A characterization of freeness for complete intersections - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

A characterization of freeness for complete intersections

Delphine Pol
  • Fonction : Auteur
  • PersonId : 772493
  • IdRef : 197720838

Résumé

The purpose of this paper is to study the notion of freeness for reduced complete intersections, which is a generalization of the notion of free divisors introduced by K. Saito. We give some properties of multi-logarithmic differential forms and their multi-residues along a reduced complete intersection defined by a regular sequence (h_1,. .. , h_k). We first establish a kind of duality between multi-logarithmic differential k-forms and multi-logarithmic k-vector fields. We use it to prove a duality between the Jacobian ideal and multi-residues. The main result is a characterization of freeness in terms of the projective dimension of the module of multi-logarithmic forms. We then focus on quasi-homogeneous curves, for which we compute explicitly a minimal free resolution of the module of multi-logarithmic forms.
Fichier principal
Vignette du fichier
freeness-complete-intersection.pdf (829.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01248123 , version 1 (23-12-2015)
hal-01248123 , version 2 (28-11-2016)

Identifiants

Citer

Delphine Pol. A characterization of freeness for complete intersections. 2015. ⟨hal-01248123v1⟩
102 Consultations
154 Téléchargements

Altmetric

Partager

More