A Learning Algorithm for Change Impact Prediction: Experimentation on 7 Java Applications - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

A Learning Algorithm for Change Impact Prediction: Experimentation on 7 Java Applications

Résumé

Change impact analysis consists in predicting the impact of a code change in a software application. In this paper, we take a learning perspective on change impact analysis and consider the problem formulated as follows. The artifacts that are considered are methods of object-oriented software; the change under study is a change in the code of the method, the impact is the test methods that fail because of the change that has been performed. We propose an algorithm, called LCIP that learns from past impacts to predict future impacts. To evaluate our system, we consider 7 Java software applications totaling 214,000+ lines of code. We simulate 17574 changes and their actual impact through code mutations, as done in mutation testing. We find that LCIP can predict the impact with a precision of 69%, a recall of 79%, corresponding to a F-Score of 55%.

Dates et versions

hal-01248241 , version 1 (24-12-2015)

Identifiants

Citer

Vincenzo Musco, Antonin Carette, Martin Monperrus, Philippe Preux. A Learning Algorithm for Change Impact Prediction: Experimentation on 7 Java Applications. 2015. ⟨hal-01248241⟩
526 Consultations
0 Téléchargements

Altmetric

Partager

More