficient to ensure that *;cs7; is
a state as well. One has to require a bit more on 7; to get the positivity of *jc;7;.

A consequence of Theorem 1.2 of conceptual importance is that for any traffic a there exists a
space of traffics that contains a sequence of traffic independent variables distributed as a.

As a byproduct of the proof of Theorem 1.2, we get a new characterization of traffic indepen-
dence (Theorem 3.11) which is much more similar to the usual definition of free independence. We
deduce from it a simple criterion to characterize the free independence of variables assuming their
traffic-independence (proving that the criterion in [8, Corollary 3.5] is actually a characterization
of free independence in that context). An example is a new proof of the free independence of the
spectral distributions of the free product of infinite deterministic graphs [1].

1.4 A canonical lifting from *-probability spaces to spaces of traffics

We turn now to our last result, which was the first motivation of this article and whose demonstra-
tion uses both Theorem 1.1 and Theorem 1.2. It states that the *-probability spaces of Voiculescu
can be enlarged and equipped with the structure of space of traffics. Let us be more explicit. As
explained, Theorem 1.1 in its full form gives a formula of the limiting distribution of traffics which
involves only the limiting noncommutative distribution of the matrices. Replacing in this formula
the limiting noncommutative distribution of matrices by an arbitrary distribution, we obtain a
distribution of traffics which implies the following result. The difficulty consists in proving that
this distribution satisfies the positivity condition.

Theorem 1.3. Let (A, D) be a *-probability space. There exists a space of traffics (B,T) such that
A < B as *-algebras and such that the trace induced by T restricted to A is .



Moreover, the distribution of traffics T is canonical in the sense that

1. If Ay is a sequence of random matrices that converges in *-distribution to a € A as N tends
to oo and verifies the condition of Theorem 1.1, then AN converges in distribution of traffics
toae B as N tends to co.

2. Two families a and b € A are freely independent in A if and only if they are traffic indepen-
dent in B.

Remark that, starting from an abelian non-commutative probability space (A, @), there exists
another procedure described in [8] which allows to define a space of traffics (B, 7) such that A c B
as x-algebras and such that the state induced by 7 on A is ®, and where two families a and b € A
are tensor independent in A if and only if they are traffic independent in B. In other words, the
free product of space of traffics leads to the tensor product or the free product of the probability
spaces, depending on the way the #-distribution and the distribution of traffics of our random
variables are linked.

The rest of the article is organized as follows. In section 2 we first recall the definition of
algebraic spaces of traffics and define non-algebraic ones. Then we recall the definition of traffic
independence. In Section 3 we define the free product of spaces of traffics. We state therein the new
characterization of traffic independence and prove Theorem 1.2. In Section 4, we prove Theorem
1.3 on the canonical extension of *-probability spaces and Theorem 1.1 on the distribution of
traffics of unitarily invariant matrices.

2 Definitions of spaces of traffics

2.1 G-algebras

We first recall and make more precise the definition of graph operations given in the introduction.

Definition 2.1. For all K > 0, a K-graph operation is a finite, connected and oriented graph
with K ordered edges, and two particular vertices (one input and one output). The set of K-graph
operations is denoted by G, and the sequence (G )k =0 is denoted by G.

A K-graph operation can produce a new graph operation from K different graph operations in
the following way. Let us consider the composition maps

0:Gx X G, X XGre = Gri4yLy

(gagla"'mgK)Hgo(‘glw"ng)

for K = 1 and L; > 0, which consists in replacing the i-th edge of g € Gx by the L;-graph operation
g; (which leads at the end to a (Ly + --- + Li)-graph operation). Let also consider the action of
the symmetric group Sk on Gi by defining g o o to be the K-graph operation g where the edges
are reordered according to o € Sk (if ey, ..., ex are the ordered edges of g, e,-1(1), ..., e5-1(x) are
the ordered edges in g,).

We introduce some important graph operations for later use:

e the constant 0 = (-) € G; which consists in one vertex and no edges,

e the identity I = (- < -) € G; which consists in two vertices and one edge from the input to

the output,
e the product (- R -) € G1 which consists in three vertices and two successive edges from
the input to the output,

e the Hadamard product h, which consists in two vertices and two edges from the input to the
output,

e the diagonal A, which consists in one vertex and one edge,



e the degree deg = ! , which consists in two vertices, where one is the input and the output,
and an edge from the input/output to the other vertex.

Endowed with those composition maps and the action of the symmetric groups, the sequence
G = (Gk) k=0 is an operad, in the sense that it satisfies

1. the identity property go (I,...,I)=g=1ogy,

2. the associativity property

go (gl o (gl,la"'agl,k1)7"'7gK © (gK,la"'agK,kK))
= (90 (91;-",91()) o (91,17~~,91,k1,~~~,QK,1,~.,9K,1€K)

3. the equivariance properties (g o ) o (gr-1(1),--+>9n-1(x)) = 9° (91,---,9xK); and go (g1 o
015,95 °0k) = (90 (g1,...,9K)) © (01 X ... X OK).

Let us now define how a K-graph operation can produce a new element from K elements of a
vector space in a linear way.

Definition 2.2. An action of the operad G = (Gk)k=0 on a vector space A is the data, for all
K >0 and g € Gk, of a linear map Zg: A® - Q@ A — A such that
—_—

1. ZI — IdA, K times
2. Zg e} (Zgl ® e ® ZgK) = Zgo(g1,.‘.7gx)7
3. Zg(a1®...®aK) =Zgog(agq(l)®...®agf1(K))

whenever all the objects and compositions are well-defined. By convention, for the graph 0 with a
single vertex and no edge, Zy is a map C — A. We denote I = Zy(1) and call it the unit of A.
A wvector space on which acts G is called a G-algebra. A G-subalgebra is a subvector space of a G
algebra stable by the action of G. A G-morphism between two G-algebras A and B is a linear map
[+ A— B such that f(Zy(ay,...,ak)) = Zg(f(ar),..., flax)) for any K-graph operation g and
ai,...,ax € A.

Remark 2.3. The graph operation (- .2 ) induces a linear map Z ; » : A®.A — A which
gives to A a structure of associative algebra over C, with unit I. Every G-algebra is in particular
a unital algebra. We represent graphically the element Z,(a; ® ... ® ak) as the graph where the
ordered edges are labelled by a1, ..., ax, and the second condition of equivariance allows to forget
about the order of the edges.

Let us define also an involution * : ¢ — ¢g* on graph operation G, where ¢g* is obtained from g
by reversing the orientation of its edges and interchanging the input and the output.

Definition 2.4. A G*-algebra is a G-algebra A endowed with an antilinear involution = : A — A
which is compatible with the action of G: for all K-graph operation g and a1, ...,ax € A, we have
Zy(®... ®ag)* = Zgx(af ®...®a%). A G*-subalgebra is a G-subalgebra closed by adjointness.
A G*-morphism between A and B is a G-morphism f : A — B such that f(a*) = f(a)* for any
ae€ A

Remark 2.5. Recall that A denotes the graph operation with one vertex and one edge. Any G-
algebra A can be written A = Ao @ B, where Ag := {A(a), a € A} is a commutative algebra. We
call Ay the diagonal algebra of A.

Ezample 2.6. Denote My (C) the algebra of N by N matrices. For any K > 1 and g € Gk
with vertex set V' and ordered edges (vi,w1),...,(vk,wk), let us define Z; by setting, for all
AM AT € My (C), the (4, 5)-coefficient of Z,(AM ®@...® AK)) as

(1) (K) - (1) LoAE)
[Zg(A ®..0A )]ij - Z[ | AQ o A -
k:V—[N
k(input)=j, k(output)=i



This defines an action of the operad G = (Gx) x>0 on My (C), compatible with the usual complex
transpose of matrices, and so My(C) is a G*-algebra. The product Z , » (A ® B) induced by
this action coincides with the classical product of matrices, but we also have others operations
like the Hadamard product Z,(A® B) = (AijB,;j)f\”jzl, the projection on the diagonal Za(A) =
(8ijAii)Y;—1, or the transpose Z.,.(A) = (A;i)];—;. The diagonal algebra of My (C) defined in
Remark 2.5 is the algebra of diagonal matrices.

Ezample 2.7. Let V be an infinite set and let My, (C) denotes the set of complex matrices indexed
by V, A = (Ay,w)v,wev such that each row and column have a finite number of nonzero entries.
For any g € G and AM ..., AF) € My,(C), we define Zg(A(l) ®...® AF)) by the same formula
as in Example 2.6 with summation now over the maps k : V' — V. This defines as well a structure
of G*-algebra for My,(C). When the entries of the matrices are non negative integers, they encode
the adjacency of a locally finite directed graph: the graph associated to a matrix A has A(v, w)
edges from a vertex v € V to a vertex w € V (see [8]).

2.2 Space of traffics
Recall the definition from [8].

Definition 2.8. An algebraic space of traffics is the data of a vector space A with a linear func-
tional ® : A — C such that

e there exists an action of G on A: A is a G-algebra,
o O is unital: O(I) =1,

e & is input-independent: for all g€ G,, ® o Z; = ® 0 Zpog and does not depend on the place
of the input in Ao g.

A homomorphism between two algebraic spaces of traffics A and B with respective linear functionals
® and ¥ is a G-morphism f: A — B such that ®o f = WU.

The condition of input-independence for ® implies that it is a trace for the structure of as-
sociative algebra of A with product (a,b) — Z L2 (a,b). Moreover, it is possible to describe
completely @ in terms of a functional defined on some graphs where the input and output are
totally forgotten. For later purpose, let us define more generally a notion of n-graph monomial,
where we outline n > 0 particular vertices, instead of two.

Definition 2.9. A 0-graph monomial indexed by a set J (called test-graph in [8]) is a collection
t = (V,E,v), where (V, E) is a finite, connected and oriented graph and v : E — J is a labeling
of the edges by indices. For any n = 1, a n-graph monomial indexed by J is a collection t =
(V,E,~,v), where (V,E,v) is a 0-graph monomial and v = (v1,...,vy,) is a n-tuple of vertices of
T, considered as the outputs of t. For any n = 0, we set Cg(”)<J> the vector space spanned by the
n-graph monomials indexed by J, whose elements are called n-graph polynomials indexed by J.

Let us fix an algebraic space of traffics A with linear functional ® : 4 — C, and consider a 0-
graph monomial ¢t = (V, E,~) with labels on A. Let us list arbitrarily the edges of E = {eq,...,ex}
and denote by g the K-graph operation (V,E) with the ordered edges eq,...,ex and choose
arbitrarily for input and output a same vertex of g. Set

(1) = ®(Z,(1(e1) ® - ®(ex)) ) (2.1)

which does depend neither on the choice of the ordering of eq, ..., ex nor on the input and output
of g, thanks to the equivariance and the input-independence properties. This map extends to
7: CGO{A) — C by linearity, and characterizes entirely the functional ® : A — C, thanks to the
relation ®(a) = 7(Ca)-

Definition 2.10. Let A be an algebraic space of traffics with linear functional ® : A — C. The
map 7 : CGOO{A) — C defined above is called the distribution of traffics on A. Saying that (A, T)
1s an algebraic space of traffics, we mean that T denotes this functional and call ® the associated
trace on A.



We now define the non-algebraic spaces of traffics. Let A be a set with an antilinear involution
x*: A — A. Let t,t' be two n-graph monomials indexed by A. We set ¢|t’ the 0-graph monomial
obtained by merging the i-th output of ¢ and ¢’ for any ¢ = 1,...,n. We extend the map (¢,t) — |t/
to a bilinear application CG™ (A — CGOI(A).

Moreover, given an n-graph monomial ¢ = (V, E,v,v) we set t* = (V, E* 4% v), where E* is
obtained by reversing the orientation of the edges in E, and 7* is given by e — vy(e)*. We extend
the map t — t* to a linear map on CG(™(A).

Definition 2.11. A space of traffics is an algebraic space of traffics (A, T) such that:
e A is a G*-algebra,

e the distribution of traffics on A satisfies the following positivity condition : for any n-graph
polynomial t indexed by A,

T[t|t*] = o. (2.2)

A homomorphism between two spaces of traffics is a G*-morphism which is a homomorphism of
algebraic space of traffics.

Note that (2.2) for n = 2 is equivalent to say that the trace ® induced by 7 is a state on

the =-algebra A. By consequence, the product graph operation (- L& -) induces a linear map
Z .2+ A® A — A which gives to A a structure of *-probability space. Hence every space of

traffics is in particular a *-probability space. Theorem 1.3 states that the reciprocal is true.

Ezample 2.12. Let (2, F,P) be a probability space in the classical sense and let consider the
algebra My (L*~(Q2,C)) of matrices whose coefficient are random variables with finite moments of
all orders. Endowed with the action of the operad G described in Example 2.6, it is a G*-algebra.
The linear form @y := E[Tr-]/N equips My (L*~(£2,C)) with the structure of algebraic space of
traffics and the distribution of traffics T is given by: for any 0-graph monomial T' = (V, E, M)
indexed by My (L*~(Q,C)), where M : E — My (L*~(Q,C)),

TN[T] = E[ﬁ Z n (M(e))k(v),k(w)]- (2.3)
k:V—[N]e=(v,w)eE

Moreover, (My (L*7(Q,C)), 7n) is actually a space of traffics since 7y is positive. First, for any
n-graph monomial ¢t = (V, E, M,v), we define a random tensor T'(t) € (CV)®" as follows. Let us
denote by v = (v1,...,v,) the sequence of outputs of ¢ and by (§;);=1,...,n the canonical basis of
CYN. Then we set,

T(t) = ). [T M)k | &) @ @ Euon)- (2.4)

k:V—[N] \e=(v,w)eE

We extend the definition by linearity on n-graph polynomials Positivity is clear since one has

[ (A =[5 D) T0:T@;] > 0

ie[N]™

Ezample 2.13. Let V be an infinite set. A locally finite rooted graph on V is a pair (G, p) where
G is a directed graph such that each vertex has a finite number of neighbors (or equivalently an
element of the space My,(C) of Example 2.7 with integers entries) and p is an element of V. Recall
briefly that the so-called weak local topology is induced by the sets of (G, p) such that the subgraph
induced by vertices at fixed distance of the root is given [8, Section 2.7.2]. The notion of locally
finite random rooted graphs refers to the Borel o-algebra given by this topology.

Let (Q2, F,P) be a probability space, V and p € V. Let G be a family of locally finite random
rooted graphs on  with vertex set ¥ and common root p. Consider the G-subalgebra A of My,(C)
induced by the adjacency matrices of G. In general, the linear form ®,(A4) = E[A(p, p)] is neither
well defined nor input-independent.



In [8], certain situations where ®, equips A with the structure of algebraic space of traffics were
characterized: in particular, if the degree of the vertices of the graphs G are uniformly bounded,
then ®, is well defined and is input-independent if and only if G is called unimodular.

When @, is well defined, then the associated map 7, always satisfies the positivity condition.
Indeed, for any n-graph monomial ¢ we define a tensor T'(t) € (CY)®" with the same formula
as for matrices, but with summation over k : V. — V with k(r) = p, for an arbitrary vertex
r of V and with (& )iey the canonical basis of CY. The positivity of 7 follows as well since
To[t|t*] == E[Zievn:il:p T(t); T(t);] is nonnegative.

Definition 2.14. Let (A, 7) be a space of traffics, with associated trace ®, J an arbitrary index
set, and a = (a;)jes a family of elements in A

1. The distribution of traffics of a is the linear functional 1o : CGO{J x {1,%}) — C given by
the distribution of traffics T : CG(O(A) — C composed with the linear map

CGOT x {1,#})  — CGO{A)
(V,E,jxe) — (V,Eal)),
or in other words, for all 0-graph monomial T = (V,E,j x €) € (CQ(O)<J x {1,%}), the
quantity T(T) is given by 7(t), where t is the 0-graph monomial (V, E,~) € CGO(A) such

€(e)
that ~v(e) = aj(e)

2. Let (An,7Tn) a sequence of spaces of traffics, with associated trace Ty, J an arbitrary index
set, and for each N =1, a family ay = (a;)jes of elements of An.
We say that the sequence an converges in distribution of traffics to a if the distribution of
traffics of an converges pointwise to the distribution of traffics of a on CGO(J x {1,#}),
or equivalently, if, for all K-graph operations g € G, indices ji,...,jx € J and labels
€1,...,€x € {1, x}, we have the following convergence

lim ‘I)N[ 4(a 61@ @CLEK)] :(I)[Zg(aE@"'@a;ﬁ)]'

N—w

Ezxample 2.15. The distribution of traffics of a family Ax = (A(j));es of random matrices is given,
for all 0-graph monomial T = (V, E, j x €) € CGO(J x {1, }), by

TAN[T]:E[% Z H (A(j(e)));((i)),k(w)]'

k:V—[N] e=(v,w)eE

2.3 Mobius inversion and injective trace

In order to define traffic independence, we need first to define a transform of distributions of traffics.
Recall that a poset is a set X’ with a partial order < (see [14, Lecture 10]). If X is finite, then there
exists a map Moby : X x X — C, called the Mobius function on X', such that for two functions
F,G : X — C the statement that

F(z) = Z G(z'), Ve X

' <z

is equivalent to
G(z) = 2 Mobyx (2',z)F(2), Yz € X.
<z
Hence the first formula implicitly defines the function G in terms of F.
For any set V, denote by P(V) the poset of partitions of V' equipped with inverse refinement
order, that is 7’ <  if the blocks of 7 are included in blocks of 7. Let (A, ®) be a non-commutative
probability space and denote by N.C.(K) < P({1,...,K}) the set of non-crossing partitions of



{1,...,K} [14, Lecture 9]. Recall that the free cumulants are the multi-linear maps x given
implicitly by

O(ay x -+ xag) = Y, [T sai,... ai). (2.5)

7eN.C.(K) {i1,...,iL }em

We introduce now a similar concept for traffics.

Let g be a 0-graph monomial in G(©(A), with vertex set V. For any partition 7 € P(V) of V,
we denote by g™ the 0-graph monomial obtained by identifying vertices in a same block of 7 (the
edges link the associated blocks). Denote 1p(yy the partition of V' with singletons only.

Definition 2.16. Let A be an ensemble and let T : CGO(A)Y — C be a linear map (for instance
T is the distribution of traffics). The linear form 70 on g(0><A>, called injective version of 7, is
implicitly given by the following formula: for any 0-graph monomial t € G(O(A)

[t = > ] (2.6)

weP (V)

in such a way for each 0-graph monomial g one has

O[] = 2 Mob(m, 1py))7[t7].
TeP(V)

Ezample 2.17. The injective version Tr of the trace of 0-graph monomials in random matri-
ces of Mn(C) defined in (2.3) is given, for T = (V,E,M) a 0-graph monomial indexed by
My (L*7(©,C)), by

IR Y (M (Dot | (27)

k:V—[N]e=(v,w)eE
injective

2.4 Definition of traffic independence

Let J be a fixed index set and, for each j € J, let A; be some set. Given a family of linear maps
Tj (CQ(O)<Aj> — C, j € J, sending the graph with no edge to one, we shall define a linear map
denoted *jes7; : (CQ(O)<|_|]-EJ A;> with the same property and called the free product! of the 7;’s.
Therein, | | et Aj; has to be thought as the disjoint union of copies of A;, although the sets A; can
originally intersect (they can even be equal).

Let us consider 0-graph monomial T in Cg(°><|_|je ;A;) and introduce the following indirect
graph. We call colored components of T’ with respect to the families (A;)jes the maximal nontrivial
connected subgraphs whose edges are labelled by elements of A; for some j € J (it is an element of
CG(A;)). There is no ambiguity about the definition of colored components since 7 is labeled in
|l;e; A; where | | means that we distinguish the origin of a element that can come from several A;’s.
We call connectors of T the vertices of T belonging to at least two different colored components.
The graph T defined below is called graph of colored components of T' with respect to (Aj)jes:

e the vertices of T are the colored components of T and its connectors

e there is an edge between a colored component of 7' and a connector if the connector belongs
to the component.

Definition 2.18. 1. For each j € J, let A; be a set and 7; : CGY{(A;)> — C be a linear map
sending the graph with no edges to one. The free product of the maps 7; is the linear map
*jegTj Cg<°><UAj> — C whose injective version is given by: for any 0-graph monomial T,

(%jes7)°[T] = 1(T is a tree) x I1 [S]. (2.8)
Com%ocnoelggegf T

w.r.t. (Aj)jes

IThe terminology free product should be understood as canonical product, and may not be confused with the
terminology free independence
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2. Let (A, 7) be an algebraic space of traffics and let J be a fixed index set. For each j € J, let
A; < A be a G-subalgebra. The subalgebras (A;)jes are called traffic independent whenever
the restriction of T to the G-subalgebra induced by the A; is *jes7;.

3. Let X;,j € J be subsets of A and let (a;);es be a family of elements of A. Then (X;)jes
(resp. (a;)jes) are called traffic independent whenever the G-subalgebra induced by the X;’s
(resp. by the a;’s) are traffic independent.

4. In the context of space of traffics, we say that (X;);es are traffic independent whenever the
G*-subalgebras are traffic independent.

3 The free product of spaces of traffics

3.1 Free products of algebraic spaces of traffics

The free product #jc;.A; of a family (A;);es of G-algebras will be a G-algebra made with ”graphs
whose edges are labelled by elements“ from the A; and the free product of a family (A;, 7;)jes of
spaces of traffics is their free product of G-algebras #;c;A; equipped with the free product ;e s7;
of their distributions of traffics.

Let J be a fixed index set and, for each j € J, A; be some set. As in Section 2.4, while
considering a monomial ¢ in Cg(2)<|_|j€J A;) we mean that g is the data of a finite connected
graph (V, E) with an input and an output, and that for each edge is associated an index j € J and
then an element of A;.

Definition 3.1. For all family of G-algebras (A;)jes, we denote by #jc;A; the G-algebra
Cg(2)<|_|j€.] Aj), quotiented by the space generated by the following relations:

Zg, (a1®-®ar)
. Pl

Zy( R .0 )= Z2,(Z,( L R ® L) T .9..0 &)
whenever ay,...,a, are in a same algebra A;; which allows to consider the G-algebra homomor-

phisms Vi : A; — #;e;A; given by the image of a — (- <~ -) by the quotient map.
The G-algebra #;c 7 A; is the free product of the G-algebras in the following sense.
Proposition 3.2. Let B be a G-algebra, and f; : A; — B a family of G-morphism. There exists

a unique G-morphism *jesf; : #jesA; — B such that f; = (%jesf;) o V; for all j € J. As a
consequence, the maps V; are injective.

Proof. The existence is given by the following definition of #jc s f; on #;ecsA;:

#jerfi(Zg(- < @@ <)) = Zy(fi)(a1) ® - ® fny(an))

whenever a; € Ajq), ..., an € Aj(,); which obviously respects the relation defining *;e7.A;.

The uniqueness follows from the fact that #jc s f; is uniquely determined on [ J y V;(A;) (indeed,
*jes fj(a) must be equal to f;(b) whenever a = V;(b)) and that [ J; V;(A;) generates #je;A; as a
G-algebra. O

Proposition 3.3. Let (Aj,7j)jes be a family of algebraic spaces of traffics. The free product
of distributions of traffics xje 7; : (CQ(O)<|_|]-€J A;» — C of Definition 2.18 respects the quotient
structure of *je; Aj, and consequently yields an algebraic space of traffics (#jesAj, *xjes7;). Fur-
thermore, we have 7, = (xjey7;) o Vi, where V; is the canonical injective algebra homomorphism
from A; to xjesAj;.

Proof. We first need to prove that we have: for any graph operations g, g1,

Zg, (a1®--®ar)
. Pl .

*jGJTj<Zg( ®a(k_+1®®<a_"))

Ak+1

= %jeJTj (Zg(qu(~<‘l—1-®---®-i'l—k-)®~ b ®®i"i))

Let us prove the corresponding properties at the level of the injective trace.
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Lemma 3.4. Let w be a partition of the vertices V' of g. We denote by Vi the vertices in gi

different from the output or the input of g1. We have

Zg,(01®-Q@a ag an 7
(*jeJTj)()(Zg(' 1((1‘ k).®. (’jl®®<f)>

= Z (*jeJTj)O(Zg(Zg (&@@f‘_’v)@aﬁl@

oceP(VuVy)
o\Vi=m

Proof. Because the colored component containing Z,, (a1 ® - - - ® aj) has the same edges on both
sides on the equation, and because (*je JTj)O factorizes on colored component, it suffices to prove

the lemma when only one color (let say jo) is involved. In this case, (xje;7;)°

compute in (Aj;,, 7j,). Below, we denote by Mob( -, -) the M6bis function on P (V).

Zg, (a1®®a a Gn N\
T]Q()(Zg(' 1(02®- k)'®. ﬁl,®.”®.<_.)>

= Z Mob(r, 7')7j, <Zg(. Zg1(a2®-®ax) ® TR0 & ,)w’)
n<m'eP(V)

ai

= Z Mob(w,w’)rjo(Zg(Zgl(-<—-®-.-®.<‘I_"‘.)®.a<’i1.@_._®.?_".

0

= T

Jo’

n<m'eP(V)

= > 3 Mob(r, 7)70, (Zy(Zs, (- £ @@ £ ) @ &
m<n'€P(V) (7' U0y, )<oeP(VuVr)

= Z Z Mob(m, 7) Tjoo (Zg(Zgl(.<“_1.®...®.?_k.)®.“5_“

ceP(VUVy) \n<n/<o\VieP(V)

- Z 6W’U\V17—Joo(Zg(Zgl("a_l'®"'®"a—k')®-aﬁ1-®...®-

1%

N

Q
N———

JEP(VUVl)
2 (750)° (Zg(Zg (4@ &) C.o.. & )0>
oceP(VuVy)
o\Vi=m

Now we can conclude, since

- (z (- P (@8- @)
JEJS ) g

Zg, (a1Q-Qa
= 2, ()’ (Zg(' (e .

eV

R R AR S R

® ~—
®
15
=
~

eV oeP(VuVy)

o\Vi=m
= Y wen) (42 H @0 E )R 8.0
UEP(VUVl)

= %jesTj (Zg(zg (.9_1.®...®.3_k.)®,aﬁ1_®W®.9ﬁ.)>,

3.2 A new characterization of traffic independence

YN ) (%7 e e e e )

and we can

Let (A}, 7;)jes be spaces of traffics and (#;es.A;, #je7;) their algebraic free product. in order to
finish the construction of the free product of spaces of traffics, it remains to prove Theorem 1.2,
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that is the positivity of the free product #;c;7; of positive distributions of traffics 7;. We will
reason as for the construction of the free product of *-probability spaces [14, Lecture 6] using a
structure result (3.20) for (xjcsA;,*jes7;). Before that, we shall first state in Proposition 3.11
a characterization of traffic independence whose statement is closer to the more familiar free-
independence than Definition 2.18.

Definition 3.5. A bigraph is a finite, connected and bipartite graph g, endowed with a bipartition
of its vertices into two sets Vi, (g) and Vio(g), whose elements we call inputs and connectors.

For all Lyn = 0, a (L,n)-bigraph operation is the data of a bigraph with exactly L ordered
inputs, together with an ordering of its edges around each input, and the data of an ordered subset
Vout(g) consisting in n elements of the connectors Vio(g) that we call output, and such that all
connectors which are not an output have a degree larger than 2. For all integer (L,n) = 0 and
tuple d = (di,...,dy) € (N*)L, we denote by ngi (if L &+ 0 and by gé”) otherwise) the set of
(L, n)-bigraph operations such that the k-th inputs have a degree dj.

A (L,n)-bigraph operation with degrees dy, ..., dy, is to be thought as an operation that accepts
L objects with types dy, . .., dr,, and produces a new object of type n. In particular, a (L, n)-bigraph
operation can produce a new n-graph monomial from L different graphs monomials in the following
way. See figure 1

Figure 1: Left: a bigraph with four inputs (squares), five connectors (circles) and three outputs
(with links exiting the box). The ordering of adjacent connectors is noticed for an input. Sub-
stituing in an obvious way the inputs of the bigraph by graph monomials one get the rightmost
3-graph monomial.

Let us consider L graph monomials ¢1,...,%;, on some set of labels A, with respective number
of outputs given by d € (N*)& (that is t, € CG@)(AY), and a (L, n)-bigraph operation g € G\").
Replacing the ¢-th input of g and its adjacent ordered edges (e1,...,eq,) by the graph of %g,
identifying for each k € [L], the connector attached to e, with the k-th output of ¢, yields
a connected graph. We denote by Ty(t1 ® ... ®tr) € CG™(A) the n-graph monomial whose
labelling is induced by those of t1,...,tr, and with outputs given by the outputs of g. We then
define by linear extension

T, : CGU (A ® - @ CGI(A) — CGII(A)
t1®®tL '—>Tq(t1®®tL>

Remark 3.6. One can show that the set of bigraph operations defines an operad with a compatible
action on n-graph polynomials. It acts on the tensors of order n in a slight generalization of
Example 2.6 of [7] We do not use this fact here.

Definition 3.7. Let J be an index set and (A;);es be a family ensembles, and let g € Q(Lilt)i be a
bigraph operation with d = (dy,...,dr). A sequence t; € CGM(A; >, ... t;, € CGULI(A;, S of
graph polynomials is g-alternated if for all p,q € [L] such that the p-th and the q-th inputs are
neighbors of a same connector, then j, # jq.

If ¢1,...,tr are graph monomials alternated along g € ggoi,, then T,(t1 ® ... ®1t1) is a graph
monomial with graph of colored components g, and its colored components are t1,...,¢s, (consid-
ered as graphs with no outputs).

13



For any n > 1, m € P, and any n-graph monomial g made of a finite graph with outputs
(v1,...,vn), let us denote by g™ the quotient graph obtained by identifying vertices (v1,...,vy,)
according to 7, with outputs given by the images of (v1,...,v,) by the quotient map, so that edges
of g™ can be identified with the one of g. This defines a linear map A, : CG™{(A) — CGM(A)
such that A, (g) = ¢™ for n-graph monomials g. Denote respectively by 1, and 0,, the partition of
n made of n singletons and of 1 single block.

Definition 3.8. Let ¢ : CGV(AY — C be a linear form. A graph polynomial t € CG™{(A) is
called reduced with respect to ¢, if n = 2 and for any m € P(n)\{1,}, Az(t) =0 orn =1 and
o(t) =0.

Ezample 3.9. For any t € CG™(A), one has Ay, (t) = t. If n = 2, then Ay, () = A(t), where we
recall that A is the graph operation with one vertex and one edge (and so ¢ is reduced if and only
if A(t) =0.)

Ezxample 3.10. Let A be a family of matrices of size N by N and let g be a n-graph polynomial.
Recall that we defined in Example 2.12 a tensor Z,(Ay) = (Bi)ie[n)» of order n. Then T,(Ay)
is reduced if and only if B; = 0 as soon as two indices of i are equal. In particular for n = 2, a
matrix is reduced whenever its diagonal is null.

Proposition 3.11. Let (A, 7) be a space of traffics. Denote by ¢ : CG(AY — C the linear map
given by ¢(g) = 7(3) where § € CGO(A) is obtained by forgetting the position of the output of g.
Say that a graph polynomial is reduced when it is reduced with respect to ¢. Then, the G-subalgebras
(Aj)jes are traffic independent if and only if for any bigraph g € gﬁ% and any g-alternated sequence

(t1,...,tr) of reduced graph polynomials in CG(A), one has 7|Ty(t1 @ ... ®t1)] = 0.

This characterization shows that traffic independence is stronger than free independence in the
following situation, which has to be compared with [8, Corollary 3.5] and will be satisfied in Section
4.

Lemma 3.12. Let (A, 7) be a space of traffics. Denote ® the associated trace on A and n(a) =
®(A(a*)A(a)) — |®(a)]* = ®(a* 0 a) — |®(a)]®. If for any a € A, n(a) = 0 then any family
of G-subalgebras that is traffic independent is free independent in the *-probability space (A, ).
Similarly, for any subalgebra B of A, if n(a) = 0 for all a € B, then the free independence of
families in (B, ®|3) is a consequence of traffic independence in (A,T).

Proof. The two statement are proved in a similar way, and we only prove the first one. Since the
trace defined on A is a state, the assumption implies, for every a € A, that A(a) has the same
*_distribution as ®(a)l. Let (A;);jes be traffic-independent G-subalgebras and let a1, ...,a, € A,
such that for any k € [n], ®(ax) = 0 and ax € A;,, with ji + jr+1, whenever k < n. Then,

D((a1 — Aar)) ... (an — Alay))) = 2((a1 — P(a1)) ... (an — P(an))) = ®(ay ...an).

Let g be the bigraph with no outputs, n inputs and n — 1 connectors whose graph is a segment,
with inputs vertices (alternating with the connectors) labeled consecutively from one side to the
other, from 1 to n. Then one has

(a1~ Am) - (@~ Aan))) = 7(Ty(ar = A@) ®- . ® (an ~ Alan)))).

and (a1 —A(a1))®...® (an, — A(ay)) is a g-alternated reduced tensor, so that by Proposition 3.11
we get (ay...a,) =0 as desired. O

Remark 3.13. Recall Example 2.13 of the G-algebra A of locally finite rooted graphs on a set of
vertices V. It is a classical fact that an element A of A which is both deterministic and unimodular
is vertex-transitive (there exists automorphisms exchanging each pair of vertices). This property
implies that the diagonal A(A) = (A(v, U)]]-v=w)v wey Of A is constant, and so one can apply the
lemma. This gives a new proof of the free indepéndence of the spectral distributions of the free
product of infinite deterministic graphs of [1], thanks to [8, Proposition 7.2].
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3.3 Proof of Proposition 3.11

We start by stating two preliminary lemmas.

Lemma 3.14. Let m a graph monomial with output set O. For each partition © of O, denote by
m™ the graph operation obtained by identifying the outputs of m that belong to a same block of w.
Let us denote by Mob the Mébius function for the poset of partitions of O and 0o the partition of
O made of singletons. Then, p(m) = Zﬂep(o) Mob(0p, 7)m™ is a reduced graph polynomial, and
every reduced graph polynomial m satisfies m = p(m).

Proof. For any v € P(O),
A, Z Mob(0p, m)m™ | = Z Z Mob(0p, ) | m#
weP(O) peP(O) \meP(O):mrvr=pn

Now, for any p € P(O),

> Mob(0p,7) = ». > Mob(c, u)Mob(00, )

TeP(O):mvr=p T<puTvr<o<p
= Z Mob(a, i) ZMob(Oo,ﬂ')
VSO T<o
= ). Mob(0, )35,00 = 61,00 M(00, ).
VSO

O

Lemma 3.15. For any linear from ¢ on g<1><|_|jeJ A;) sending the graph with no edges to one,
and calling reduced graph polynomials reduced with respect to ¢, one has

Q(”)<|_| Apy=Cle P span{Tg(t) ‘ t = (ty)L, g—alternated, reduced, t; € Q(")<A7(g)>},
jeJ gegi"?j N
’y:{l,...,’ri}—n]

"
=Wy

Proof. Let us denote by &£ the vector space spanned by the right hand side. For any integers
k = 1,5 = 0, let us consider the vector space & spanned by the family of graphs polynomials
T,(t), where g € Qén()i has less than k vertices and t = t; ® ... ® ty, is such that the number of
k € [L] with t), reduced is greater than max{0, L — s}. Let us set & = Span(&f)s=o and prove by
induction that for any k > 0, & < &, which shall conclude the proof. To begin with, note that
& = CI c &. Let us assume the claim for k£ € N and prove by induction on s > 0 that £, < £.
First,
Epc U {T,y(t) : t € Ay and t is reduced} < £.
geg
m a g-alternated sequence
of graph monomials

Let us assume that 5,§+1 < & and consider g a bigraph with £+ 1 connectorsand t =, ®...®tr €
Am a g-alternated tensor with max{L — s — 1,0} reduced components. Let us assume that t; €
CGl4)(A;) is not reduced, for some j € J,dy > 1. If d; = 1, then T, ((t; — 7j(t1)) @ta... ®@tr) €
i and 7i(t)Ty (1®ta ... ®tr) € &, so that Ty(t) € £. If dy > 2, according to Lemma 3.14, we

can write t, = 7+ Y-, x;, where r € (Cg(dl)Aj is a reduced graph polynomial and x1,...,2,, €
Cg(d1)<Aj> are graph monomials having two ouputs equal to the same vertex. Then, for any
ie[m], Ty(r; @tz... ®tr) €& and Ty(r®t2 ®...®1tr) € &, 4, so that Ty(t) € £. O

To prove Proposition 3.11 it is then sufficient to prove that if (A;),es are traffic independent
in (A, 7) then for each bi-graph operation g € Q(LQL and each g-alternated sequence t of reduced

graph polynomials one has T[Tg (t)] = 0. Indeed, it implies that this property is true for the free
product #jey7; and so the reciprocal assertion follows from Lemma 3.15 since it implies that 7
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coincides with #;cy7;. The formal difficulty is that we shall use Definition 2.16 of the injective
trace in order to prove that 7|7y (t)] vanishes. Formula (2.6) is only valid for graph monomials as
the summation involves the vertex set of the graph, but A is not a monomial because of reduceness
of t.

We fix from now a sequence m = (my, ..., my) of graph monomials with respective vertex sets
Vi,...,Vr, and define

Am = Span {m{* @ ...®@m[* |Vk € [L],m, € P(Vi)}.

We claim that it suffices to prove that 7[h] = 0 for any h = T (t), where g is a bigraph operation and
t is g-alternated, reduced and belongs to Ap,. Indeed, let t = (¢, ...,tr) be an arbitrary sequence of
g-alternated, reduced graph polynomials and denote t = »}; a;x; where the x;, are the sequences of
graph monomials of t. Let p be the projection of Lemma 3.14 and denote p(t) = (p(tl), e ,p(tL)).
Then ¢t = p(t) = Y, a;p(x;) where p(x;) € Am, is reduced for each 4.

The interest in fixing the monomial m is that each monomial x € Ay, satisfies that Ty(x) =
T, (m)¥sm ) for a unique partition v, m(x) of the set V of vertices of T, (m). Denoting v = v, m(x),
Formula (2.6) yields 7[Ty(x)] = 7[T,(m)"] = X, - ,cp(v) T [T4(m)7], where we recall that 7 > v
means that 7 refines the identifications made by v. We then define the linear form defined for
monomials by

ar X = L7 = vgm(x))

on Ap,. By linearity of 79, for any t reduced and g-alternated graph polynomial we get

[h] =Ty = Y 7°an(t).Ty(m)7].

7eP (V)

Moreover, one can write Ty(m)™ = T¢ (Fﬂ), where G is the bigraph of colored components
of Ty(m)™ with an arbitrary choice of ordering of the inputs and of edges around inputs, and Fj is
the sequence of colored component of T, (m)™ (with ordering fixed by the previous choice). Both
G and F; depend implicitly on g and m.

Remark 3.16. Making this operation g — G, can increase the number of connectors, so that G
is not a quotient of g. However, it cannot increase the number of colored component: the set
Vin(Gy) of inputs of G is a quotient of V;,(¢g). The mapping pr : Vin(g) — Vin(Gr) induced by
the quotient by m, of T(m) respects the bipartition, is 1-Lipschitz for the graph distances, and is
surjective.

We set Fir(t) = ar(t).Ty(m)™ and obtain

=3 [TGW (F,r(t))]. (3.1)

Recall now that traffic-independence means that for any bi-graph G and any G-alternated sequence
of graph monomials x = (z4)%_,, one has

[Tq(x)] = 1(G is a tree ) x HTO[W] (3.2)
=1

where z, is considered has a O-graph monomial. This equality is then valid for 7°[T¢(t)] when
t is a G-alternated sequence of graph polynomial. We need the following Lemma whose proof is
postponed to the end of the proof.

Lemma 3.17. Letge ngzl and let m be a g-alternated sequence of graph monomials. Let t € Ay,
be a sequence of reduced graph polynomials and m a partition of the vertex set V' of Ty(m). With
G, and a, defined as above, if G is a tree then, G, = g or a,(t) = 0.

Assuming for the moment Lemma 3.17, we deduce from (3.1) that

7[h] = 1(g is a tree ) x Z 70 [Tg (Fw(t))]
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which is zero if ¢ is not a tree. From now, we assume that g is a tree. Note that the partitions
7 such that G, = g are those given by first considering a sequence (m1,...,7) € Hle P(V) of
partitions of the vertex sets of the monomials of m such that 7y, = Oy, for all k& € [L] (i.e. does
not identifies outputs of the tx’s), and forming a smallest partition 7 of V. Moreover, for such
7 = 7 one has Fr = (m7*,...,m}") and that the linear map . factorizes o (t) = [ [, ax,(t¢). By
(3.2) we can therefore rewrite

L
T[h] = Z HTO[QM (te) x mj*],
(me)eellf_, P(Ve)  £=1
s.t. W\aW:OavaE[L]

where in the r.h.s. we see m;* as a 0-graph monomial. By definition of o, (t) and since the graphs
ty are reduced we get

=11 2 7 =1]rltd
L=17m,eP(

V) £=1

where £, is also seen as a 0-graph monomial. Since g a tree it possesses a leaf for which reduceness
condition implies 7[t;] = 0. Hence we get 7[h] = 0 as desired.
The rest of this section is devoted to the proof of Lemma 3.17

Lemma 3.18. Let g € ggffi and let m = (my,...,mp) be a g-alternated sequence of graph mono-
mials. Lett € Ay, be a sequence of reduced graph polynomials and w a partition of the vertex set V.
of Ty(m). Assume G is a tree and there exists w a simple path on g visiting exactly R > 3 inputs
of g whose source and destination are identified in G.. More precisely, denote the inputs that w
visits in consecutive order v, ..., Vi, With i1,...,ig € [L] (pairwise distinct by simplicity of w).
Recall that p, is the distance map on the inputs of g induced by m and assume pr(vi,) = Pr(Vig)-
Then a,(t) = 0 and we can allow v;, = v;, without changing this conclusion.

Proof. As G, is a tree it has two leaves and, since m is g-alternated, there exists 1 < r < R
such that when w enters and exit neighboring connectors ¢~ and ¢ of v, that are identified.
More precisely, let 7_ , be the finest partition of the outputs of ¢; including {¢~,c¢"}. Then,
ar(t) =ar(t1 ®...®Ar__ t;, ®...®tr). But Ar_ t; =0 since t; is reduced. O

Proof of Lemma 3.17. Assume that g is not a tree. Since G is a tree, there exist two distinct
inputs v, 7 of g with p,(v) = pr(7), so as t is g-alternated, there exists a path w in g going through
at least three inputs satisfying the condition of Lemma 3.18, hence a.;(t) = 0. O

Remark 3.19. The conclusion of Lemma 3.18 remains valid when we relax the condition that t
is reduced and only assume that Aﬂ_#t” = 0 at each input v;, with 1 < r < R. Moreover if
exactly one graph polynomial ¢;, does not satisfy A, #; = 0 then 7 must identify the entering

and exiting output of ¢; in order for a,(t) not to vanish.

3.4 Proof of Theorem 1.2

For each j € J let 7; be a distribution of traflics. It remains to prove that the free product
T 1= %jcs7; is also a distribution of traffics, showing that it satisfies the positivity condition (2.2).
Therefor, we reason as in [14, Chapter 6] where is stated a structural result for the free product of
unital algebras with identification of units [14, Formula (6.2)].

Let us consider for n > 1 a bigraph g € Qg?()i and a g-alternated sequence m = (myq,...,mr) of
graph monomials such that for any k € [L], my € CG¥) (A1), where v(k) € J and dj € {1,2,...}
for traffic independent G-subalgebras A;, j € J. Let us denote by Auty m the set of automorphisms
o of the bigraph g i.e. the set of maps from the vertex set of g to itself preserving

e the adjacency, the bipartition and the set of outputs of g,

e the coloring of ¢ given by m, i.e. Yoo = = on the inputs. It does not necessarily respect the
ordering of the edges around inputs.
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Every 0 € Autym and t € Ay, induces a new g-alternated sequence of graph polynomials
to =t1,® - ®lL o we define t; , to be t,(;) with a reordering of labels of inputs and ordering
of neighbor connectors in such a way that T,(t) = T,(t,). We have the property (ts,)s, = to,o,
for all 01,02 € Autym.

Lemma 3.20. Let us fir n > 1, g be a bigraph in Qg;)i and m be a g-alternated sequence of graph

monomials. Let g’ be a bigraph in gg,’?d, and m’ be a g-alternated sequence of graph monomials.
Lett € Ay, and t' € Ay be reduced.

1. If T[Ty (t)|Ty ()] # 0, then g is a tree, and Ty (t") = Ty(t") for some reduced graph polyno-
mials t € Apr and m” some g-alternated sequence of graph monomials which have the same
coloring as m. In particular the spaces Wy  of Lemma 3.15 are orthogonal.

2. Assume that g is a tree and that m and m’ have the same coloring. Then we have

TN, = D rltlts ] 7Lty )

o€Auty m

Assuming this lemma for the moment, let us deduce Theorem 1.2. By the same reasoning
as in the previous section, it suffices to prove that 7[h|h*] = 0 for each finite combination h =
> BiTy, (t%) for bigraphs g; and sequences of reduced polynomials t* € Ay, where the m"’s are
fixed sequences of g;-alternated monomials. Moreover the previous lemma allows to restrict our
consideration to the case where all g; are equal to one particular tree ¢ and all m’ have the same
coloring (after a modification of the t’s and m’s if necessary). In this case, we denote by Auty m
the sets Aut,, mi (which are all equal), and we have

o[ S AT D BT )| = X 8 [T ()| T (677)]

1 _ ‘ ‘

~ s 2 GBTILE)TE )],

g,m 7
aEAutgym

1 o o
= PAut, DO Te 2y L g EESC L g
o,a’egutg,m

1 o o
a7l VR G PR RO
o,cr’e;ljutg,m

We can now see that the r.h.s. is nonnegative. First, the matrices (T[t20|tg U'*])i Py {=1,...,L
are positive definite since 7 is positive on each G-subalgebra A;. Moreover, their entry wise product
(also called Schur product) (7] Zi70|tjll)g,”‘] . .T[ti)a|tﬂi70/*])i’j’a’al

This yields by consequence the positivity of the free product.

is also positive ([14, Lemma 6.11]).

Proof of Lemma 3.20. We will prove this lemma by induction on the number of inputs g. If this
number is 0, this means that g consists in a single connector (and the sequence of outputs of g is
constant and equal to this single connector) and then 7[T,(t)|T, (t)] is proportional to [Ty (t)]
where g’ is the bigraph with no outputs obtained by identifying the outputs of ¢’. Hence, by
Proposition 3.11, [Ty (t)|Ty (t)] is zero if ¢’ as one input or more and so the lemma is true.

The hypotheses is that the number of colored components of T,(t) is larger than 1 and that
the lemma is true for all inferior numbers of colored components of T,(t). Let us assume that
T[Ty(t)|[Ty (t')] # 0. Remark that we have Ty(m)|Ty(m’) = Ty ,,(m ® m’) for the bigraph g|g’
with no outputs and L + L’ inputs which consists in collapsing the outputs of g with those of ¢'.
Then, denoting by V' the vertex set of T, (m ® m’), for all 7 € P(V) we define the linear map
a, the bigraph G, and the sequence of monomials F); as in the previous section, namely
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o Ty (m®m')™ =Tg, (Fr) where G is the bigraph of colored components of T, (m&®m’),

e for each sequence of monomials x € A,,,x’ € Ay, one has a,(x,x’) = 1(r > v) where

Ty (%,%") = Ty)g (m, m")".

Denoting Fr(t,t') = a,(t,t") x Tg, (Fr) we get

[T, ()| T, = > 7 [TG = (t, t))]

TeP(V)

and by definition of traffic independence the terms in the sum are possibly nonzero only if G is
a tree.
We shall use the following Lemma.

Lemma 3.21. With notations as above, let m € P(V) such that G, is a tree and o, (t,t") # 0.
Then

1. g and ¢’ are trees.

2. respects the decomposition of Ty(m) and Ty (m') into colored components, in the sense that
the image by m of two vertices that belong to different colored components of Ty(m) (resp.
Ty (m')) belong to different colored components of Ty, (m ® m’)™.

3. two different connectors of g (resp. g') are not identified by 7 in Ty e (M@ M’)™.

Proof. By Lemma 3.18 and Remark 3.19, if G is a tree and there is a simple path w on g (resp.
g') visiting exactly in Vi,(g) (resp. Vin(g’)) the vertices v;,,...,v;, in consecutive order, with
I > 3 and 4y,...,9 € [L], such that p.(v;;) and p.(v;,) belong to a same colored component of
Ty (m ® m’)™, then a,(t,t') = 0. We can allow v;, = v; without changing the conclusion.
Indeed, since the path w is in g the graph polynomials corresponding to the inputs it visits are
reduced.

If g is not a tree, then there exists again a simple loop w in g from a colored component to itself
which visit another colored component, which then satisfies the condition of Lemma 3.18, and so
ar(t,t") = 0.

Now, let us take two vertices v and ¥ in different colored components of T;(m). If their images
by 7 belong to a same colored component, there exists a path w in g from v to ¥ going through at
least three inputs, satisfying the condition of Lemma 3.18, so that a,(t,t") = 0.

Finally, let us take two different connectors ¢ and ¢ which are identified by 7. Here again there
exists a path w in g from ¢ to ¢ going through at least three inputs, satisfying the condition of
Lemma 3.18, yielding the same conclusion.

We can deduce the same properties for ¢’ by interchanging g and g¢'. O

We then can assume that g and ¢’ are trees. Moreover, we know from Proposition 3.11 that
7[T,(t)|Ty (t')] vanishes if (m @ m’) is (g|g’)-alternated and reduced. Hence we can assume that
there is a k in {1,...,n} such that the color of one particular neighbor input v next to the k-th
output of Ty(m) is the same that the color of some neighbor input v' next to the k-th output of
Ty (m’). Without loss of generality we assume that v and v’ are neighbors of the first output of
T,(m) and T, (m’), corresponding to the graph monomials m; and m} respectively.

We denote by ci,...,cpy the connectors around v in Ty and by s1,..., s, the connected com-
ponents of T;, when v is removed, in such a way that ¢; belongs to s; for each ¢ = 1,...,m, with
¢; considered as an additional output. Some of these bigraphs have a single output (which is the
corresponding ¢;) and we assume that those bigraphs are c1, ..., ¢, for 0 < p < m. Similarly we
define ¢}, s}, i = 1,...,m’ and p’ by considering T} instead of T,. Moreover, given o € X(p) a
permutation of {1,...,p'}, we denote by #] , the graph polynomial obtained from #} by permuting
the outputs attached to the connectors cy,. .., ¢, according to o.

Lemma 3.22. With the above notations, up to a reordering of the s} for i > p' and a reordering
of its outputs different from c;,

p m
T[Ty ()| Ty (t")] = 1(p = p")1(m = m) Z [t1t1,0] x HT sil St | H 7(si]s5]-
oeX(p) i=1 i=p+1
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Assuming momentarily this Lemma, let us finish the proof. Applying the induction hypothesis,
we get that if T,/ (t") cannot be written T, (t”) for some reduced graph polynomials t” € Ay,» and m”
some g-alternated sequence of graph monomials which has the same coloring as m, then we would
have a vanishing expression. For the second part of the lemma, let us assume that g = ¢’ and that
m’ has the same coloring as m. Remark that an element of Auty m, is nothing else than a bijection
from {c1,...,¢cm} to itself, and an automorphism of each s;. Using the induction hypothesis on
each s;, we see that a non-vanishing term is such that s; and sgp for i < p, resp. s; and s} for i > p,
are of the same type of tree of colored component, and there exists an automorphism for each of
these couples, which allows to define a global automorphism ¢ € Auty . Hence by recurrence we
get as expected

Ty ()] = Y, rltlt ] ltelty ..

o€Auty ¢

O

Proof of Lemma 3.22. Let m € P(V) such that a,(t,t’ # 0). Assume that 7 identifies a vertex of
vy of s; with a vertex of vy of s}, for i > p and ¢’ > p/.

Consider a simple path in Ty, (m®m’) from (the colored component of) v; to (the one of) vg,
consisting in a sub-path in T from vy to ¢, going through ¢, and ¢}, and finishing with a subpath
from ¢y to vo. By Lemma 3.18 and the last sentence of Remark 3.19 we get that 7 identifies ¢; and
c¢iy. By Lemma 3.21, m does not identify ¢; and ¢}, with an other connector of Ty,, and so up to
a reordering we can assume i’ = 1.

Assume now that an output o of s; is not attached to any output of s in T,,. Consider a
simple path from (the colored component of) v; to (the one of) vq, consisting in a sub-path in
Ty from vy to o (which then does not visit ¢;), continuing with a sub-path in 7; g’ going ve. While
entering in T, the path goes through a subgraph s;- for j # ¢ and goes through t}. Necessarily 7
must identify a vertex of s; with a vertex of s} (since otherwise ay(t,t’ # 0) by Lemma 3.18 and
the last sentence of Remark 3.19). But by the previous paragraph this implies that ¢; and c; are
identified. This is absurd since ¢} and c} cannot be identified by 7. Hence, since the argument of
this paragraph remains true by exchanging the roles of s; and s}, the outputs of s; and s} are in
correspondence and up to a reordering we can assume that the k-th output of s; is attached with
the k-th output of s/.

Moreover, since different connectors of Ty (resp. T,/) cannot be identified by , there exists
an injective partial function o, from {1,...,p} to {1,...,p'} such that for each i < p,#’ < p/, 7
identifies ¢; and ¢, if and only if i € Dom(c) and o(i) = . With the same argument as a the
beginning of the proof, vertices of s; for i < p can only be identified with vertices s, for i < p’
with i € Dom(o) and o (i) = 7'

At last, a direct use of Lemma 3.18 implies that a vertex of ¢; (resp. t}) cannot be identified
with a vertex of any ¢, for any ¢/ = 1,...,m’ (resp. ¢; for any i = 1,...,m). With a small
abuse of notations, for each partial functions o : {1,...,p} — {1,...,p’} denote by ¢t} . the graph
polynomial ¢} where outputs are ordered in such a way in [t} , the outputs ¢; and o, for i < p
and i/ < p' are identified if o(i) = ¢/, and are not identified if i ¢ Dom(o) of i’ ¢ Im(c). The
conclusion so far is that

Z 70 [T@r (Fﬂ(t7t’))] = Ilm—-p=m'— p/)T[t1|t/1,g] X 1_[ T[si+p|s§+p,]
ws.t.or=0 i=1,....m—p
X H T[si|s:,(i)] n 7[s:|1] H 7[1]sl],
i<p i<p i'<p’
ci€Dom(o) i¢Dom(o) i'¢Im(o)

where 1 stands for the graph with no edges. But 7[s;|1] = 7[1]|s},] = 0, thanks to Proposition 3.11.
Hence this sum is zero if p # p’ and otherwise this is equivalent to consider o as a permutation.
This yields the Lemma and conclude the proof.

O
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4 Canonical extension of non-commutative spaces into traf-
fic spaces

This section is dedicated to the proof of Theorem 1.3. We define, for all *-probability space, a space
of traffics (B,7) such that A — B as #-algebras and such that the trace induced by 7 restricted
to A is ®. The first step is to give this construction at the algebraic level, which is the aim of
Section 4.1, where we also prove the second item of Theorem 1.3. Then we prove in Section 4.2
a version of Theorem 1.1 which yields the first item of Theorem 1.3. In Section 4.3, we prove the
positivity of the distribution of traffics we introduce now.

4.1 Definition and properties

Definition 4.1. Let A be an algebra. We denote by G(A) the G-algebra CG(A), quotiented by
the following relations: for all g € G, a1,...,a, € A and P non-commutative polynomial in n
variables, we have

aq ak

Z,(- ™ @ e @ )= Z(P( &L, ) e ) (40)
which allows to consider the algebra homomorphism V : A — G(A) given by a — (- < ).
The algebra G(.A) is the free G-algebra generated by the algebra A in the following sense.

Proposition 4.2. Let B be a G-algebra and f : A — B a algebra homomorphism. There exists
a unique G-algebra homomorphism f' : G(A) — B such that f = f' o V. As a consequence, the
algebra homomorphism V : A — G(A) is injective.

Proof. The existence is given by the following definition of f’ on G(A):

f(Z( @0 <) = Zy(f(a1) ® ... ® flan))

for all aq,...,a, € A; which obviously respects the relation defining ;e s A;.
The uniqueness follows from the fact that f’ is uniquely determined on V(A) (indeed, f'(a)
must be equal to f(b) whenever a = V(b)) and that V(A) generates G(A) as a G-algebra. O

For example, the free G-algebra generated by the variables x = (2;); € J and x* = (z}); € J is
the G-algebra CG{x,x*) of graphs whose edges are labelled by x and x*.

For all 0-graph monomial T' = (G, v, v) indexed by A, we say that T is a cactus whenever each
edge belongs exactly to one cycle of T. See figure 2. Equivalently, for all vertices v; and vy of G,
the two following equivalent statement are true:

e the minimum number of edges whose removal disconnect v; and vs is exactly 2;

e the maximum number of edge-disjoint paths from vy to vy is exactly 2.

P ]
P

o

Figure 2: A cactus whose cycle are oriented.

Definition 4.3. For all non-commutative probability space (A, ®), we define the linear functional
76 : CGO(AY — C by it injective trace 79 : CGO(AY — C given by:
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1. 72[C] = k(ay,...,a,) if C is an oriented cycle with edges labelled by a1, ..., a,, where k

denotes the free cumulants defined in (2.5).

2. 73T] = [loer 72[CY, if T is a cactus with oriented cycles, where the product is over all
cycles of T'.

3. 12[T] = 0, otherwise.
Proposition 4.4. The linear form ¥ : CGP{(AY — C given by U(t) = 7a(A(t)), where A(t)
is A(t) where the input and output are forgotten, is invariant under the relations (4.1) defining
G(A), and consequently yields to an algebraic space of traffics (G(A),7e). Furthermore, we have
® = VoV, where ¢ is the canonical injective algebra homomorphism from A to G(A).

Remark 4.5. Before proving the Proposition, let us underline the motivation to introduce the
distribution of traffics of Definition 4.3: it gives a parallel between the relation moments-free
cumulants of formula (2.5) and the relation trace-injective trace of (2.6). Let t be the graph

consisting in a simple cycle labeled ay X - -+ X ax along the orientation. One has
o xoxa)=rl= 3 o= 3 [ 7l
TeP(V) meP(V) ¢ cycle of t™

s.t. t7 cactus

It can be seen that the partitions m of the set of vertices for which ¢™ is a cactus are the Kreweras
dual of the non crossing partitions v of the edges of the cycle, see figure 3. The cycles of the cactus

correspond to the blocks of v, so that getting (2.5) from the above r.h.s. is a matter of change of
variables.

Figure 3: Left: A cycle of length nine, a non crossing partition v of its edges (grey) and the
Kreweras complement 7 (dotted) of v. Right: the quotient of the cycle by .

Proof. Proving that W is invariant under the relations (4.1) is equivalent to the prove the following:
an

for all O-graph monomial g, with a slight abuse of notation, denoting Z(- L .®...® <) the
element of CG(®( A) obtained by replacing the corresponding edges of g by the a;’s, one has

1. Té(zg(.aljr_aaz_®,f_s,®._.®_&.))ZT(I)(ZQ(.?_1.@.(‘2.®._.®.i‘ﬁ.))+a7¢,(zg(.<‘l_2
®EL.®..Q L),

ail an

2 10(Zy( ¢ ® L .®..0 ) =10(Z,(® L .®..0 &),

3.70(Zy( 42 ® L ®..0- L)) =10(Z4+ (¢ ® L -®...0 <)), where g* is the
graph g where the first edge is replaced by two consecutive edges.

The first property is an immediate consequence of the linearity of the cumulants. Let us prove the
others properties at the level of the injective trace.

Lemma 4.6. Let aq,...,a, € (A, ®) and w be a partition of the vertices V' of g. We denote by vy
the new vertex in g*. We have

1. Tg(zg(,lé,®,?j,®_”®,91,)) =79(Z)(® < - ®...® <)) if the goal and the source
of - <2 . are identified in g, and 79(Z4(- “g 8.9 .0 & ) = 0 if not;



2. 13(Zy(- " ®...® <)) = Yoep(voiuoh) To(Zgr (@ @L< )7).

o\fvo}=m

This implies the proposition, since it gives

T@(Zg("i'@b'(a_l'@...@'h')): Z Tg(Zg<.<1A.®.?_l.®._.®.fﬁ,)ﬂ>
TeP (V)

> 19 Z,(®- L .®...@ &)
TeP (V)

1
the goal and the source of A

are identified in g
= Y (@ L e..® e
TeP (V)
=To(Zy(® < ®...® ),

and

To(Zy(- @@ €)= Y TZ( " ®...®-
weP(V)
Z Z 9 Zp (L ® 2@ )
TeP(V) oeP(Vu{vo})
o\{vo}=m

Y, iz (@)
oeP(V)
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Now, let a € A. We can write

U(V(a)) = U(- <) = 70(Ca)) = 78(Ca) = k(a) = ®(a)
which finishes the proof of the proposition. O

Proof of Lemma 4.6. The first item follows from the fact that a cumulant involving 1 4 is equal
to 0, except k(14) = 1 (see [14, Proposition 11.15]). As a consequence, for any cactus Z(- e
®ER.Q & -) on which 72 is not vanishing, we can just remove the little cycle (9; , of the
cactus and it yields exactly Z,(-® - < - ®...® < ).

ajaz

Let us prove the second item. We denote Zy(- ““** - ®...@ - <= ) by T and Z,+ (- < - @ &
“®...- < )by Ty. If T™ is not a cactus, then the two side of the equation are equal to zero.
Assume that T7 is a cactus. We denote by ¢ the cycle of - ““%* . in T™ and ajas, b, ..., by_1 the
elements of the cycle c¢ starting at ajas.

Let us consider a partition o € P(V U {vo}) such that T is a cactus and 7 = o\{vo}. Then,
we have two cases:

1. wg is of degree 2 (this occurs for only one partition o given by 7 U {{vg}}). Denoting by c*
the cycle of T'Y which contains vy, we have ¢t = (ag,ba,...,br—1,a1). The cycles of T™ and
T¢ different from ¢ and c¢* are the same, and by consequence

Tg[Tﬂ]/k‘(alag,bQ, .. -,bk—l) = Tg[Ti]/k(ag,bg, .. .,bk_l,dl).

2. vy is of degree > 2. We denote by ¢; the cycle of - <% - in T7, co the cycle of - & in T7 (of
course, ¢; and ¢y are not equal, because if it is the case, T™ would be disconnected, which is
not possible). The cycles of T™ different from ¢ are exactly the cycles of T different from ¢;

or ¢cg. We have ¢; = (ag,ba,...,b) and ¢ = (bj41,...,bk,a1) with [ the place of the vertex
which is identified with vy in 7. By definition, we have

Tg[Tﬂ']/k(anQ, bQ, ey bk_1) = T%[T_f]/(k(ag, bg, ey bl) . k‘(bl+1, . ,bk, al)).

Conversely, for each vertex v; in the cycle ¢, we are in the above situation for o = 7|, ~y, -
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Finally, using [14, Theorem 11.12] for computing k(aias,be, ..., bk—1), we can compute

Tg[Tﬂ'] :Tg[Tﬂ]/k(alag, bQ, e ,bk—l) . k‘(alag,bg, ceey bk—l)
Tg[Tﬂ—]/k(ala27 b27 .o 7bk71)

~<k(a2,b2,...,bk1,a1)+ > k(az,bz,...,bl).k(bm,...,bk,al))

=Ty N 4+ D [T7]
oeP(Vu{vo)\{ru{{vo}}}

O\\Vo =T
D (0]

oceP(Vu{vg})
o\{vo}=m

O

Corollary 4.7. The algebras C(- & - :ae Ay, C(- 5 -:ae A) and C{ 1" :ae A) are free in the
sense of Voiculescu in (CGP{(A), 13), or equivalently the algebras Cla : a € Ay, Cl*a : a € A) and
Cldeg(a) : a € Ay are free in the sense of Voiculescu in (G(A), 7))

Proof. We first prove that C{- < - :a e A) and C{- 5 - : a € A) are free. Let us consider 2n
elements ¢y, ...,ca, alternatively in C(- < - : a € A) and C{- % - : a € A) such that 74(c;) =

. = 7o(can) = 0. We want to prove that 7¢(A(cy ... c2,)) = 0. Using Proposition 4.4 in order
to regroup consecutive edges which are oriented in the same direction, we can assume that the
;s are written as - & . with a; € A such that ®(a;) = 0, and ¢; and ¢;41 not oriented in the
same direction. Consider now a partition 7 such that 79(A(cy ... ca,)™) # 0. Then, take a leaf of
the oriented cactus A(ey ...co,)". This leaf is a cycle of only one edge, because if not, the cycle
cannot be oriented, since two consecutive edges in A(c; ... ca,) are not oriented in the same way.
This produces a term 79(A(c;)) = 0 in the product 79(A(cy ... c2,)™), which leads at the end to
a vanishing contribution. Finally, 7¢(c; ... ca,) = 0 and we have the freeness wanted.

Now, let us prove that C{ ' : a € A)is free from C(- & -,- % . : a € A). By the same argument
as above, we can consider that we have a cycle A(c; .. . ¢,) which consists in an alternating sequence
of c\s written as - <* - with a; € A such that ®(a;) = 0, - %% - with a; € A such that ®(a;) = 0,
and ¢; € C(1* :a e A) such that 7g(c;) = 0. We want to prove that 74 (A(cs...c,)) = 0.
If there is no term ¢; € C( fo g€ Ay, we are in the case of the previous paragraph. Let
us assume that there exists at least one such term, say c¢;. By linearity, we can consider that
the term ¢; € C( 1 1 a € A) is written as 1”1 — 7o (1P1...1%) " where ... 1% s some
vertex input/output from which start k& edges labelled by b1,...,bx € A. Let us prove that
7o (AT 1Yy L en)) and 1o (TP 1) 76 (A(cs . . . ¢y)) are equal, which implies by linearity
that 7¢(A(ey...¢,)) = 0. Decomposing into injective trace, we are left to prove that for all

1., 1ok (1010w

partition 7 of the vertices of A(( Ca ... cn) which do not respect the blocks and

Alcg...cpn), Tg(A((.Tbl' ~1"Yey . ¢,)™) = 0. The same argument as previous paragraph works
again. If one of the vertex of (1°'-..1%) is identified by 7 with one of the vertex of A(cy...cy),
and A((T"-- 1) ¢y . c,)™ is a cactus there exists a cycle not oriented or a leaf labelled by one

a;, which leads to a vanishing contribution. O
We can now prove the second item of Theorem 1.3.

Proposition 4.8. Let (A, ®) be a non-commutative probability space (A, ®). We define (G(A), 7o)
as in Proposition 4.4. Two families a and b € A are freely independent in A if and only if they
are traffic independent in (G(A), 7).

Proof. Let a and b € A be freely independent in 4. The mixed cumulants of a and b vanish (see
[14, Theorem 1.16]). Definition 4.3 of 79 implies in particular that, for all 0-graph monomial T
indexed by A, 72(T') = 0 whenever the graph of color component of T is not a tree and is equal to
the product of 79 applied on each color component in the other case. In other words, a and b are
traffic independent in (G(A), 7).
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Now, let a and b € A be traffic independent in (G(A), 7s). We denote by ¥ the trace on G(A)
associated to 7. Lemma 3.12 says that, in order to prove that a and b are freely independent, it
suffices to prove that W(A(a*)A(a)) — |¥(a)|? = 0 for our variables in a and b. We compute

U(A(a*)A(a)) = [¥(a)* = 7o (a GO a¥) — |70(Ca)|?
=73 (a GO a*) — |73(Ca)* = @(a)®(a¥) — |@(a)]* = 0,

which allows us to conclude. O

4.2 Proof of the convergence of random matrices (Theorem 1.1)

The purpose of this section is to prove Theorem 1.1 in the following more precise form.

Theorem 4.9. For all N > 1, let Xy = (X;)jes be a family of random matrices in My (C)
satisfying the hypothesises of Theorem 1.1. Let x = (x;)jes be a family in some non-commutative
probability space (A, ®) which is the limit in «-distribution of X . Let consider the algebraic space
of traffic (G(A),7e) D (A, ®) given by Proposition 4.4. Then Xy converges in distribution of
traffics to x.

In other words, for all 0-graph polynomials t in CGO{(J x {1,%}), we have

] — )

where Tx[t] is given by Definition 4.3 .

Let us first derive some consequences of this theorem. The first one is obtained as an application
of Corollary 4.7, and generalize a recent result of Mingo and Popa [12].

Corollary 4.10. For all family of random matrices X satisfying the previous theorem, the family
Xy, the family of the transposes 'Xy and the family of the degrees deg(Xy) are asymptotically
free .

Proposition 4.11. Let Xy = (Xj)jes, Yu = (Yi)rekx be independent unitarily invariant families
of random matrices of size N and M respectively. Assume that Xy and Yy converge in *-
distribution as N, M goes to infinity. Then Xy @ Yn = (X; ® Yi)jesker, seen as an element
of My (C),E[55;Tx]), converges in distribution of traffics. Moreover, in the set of 0-graph
monomials T such that there exists a cycle visiting each edge once, the limiting distribution of
Xy ® Yy has the form of the distribution in Definition 4.3. In particular the conclusion of
Corollary 4.10 for this family of matrices holds true, namely, Xy ®Y y is asymptotically free from
X4 @Y.

Proof. We index the entries of a matrix X ® Y € My (C) by pairs of indices i = (i,i'),j = (4,5') €
[N] x [M] with the convention that the entry (X ® V)i is X, ;Y ;. Let T = (V,E,j x ¢ €
CGO(J x K x {1,*}). Then one has

TXN®YM[ ]

- ﬁ > ]E[ [T ( 66>®YE(6)¢<1;>¢>W)]

¢:V—[N]x[M] (v,w)eE
injective

1 e(e) €(e)
NM Z ]E[ 1_[ J(e) ¢1(v), ¢1(w)] x E[ H (Yk(e) )¢2(U)a¢2(w):|
¢1:V—>[N], ¢p2:V—[M] (v,w)eE (v,w)eE
s.t.Vo,weV, Vi#je{1,2}
di(v)=;(w)=¢; (v)#d;(w)

Denote by Az the set of pairs (7, m2) € P(V)? such that if two elements belong to a same block
of m; then they belong to different blocks of 7;, ¢ # j € {1,2}. Denote also by ker¢g; the partition
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of V such that v ~yerg, w if and only if ¢;(v) = ¢;(w). Then we get

1

0 _ €(e)

TXN®YZ\/I|:T] T NM Z Z E[ H (Xj(e))¢1(v)7¢1(w)]
(m1,m2)EAr  ¢1:V—[N] (vyw)eE

s.t. ker¢1=¢1

x E[ I1 (Yzce((:)))m(v),m(w)]

¢2:V—[M)] (v,w)eE
s.t. kergpa=cp2

O R[TTXN)] xR [TT (Y )] (4.2)

(71'1 ,7T2)€AT

By Theorem 1.1 we get that X y®Y s converges in distribution of traffics. Moreover, the partitions
m1, T2 which contribute in the limit are those such that 77 and 7™ are cacti with oriented cycles.
Recall that cacti are characterized by the fact that each edge belong exactly to one cycle. But for
a graph T’ and partition 7’ of its vertices, the number of cycles an edge of T" belongs to can only
increase in the quotient graph (7" )”/.

Hence we deduce that T)0(N®YM [T] does not vanishes at infinity only if each edge of T' belongs
at most to one cycle. In particular, if there is a cycle visiting each edge of T once, then T must be
a cactus.

Assume from now on, that T is a cactus and let m € P(v) such that 77 is a cactus. Then
denoting by 7. the restriction of 7w on a cycle ¢ of T, w is the smallest partition that contains the
blocks of the . for any cycle ¢ of T' (otherwise there will exist an edge belonging to more than a
cycle of T™).

Moreover, given a pair (71, 72) € P(V)? such that 7™ and T™ are cacti, one has (7, 7o) € A if
and only if for each cycle ¢ of T the partitions 7y ¢, T2, . restricted to ¢ are such that (71 ., m2 ) € A.
Since 79 [T”l (X N)] and 79 [T 2 (YN)] are asymptotically multiplicative with respect to the cycles
of T™ T™ we get

ey, Tl = H Z o[ (Xn)] x X[ (Y n)] + o(1). (4.3)

c cycle of T (mq,m2)€A,

This proves the first part of the result. For the asymptotic freeness of the ensemble Xy ® Y
with its transpose it suffices to remark that the *-distribution of an ensemble depends only on the
distribution of traffics of this ensemble restricted to 0-graph monomials such that there is a cycle
visiting each edge once. O

In the following three paragraphs, we respectively review some results about the free cumulants,
some results about the Weingarten function, and the links between those two objects in large
dimension.

The Weingarten function. To prove Theorem 4.9, we have to integrate polynomials against
the U(NV)-Haar measure. Expressions for these integrals appeared in [16] and were first proven in
[3] and given in terms of a function on symmetric group called the Weingarten function. We recall
here its definition and some of its properties. For any n € N* and any permutation o € S,,, let us
set

QmN(O’) = ]\I#U7

where #o0 is the number of cycles of . When n is fixed and N — o0, N™"Q,, y — d1q,,. For any
pair of functions f,g: S, — C and 7 € S, let us define the convolution product

frglo) =Y fimg'o),

T<Oo

Hence, for N large enough, €1, x is invertible in the algebra of function on &, endowed with
convolution as a product. We denote by Wg,, 5 the unique function on S, such that

We, n * Qun = Qn v * Wg, v = 14,
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Then, [3, Corollary 2.4] says that, for any indices i1,41, 51,41 - -+ s@n, bns In,Ju € {1,..., N} and
U= (U(i,j))i j—1.....n & Haar distributed random matrix on U(N),

E[U (i1, 1) - - Ulin, jn)U (i1, 1) - - - Ulin, )] = > W, n(af™h). (4.4)
o,BES,
(k) =008 (k) =T

Free cumulants and the Mo6bius function p. As explained in [2], it is equivalent to consider
lattices of non-crossing partitions or sets of permutations endowed with an appropriate distance.
For our purposes, it is more suitable to define the free cumulants using sets of permutations. Let
us endow S,, with the metric d, by setting for any «, 5 € S,,,

d(avﬂ) =n-—= #(60471)3

where #(Ba~1) is the number of cycles of Ba~1. We endow the set S,, with the partial order given
by the relation o1 < o9 if d(Id,,01) + d(01,02) = d(Id,,02), or similarly if o1 is on a geodesic
between Id,, and os.

Given a state @ : (C<a:j,x;‘>je J — C, we define the free cumulants (k,)nen recursively on
Clwj,x%)jes by the system of equations

(I)(ylyn) = Z 1_[ ’i(yclvu'ayck); vy17-'-ayn € C<Ijax;<>jEJ' (45)
o<(1--:n) (cli..ckf)
cycle of o

Let us fix y1,...,yn € C(z;,7})jes and denote by respectively ¢ and k the functions from S, to
C given by

(b(a) = H é(ycl te yck) and k(a) = H K'/(ycl7 M 7ka)7

(014..Ck) (01...ck)
cycle of o cycle of o

which are such that ¢((1---n)) = >, (.., k(). In fact, we have more generally the relation
¢la) = ) k(m).
<o

Note that ¢ = k*(, where ( is identically equal to one. The identically one function ( is invertible
for the convolution * (see [2]), and its inverse p is called Mobius function. It allows us to express
the free cumulants in terms of the trace:

k=¢x*pu. (4.6)

Asymptotics of the Weingarten function. One can observe that, for any pair of functions
f,9:8, > Cand wes,,

3 N )i m) ) f (g (L 0) = f o g() + (L)

TeS,

Defining the convolution %y as

Fax g = N (N ) (V" ) = 3 NAT) =0 ) ) (),

TES,

it follows that * is the limit of xy. Because Wg,, y is the inverse of (2, y for the convolution =,
we have (NQ”Q;}NngN) *N ¢ = N7"Q, n, from which we deduce that (NQ"Q;}NWgn’N) *x( =
014, + o(1), or similarly that

N We, v = e+ o(1).

More generally, if f, fy : S, — C are such that fx = f + o(1), then

N (v ) * We,, ) = (fn) x5 (Wey,n) = f+ o+ o(1). (4.7)
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Proof of Theorem 4.9. We can now prove Theorem 1.1. Let Xy = (X;)jes a family of unitary
invariant random matrices which converges in *-distribution, as N goes to infinity, to x = (2;);es
family of some noncommutative probability space (A, ®). We extend (A, ®) to a space of traffics
(G(A),73). We fix a #test graph T = (V, E,j x €) € CGOJ x {1,+}) and prove that % [T])
converges to 7x[T'] as N — . By taking the real and the imaginary parts, we can assume that
the matrices of X are Hermitian and so assume e(e) = 1 for any e € E.

We consider a random unitary matrix U, distributed according to the Haar distribution, and
independent of X . By assumption Zy := UXyU* € My(C) has the same distribution as Xy.
We denote respectively by e and € the origin vertex and the goal vertex of e. Then

TX N [T] % Z E ln Zw(e) (¢(§)a d)(é))

¢:V—[N] ee
1 _
-~ X E|[]UG©.¢@)T (@, 1 [HX ())1.
$:V—[N] ceE ccE
@, :E—[N]

In the integration formula (4.4), the number n of occurrence of each term U (4, 5) is the cardinality of
E and the sum over permutations of {1, ..., n} is replaced by a sum over the set Sg of permutations
of the edge set . By identifying E' with the set of integers {1,...,|E[}, we consider that Wg,, v
is defined on Sg instead of S,,. Then, one has

TX N [T 2 Wgn N aﬁ ) Z E ln Xw(e) (90(6)7 (pl(e))‘| .
a,BeSE ¢:V—{1,....N} ecE
o(a(e))=6(), 0 (8(e)) =¢' (¢)

For any permutation o € Sg, let m(a) be the smallest partition of V' such that, for all e € E, € is
in the same block with a( ). Summing over ¢ in the previous expression yields

xy[T]= Y. N#Iwg, \(af™) > ]ElHXy(e)(w(e)vw'(e))l
N}

«o,BESE w0t BE—{1,..., ee
e(B(e))=¢(e)

= Z N#W(a)ilwgnvN(aﬁil)E H TI‘(X (el)X (ea) - - - X’y(ek))
a,BeSE (e1...ex)
cycle of 8

To conclude we will need the following

Lemma 4.12. i) For any permutation o € Sg, #m(a) + #a < #E + 1 and the equality implies
that the graph of T™®) is an oriented cactus.
it) The map

7w {a: #r(a) + #a = #E + 1} —> {x : the graph of T™ is an oriented cactus}

is a bijection whose inverse v is given, for all w € P(V') such that T™ is an oriented cactus, by the
permutation () whose cycles are the biconnected components of T7.

Proof Lemma 4.12. i) Let o € Sg. Let us define a connected graph G, whose vertices are the
cycles of « all together with the blocks of 7(«a), and whose edges are defined are follow. There is
an edge between a cycle ¢ of a and a block b of 7w(«) if and only if there is an edge e of T such
that e € ¢ and € € b. This way, the edges of G, are in bijective correspondence with the edges of
T. Therefore, #7(a) + #a < #E + 1 with equality if and only G, is a tree.

In fact, each cycle of a yields a cycle in T7(®) | and in the case where G, is a tree, there exist no
others cycles in G,. By consequence, the biconnected component of T7(®) are exactly the cycles
of a, and T™(@ is therefore an oriented cactus.

ii) m oy and v o7 are the identity functions: 7 is one-to-one and its inverse is 7. O

28



For all a € Sg, set

on(a) =N#*E| T[] Te(Xye)Xyen) - Xoien)
(61...ek)

cycle of o

and
$(@) = [ ®@yenTyies) - Tyien)

(61...€k)
cycle of o

in such a way that that ¢n = ¢ + o(1). Let us fix & € Sg. On one hand we have

N#W(Q)Jr#a*#E*l = ]].#ﬂ(a).t,_#a:#E-&-l + 0(1)

On the other hand, according to (4.7), we have

Z N#Ei#ann,N(aﬁil)]E 1_[ Tr(Xv(el)X'y(@) cee X“/(ek)) = ((¢N) *N Wgn,N)(a)
BeSE (e1...ex)
cycle of 8

= (¢ * w)(a) + o1).

It follows that

™ (T) = > (@ * p)(a) +o(1).
aGSE
#m(a)+#a=#E+1
From (4.6), we know that (¢ pu)(a) = k(a) =[] (e...es) B(Ty(er)s -+ Tr(ey))- Thanks to Lemma

cycle of a
4.12, we can now write

x5 (T) = Z H K(Ty(er)s -+ Toy(ey)) +0(1)
TeP(V) (e1...ex)
T™ is an oriented cactus cycle of v(7)

> TT A o) +o1)

meP(V) (e1...ex)
T7™ is an oriented cactus cycle of T™

In order to pursue the computation, let ¢ be the 0-graph monomial (V, E, A(e)) € CG(©{(G(A)) such
that A(e) = x(c). By Definition 4.3, we get

x(T) = Y, 7alt"]+o(1)
TeP(V)

= Tg[t] + o(1)
= 7x[T] + o(1)

so that 7x ,, (T') converges towards the expected limit. O

4.3 Proof of Theorem 1.3

Let (A, ®) be a non-commutative probability space (A, ®). We define (G(A), 7o) as in Proposi-
tion 4.4, in such a way that (A, ®) = (G(A), ¥) if ¥ denote the trace induced by 7¢. To prove the
full statement of Theorem 1.3, it remains to prove that 7¢ satisfies the positivity condition (2.2)
and the two following items:

e If A is a sequence of random matrices that converges in *-distribution to a € A as N tends
to o0 and verifies the condition of Theorem 1.1, then A converges in distribution of traffics
to a € G(A) as N tends to oo (already proved in Theorem 4.9).
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e Two families a and b € A are freely independent in A if and only if they are traffic independent

in G(A).
In other words, it remains to prove Theorem 4.13 and Proposition 4.8 below.

Theorem 4.13. For all non-commutative probability space (A, ®), the linear functional T¢ :
CGOAY — C given by Definition 4.3 satisfies the positivity condition (2.2).

Proof. In the four steps of the proof, we will prove successively that 7¢ [t\t*] > 0 for all t =
ZiL:1 a;t; a n-graph polynomial such that

1. the ¢; are 2-graph monomials without cycles and the leaves are outputs, that is chains of
edges with possibly different orientations;

2. the t; are trees whose leaves are the outputs;

3. the ¢; are such that ¢;[t} have no cutting edges (see definition below);

4. the t; are n-graph monomials.

In the different steps, we will use those two direct corollaries of Menger’s theorem.

Theorem 4.14 (Menger’s theorem [11]). Let T be a graph and v1 and ve two distinct vertices.
Then the minimum number of edges whose removal disconnect v1 and vs is equal to the maximum
number of edge-disjoint paths from vy to vy (i.e. sharing no edges out of the vy ’s).

A cutting edge of a graph T is an edge whose removal disconnects 1. A graph T is two edge
connected (t.e.c.) if it has no cutting edge.

Corollary 4.15. Let T be a graph which is t.e.c. and two distinct vertices v1 and vo. Then, there
exists two edge-disjoint simple paths between v and vs.

Corollary 4.16. Let T be a graph such that there exist two distinct vertices v1 and ve, and three
edge-disjoint simple paths v1, v2 and 73 between vy and vo. Then, T is not a cactus.

Step 1 Proposition 4.4 shows the positivity if all the ¢;’s consist in chains of edges all oriented

in the same direction. Indeed, we can write ¢t; = - <* - for all 4 (or t; = - % - for all i) and so, we
get
t|t Z a5ty t Z 041013(1Z = 0.
1,7=1 i,j=1

We deduce that the trace ¥ induced by 74 is positive on the algebras C(- <~ - : a € A) and
C(- % - :ae A). From Corollary 4.7, we also know that W is also positive on the mixed algebra
(C(-& -5 s ae A), 1) (the free product of positive trace is positive [14, Lecture 6]). Finally,
if the ¢;’s consist in chains of edges indexed by element of A, we know that

7o [tt*] = Z a;atitt] = 0.

1,7=1

Step 2 Assume that the ¢;’s are trees whose leaves are the outputs. Let us prove by induction
on the number D of all edges of the ¢;’s that we have 7¢ [t|t*] = 0.

If the number of edges of the t¢;’s is 0, we have 7¢ [t\t*] = Zi,j a;af > 0. We suppose that
D > 1 and that this result is true whenever the number of edges of the ¢;’s is less than D — 1.

We can remove one edge in the following way. Let us choose one leaf v of one of the t;s which
has at least one edge. It is an output and for each tree t; we denote by v(¥ the first node (or
distinct leaf if there is no node) of the tree of ¢; encountered by starting from this output v, and
by (V) the branch of ¢; between this output v and v*. Of course, v() can be equal to v and ()
can be trivial, but there is at least one of the ¢t(9)’s Wthh is not trivial. Denote by #; the n-graph
obtained from ¢; after discarding the ¢(9)’s, and whose output v is replaced by v(¥). We claim that

To[tIt*] = 7o [tt*] x To[L:]E]].
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Firstly, we can identify the pairs v(¥ and v(9) in the computation of the left hand-side. Indeed, we
write To [tz\t;"] = 79 [(ti|t;‘-‘)’r], and consider a term in the sum for which 7 does not identify
v® and v . Because fi|tu;‘ is t.e.c., there exists two disjoints paths between v(? and v(?). But
because t(*) \t(j)* contains a third distinct path, by Corollary 4.16 m cannot be a cactus if it does
not identify v and v) and so 79 [(tz|t;")”] is zero.

Consider a term in the sum Y] 78[(t;|t¥)™] for which 7 identifies the pairs v(", v(). Assume
that a vertex vy of ﬂ\tv;‘ is identified with a vertex v, which is not in f¢|tv;’-‘. Assume that © does not
identify v(* with v; and vy. Because fi|f;‘ is t.e.c. there exists two distinct paths between v; and
v® out of ¢ [t(i) |t(j)*]. But there exists also a path between vy and v® in ¢(*) |t(j)*. By Corollary
4.16, we get that (¢;[tF)™ is not a cactus and so Tg[(ti\t;’-‘)”] is zero.

Hence, to determine which vertices of #; |f;‘ are identified with some vertices of t()|t()*  one can
first determine which vertices of fi|f;-‘ are identifies with v(¥ = v) and which vertices of () [¢t(7)*
are identified with this vertex. Hence the sum over 7 partition of the set of vertices of ¢;[t} can be
reduced to a sum over m; partition of the set of vertices of tul-|f;‘f and a sum over mo partition of the
set of vertices of the graph ¢(*) |t(j)*. Moreover, by definition of 74, for two 0-graph monomials T}
and Ty, if T is obtained by considering the disjoint union of 7T} and T3 and merging one of their
vertices, one has 79[T] = 79[T1] x 7§[T3]. Hence, the contribution of #;|t* factorizes in 7o [£;[£*]
and the contribution of t()|t()* factorizes in 74 [t(i) |t(j)*], and we get the expected result.

From Step 1, we know that A = (7'q> [t(i)|t(j)*])i’j is nonnegative. By induction hypothesis,

we know that B = (7'4) [mfﬂ)z i is also nonnegative. We obtain as desired that the Hadamard
product of A and B is nonnegative ([14, Lemma 6.11]) and in particular, for all «;, we have

2 O[idj’r.:p [t2|t;k] = 0.

]

Step 3 Let us prove that, for all ¢; such that ¢;|t} have no cutting edges, we have 7o [t|t*] = 0.

For a graph T, let call t.e.c. components the maximal subgraphs of 7' with no cutting edges.
The tree of t.e.c. of T is the graph whose vertices are the t.e.c. components of T" and whose edges
are the cutting edges of T'. First of all, our condition is equivalent to the condition that, for each
t;, any leaf of the tree of the t.e.c. components of ¢; is a component containing an output. Here
again, we can proceed by induction. Let D be the total number of t.e.c. components of the t;’s
which do not consists in a single vertex.

If D = 0, we are in the case of the previous step. Let us assume that D > 0 and that the
result is true up to the case D — 1. We can remove one t.e.c. in the following way. Let us choose a
t.e.c. component t*) which is not a single vertex of a certain n-graph monomial ¢, for some k in
{1,...,L}. We consider t(*) as a multi *-graph monomial, where the outputs are the vertices which
are attached to cutting edges. Let f;, be the n-graph monomial obtained from t; by replacing the
component t**) by one single vertex. We define also for i # k the *-graph monomial () to be the
trivial leaf and set #; = t;. We claim that

TP [T(ti,t;‘)] = T@[T(tv“f;k)] X To [t(l)] X Td [t(J)*]
(of course, this equality is nontrivial only if we consider ¢ = k or j = k).

Firstly, the outputs of t(¥ can be identified. Indeed, consider v;,vs two distinct ouputs of (.
Writing 79 [tl|t;“] => 79 [(tﬂt;‘)”], consider a term in the sum for which = does not identify
vy and v. Since () is t.e.c. there exist two distinct simple paths 71 and 42 between vy and vs.
Consider a path from v to v; that does not visit ¢ in ti|t;‘»‘. Such a path exists as v1 and v belong
to two subtrees of t; that are attached to outputs of ¢;, themselves being attached to the connected
graph t¥. The quotient by 7 yields three distinct paths v between vy and vz in (ti|t;‘?)” which
implies that (t;[¢¥)™ is not a cactus by Corollary 4.16. Hence, by definition of ¢, 79 [(tl|t;‘)”] is
zero. Thus, when we write 7¢ [(tz|t;")] =373 [(t”t;‘)“] we can restrict the sum over the partition
7 that identify v; and vo, therefore, we can replace ¢; by the graph t; where we have identify v;
and vy. Hence we have 74 [tl\t;“] =Ty [ﬂ\f}“]
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Let us write 7¢ [ﬂﬁﬂ =y 79 [(t~1|t~;“)”] Let 7 be as in the sum. Assume that a vertex vy of
() is identified by 7 with a vertex vy which is not in ¢(. Assume that 7 does not identify w(®)
with v; and vs. Since (9 is t.e.c. there exist two distinct paths between v, and w® in t®. But #;
is connected and there exists a third path between vy and w(®. As usual this implies that (talt5)™
is not a cactus and so 79 [(t~1|f;“)’r] is zero.

Hence, to determine which vertices of ¢(9) are identified with some vertices out of ¢t one
can first determine which vertices of +(*) are identifies with w(* and which vertices out of t() are
identified with this vertex. Thus the sum over 7 partition of the set of vertices of fz-\f;‘ can be

reduced to a sum over 7y partition of the set of vertices of t@ and a sum over 7o partition of the
set of vertices of the graph with ¢t removed. Moreover, by definition of 74, for two * test graphs
Ty and T5, if T is obtained by considering the disjoint union of 77 and 75 and merging one of
their vertices, one has 79[T] = 79[T1] x 79[T2]. Hence, the contribution of T'(t;,t¥) factorizes in

7o|[T(#;,t¥)] and the contribution of ¢ factorizes in 74 [t(!)]. We can do the same factorization

(2] ,]
for the n-graph monomial t;'.‘, and we get the expected result.

Now, setting 3; = an’[t(i)], we have

[T t t* Zﬁzﬁﬂ'@ ( iy ])]

i,J

which is nonnegative thanks to the induction hypothesis.

Step 4 We are not able to prove the positivity in general case so we prove it in an indirect way
using the positivity of the free product proves in Theorem 1.2. To bypass this difficultly, we define
an auxiliary distribution of traffic 7 which is defined to be equal to 7 on the 0-graph monomials
without cutting edges and equal to 0 on the 0-graph monomials with cutting edges. For ¢;’s some
n-graph monomials and t = . a;t;, we have

7[t[t*] Zazaj [t:]t%] Z a7 [t ] = Z ;0T [ti]tF] = 0

7,5 i,J
ti|t¥, t5]tF b |6, t5]t%F
without cutting edges without cutting edges

using the result of the previous step.

Therefore, 7 : CG(Y(A) — C is positive.

Let us consider the Haar unitary traffic distribution 7, : CG(®(u, u*) — C, already mentionned
in [8], and which is the (positive) limit of a random matrix distributed according to the Haar
measure on the unitary group U(N), and which is well-defined thanks to Theorem 4.9. We do not
need the precise form of 7,. Let us just says the following: u is unitary as a limit of unitaries,
which means that © = u*, and Theorem 4.9 implies that 7, is in the form of Definition 4.3,
that is to say supported on oriented cacti (see [8] for a precise formula). The traffic free product
(F*7y) : CGOA U {u,u*}) — C is satisfies the positivity condition thanks to Theorem 1.2.

For any #-graph test 7' in CG(©(A), we define uTu* as the -graph test in CGO)(A U {u, u*})

obtained from T by replacing each edge — by Li»u—ﬂ: We claim that
T[T | = (7 * 7)) [uTu*], (4.8)

which implies of course the positivity of 7¢ because (7 x 7,) is positive as a traffic independent
product of positive distribution.

By definition, there is a natural correspondence between the vertices of uTu*, and V 1i'Vy LV,
where V' are the vertices of T' and V; and V, are two copies of the edges E of T. Indeed, each
edge of T' adds two vertices in uTu* (one at the beginning and one at the end), and we can denote
by V7 the vertices which appear at the beginning of an edge of T', and by V5 the vertices which
appear at the end of an edge of T. Moreover, there is a natural correspondence between the edges
of uTu*, and E u Ey u Es. Indeed, each edge of T adds two edges in uTu* (one at the beginning
and one at the end), and we can denote by E; the edges with appears at the beginning of an edge
of T, and by FE> the edges which appears at the end of an edge of T
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Let us denote by o the partition which is composed of |V| blocks, each one containing one
vertex v € V and all its adjacent vertices of V5 u Va. For any partition 7 € P(V u V; u Va) which
is greater than o, let us set |, € P(V') the restriction of the partition m to the set V.

Les us fix T € CG(V(A) and write

(7 » ) [uTu*] = D (7 * 7)°(uTu*)™)

m'eP(VuViuVs)

= XX ) (e,
TeP(V) n'eP(VuViuVs)

(r'vo)v=mr
We claim that

Lemma 4.17. 1. For allw’ € P(V Vi uVa) such that (uTu*)™ is not an oriented cactus, we
have (7 * 7,)° ((uTu*)™) = 0.

2. For all me P(V), we have
D (7 * 7)° (wTu*)™) = 9 [T7].

T eP(VuViuVs)
(7' vo)v=m

Proof. 1. If (uTw*)™ is not a cactus, either (uTw*)™ has a cut edge, or (uTu*)™ has three
edge-disjoint simple paths v1, 72 and 73 between two distinct vertices v; and vy. First of
all, assume that (uTu*)’Tl has a cut edge indexed by u or u*, then it is also a cut edge in
its colored component when (uTu*)”/ is decomposed according to the traffic freeness, and
s0 (7 * 7,)°((uTu*)™) vanishes because of the vanishing of the injective traffic distribution
of u. Let us assume now that (uT u*)”, has a cut edge indexed by an element of A, then it
cuts (uTu*)™ into two component, each one containing an odd number of {u, u*}. Because
of the traffic independence condition, it implies that there exists in the product an injective
trace which contains an odd numbers of {u,u*}, which is by consequence equal to 0.

Let us assume now that (uT' u*)”/ has no cut edge but has three edge-disjoint simple paths
Y1, 2 and 73 between two distinct vertices v; and vs. If v and vs are in a same colored
component of (uTu*)”', we can assume that the edge-disjoint simple paths 1, 2 and 73 are
also in this colored component, erasing each excursion which go outside of this component,
and consequently, (7*7,)°((uTu*)™ ) vanishes because of the vanishing of the injective traffic
distribution of 7 and of 7, on 2-edge connected graph which are not cactus. If v; and vo
are not in a same colored component of (uT' u*)”/, we can replace vg by the vertex v4 in the
colored component of v; that each simple path from vy to vy has to visit, due to the tree
condition. We can also replace 71, 2 and «3 by edge-disjoint simple paths ~1, 74 and 4%
which are also in this colored component, erasing each excursion which go outside of this
component, and stopping at the first visit of v5. We see at the end that there exists three
edge-disjoint simple paths v}, 75 and 7% between two distinct vertices v} and v} inside a
colored component of (uTu*)™ and consequently, (7 * 7,)°((uTu*)™ ) vanishes because of
the vanishing of the injective traffic distribution of 7 and of 7, on 2-edge connected graph
which are not cactus.

Finally, let us assume that (uTu*)”, is a cactus, but not oriented. Then, there exists two con-
secutive edges in the same cycle of (uTu*)™ which are not oriented. Then (7#7,)°((uTu*)™)
vanishes because of the vanishing of the injective traffic distribution of 7 and of 7, on cactus
which are not oriented.

2. First of all, let us prove that, if 7™ is not a cactus, then

> (7 * 7)° (wTw*)™) = 0(= 79 [T7)). (4.9)
m'eP(VuViuVs)
(r'vo)v=mr

Assume that T™ is not a cactus. Either T™ has a cut edge, or T™ has three edge-disjoint
simple paths 71, 2 and 3 between two distinct vertices v; and vo. If e € E a cut edge of T,
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for all 7 € P(V LV u V) such that (7' v o)y = 7, e seen as an edge of (uT'u™) "is also a cut

edge, which means that (7 » 7,)°((uZu*)™ ) = 0 thanks to the first item. In the case where
there exist three edge-disjoint simple paths 71, 72 and 73 between two distinct vertices vy and
vg of T™, it leads to three simple paths 1, 74 and 7% in (uTu*)“' between two distinct vertices
v1 and vy of T™ which does not share any edges in E (they can share edges in E; or Es).
Of course, because v, and vs are distinct in 7™, they are not in the same colored component
of (uTu*)”/ when decomposed according to the traffic independence condition into a tree
of colored component. It means that the v{, 74 and 4 go trough all colored component of
(uTu*)™ between vy and vy, and in particular, there is a component of (uTu*)™ colored
by elements of A with three edge-disjoint simple paths 1, B2 and (3 between two distinct
vertices, and because of the first item, it leads also to (7 * 7,)°((uTu*)™ ) = 0. Finally, we
have (4.9).

Thus we can assume that 77 is a cactus. For all 7’ € P(V uVy uVa) such that (7' v o)y =7,

the graph T is the graph (uTu*)”, where all edges labelled by u or u* are removed. So, if
one of the cycle of T™ is unoriented, it comes from an unoriented cycle of (uTu*)™ , which
means that (7 « 7,)°((uTu*)™ ) = 0 because of the first item. By consequence, we can also
assume that 7" is an oriented cactus.
Let us consider n’ such that (uTu*)™ is an oriented cactus. The computation of (7’ v o)
consists in contracting all edges labelled by u and u*, or equivalently contracting every colored
component indexed by u and u* in one vertex. Because (uT'u*)™ is a cactus, this contraction
doesn’t change the cycles of (uTu*)”/ which are indexed by elements of A. In other words,
the cycles indexed by elements of A of (uTu*)™ and (uT'u*)™ Y7 are the same. But the
cycles indexed by elements of A of (uTu*)™ V7 are exactly those of (™' Vov . Finally, if
(v o)y =, the cycles of (uTu*)“' indexed by elements of A are those of T™, and we have

(7+7)° (T u*)™) = 7°(T)- I1 T(c) = TR(T") I1 7(c).

component ¢ of (uTu*)"l *)w’

indexed by u,u*

> I m9(c) =1,

7’'eS

component ¢ of (uTu
indexed byu,u®

We are left to prove that

’
™ component ¢ of (uTu*)™
indexed by wu,u¥®

where Sy = {7 e P(VuViuVa): (' vo)y =m, (7 % 7)°(uTu*)™) # 0}. Here is the good
news: there exists a lower bound of S, that we will denote by II, and which will allows us
(with forthcoming justifications) to write:

0
2, [ 79(c) = I1 rule) = 1.
m'€Sn component ¢ of (uTu*)“/ component ¢ of (uTu*)H
indexed by u,u® indexed by u,u*®

The partition II € P(V u Vi u Va) is the lower partition such that if e and e’ are two

consecutive edges of a cycle of T™ (oriented i>i,>), then the source of e’ and the goal of
e viewed as edges of uTu* are in the same block. Remark that II is not necessary a cactus,
and consequently, not necessary in S,. However, for all #’ € S, we have II < 7/. Indeed,
because we proved that the cycles of (uTu*)“' indexed by A are those of T™, the source of
¢’ and the goal of e must be identified in 7’.

II consists in the cycles of T™ linked by some nontrivial components labelled by u and u*.
Of course, an identification of two vertices in two different colored component labelled by
u and u* would modify the traffic independence condition, and as a consequence, we know
that every «’ € S, is obtained by a collection of separate identification in each wu-colored
component of II which transform it into an oriented cactus. Adding all the other vanishing
terms (the identifications which do not lead to a cactus), we see that

2 I1 Ti(c) = [1 PREAGE I1 7u(c),

€Sy component ¢ of (uTu*)", component ¢ of (uTu*)T c=c’ component ¢ of (uTu*)™
indexed by u,u’® indexed by w,u® indexed by w,u®
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(where the sum ¢ < ¢ is the sum over ¢™ with «/ an identification of the vertices of c).

It suffices to conclude to prove that 7,(c) = 1 for every u-colored component ¢ of (uTu*)!.
This fact comes from the particular structure of ¢: it is a graph whose edges are of the form

* *
u u . u € u .
—>——. Indeed, each u* in ¢ comes from some local structure ————— of uTu*, and if we

consider the consecutive edge €’ of e in the cycle of T™, we know that the source of ¢ and the
goal of e are identified in (uT'w*)™, which means also that the source of u* in SUNINUAN is
identified with the goal of u in L,L’,“_*,, and leads to a local structure N in ¢ (with
no other identifications for the vertex in the middle of i>u—*>) Similarly, each w in ¢ can
be seen in a local structure ORI in ¢ (with no other identifications for the vertex in the
middle of —%-5).

Finally, every u-colored component ¢ of (uTu*)" is composed of a graph whose edges are
i»“—*>, and it is of public notoriety that it implies that 7,(c) = 1 (use once again Propo-

sition 4.4 to replace each occurence of ——»-—— by u»z—1>, and finally by -, which leads to
Tu(c) = 7. () = 1).

O
This lemma allows us to conclude the proof, since
(7 % ) [uTu*] = D (F % 7)° (uTu*)™ )
m'eP(VuViuVs)
- Z Z (F Tu)o((uTu*)”,) = Z Tg [T”] =Ty [T]
WGP(V) W’EP(VUVl \_|V2) WE'P(V)
(7' vo)v=m
O
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