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A CHARACTERIZATION OF FREENESS FOR COMPLETE INTERSECTIONS

DELPHINE POL

Abstract. The purpose of this paper is to study the notion of freeness for reduced complete
intersections, which is a generalization of the notion of free divisors introduced by K. Saito. We
give some properties of multi-logarithmic differential forms and their multi-residues along a reduced
complete intersection defined by a regular sequence (h1, . . . , hk). We first establish a kind of duality
between multi-logarithmic differential k-forms and multi-logarithmic k-vector fields. We use it to
prove a duality between the Jacobian ideal and multi-residues. The main result is a characterization
of freeness in terms of the projective dimension of the module of multi-logarithmic forms. We then
focus on quasi-homogeneous curves, for which we compute explicitly a minimal free resolution of
the module of multi-logarithmic forms.

1. Introduction

In [Sai80], K. Saito introduces the modules of logarithmic differential forms along reduced hy-
persurfaces and their residues, and the module of logarithmic vector fields. If D is the germ of a
reduced hypersurface in a smooth analytic variety S and h ∈ OS is an equation of D, then for q ∈ N
the module of logarithmic q-forms is:

Ωq(logD) =

{
ω ∈ 1

h
Ωq
S , dh ∧ ω ∈ Ωq+1

S

}
The dual of the module of logarithmic differential 1-forms is the module of logarithmic vector

fields Der(− logD). A holomorphic vector field is logarithmic if it is tangent to D at its smooth
points.

As a consequence, the freeness of Ω1(logD) is equivalent to the freeness of Der(− logD). In that
case, D is called a free divisor. For example, normal crossing divisors, plane curves and discriminants
of isolated hypersurface singularities are families of free divisors. We can also characterize free
divisors in a more geometric way. Indeed, A.G. Aleksandrov proves in [Ale88] that a singular divisor
is free if and only if its singular locus is Cohen-Macaulay of codimension one in D.

A similar theory is developed by A.G. Aleksandrov and A. Tsikh in [AT01], [AT08] and [Ale12]
for reduced complete intersections. Let C be a reduced complete intersection defined by a regular
sequence h = (h1, . . . , hk). We set for i ∈ {1, . . . , k}, ĥi = h1 · · ·hi−1 · hi+1 · · ·hk and h = h1 · · ·hk.
The multi-logarithmic differential q-forms along C are defined by:

Ωq
S(logC, h) =

ω ∈ 1

h
Ωq
S ,∀i ∈ {1, . . . , k},dhi ∧ ω ∈

k∑
j=1

1

ĥj
Ωq+1
S


In [GS12], the authors suggest a generalization of the notion of freeness using Aleksandrov’s

characterization of free divisors. A reduced complete intersection is called free if it is smooth or if
its singular locus is Cohen-Macaulay of codimension one in C.

The purpose of this paper is to investigate the module of multi-logarithmic differential forms along
complete intersections, giving a particular attention to the case of free complete intersections.

In subsection 2.1 we first recall several definitions and properties of [AT01], [AT08] and [Ale12].
If ω is a multi-logarithmic q-form, there exist g ∈ OS which does not induce a zero divisor in
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2 D. POL

OC = OS/(h1, . . . , hk), a holomorphic (q − k)-form ξ and a meromorphic q-form η ∈
∑k

j=1
1

ĥj
Ωq
S

such that (see Theorem 2.8):

gω =
dh1 ∧ · · · ∧ dhk

h1 · · ·hk
∧ ξ + η

The multi-residue of ω is ξ
g C
∈ Ωq−k

C ⊗MC , where Ωp
C is the module of Kähler differentials and

MC is the ring of meromorphic functions on C. We denote by Rq−kC the module of multi-residues
of multi-logarithmic q-forms. The module R0

C always contains the ring O
C̃

of weakly holomorphic
functions on C. We give here a proof of this inclusion which is almost the same as the proof of
K. Saito in the hypersurface case.

In subsections 2.1 and 2.2 we make explicit the dependence of the modules Ωq
S(logC, h) and Rq−kC

on the choice of the equations. If (f1, . . . , fk) is another regular sequence defining C, we have (see
Corollary 2.4):

(1) Ωq
S(logC, h) =

f1 · · · fk
h1 · · ·hk

Ωq
S(logC, f)

Therefore, the modules h1 · · ·hkΩq(logC, h) do not depend on the choice of the equations. In
addition, modules Rq−kC depends only on C (see Proposition 2.17). We then fix the regular sequence
(h1, . . . , hk) and we denote Ωq(logC) = Ωq(logC, h).

We also prove in Proposition 2.20 that we can assume that k is the embedding dimension of C
without changing the modules of multi-residues.

In subsection 2.3, we prove that the fact that C is reduced imposes a strong condition on the
module of logarithmic 1-forms of the divisorD defined by h1 · · ·hk. We denote byDi the hypersurface
defined by hi. Then (see Proposition 2.24):

Proposition 1.1.
Ω1(logD) = Ω1(logD1) + · · ·+ Ω1(logDk)

In subsections 2.4 and 2.5 we generalize some properties of hypersurfaces to complete intersections.
Let JC be the Jacobian ideal of C (see notation 2.12) and ΘS be the module of holomorphic vector
fields. Following [GS12], we define the module of multi-logarithmic k-vector fields Derk(− logC) as
the kernel of the map:

∧k ΘS 3 δ 7→ dh1 ∧ · · · ∧ dhk(δ) ∈ JC . We link this module to the module
Ωk(logC) in the following way, generalizing K. Saito’s duality:

Proposition 1.2.

HomOS

(
Derk(− logC),

k∑
i=1

1

ĥi
OS

)
= Ωk(logC)

Proposition 1.2 remains true if we exchange the roles of Ωk(logC) and Derk(− logC).
Moreover, we also answer a question of the authors of [GS12]. Indeed, using an approach which

is similar to their proof, we prove, using Proposition 1.2, that

HomOC (JC ,OC) = RC

Section 3 is devoted to the main result of this paper, namely, the characterization of freeness by
the projective dimension of the module Ωk(logC). Together with the results of [GS12] and [Sch13],
it leads to the following Theorem:

Theorem 1.3 (see Proposition 3.4 and Theorem 3.5). Let C be a singular reduced complete inter-
section. The following are equivalent:

(1) C is free
(2) JC is Cohen-Macaulay
(3) Derk(− logC) has projective dimension k − 1
(4) Ωk(logC) has projective dimension k − 1
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The equivalences between (1), (2) and (3) are already proved in [GS12] and [Sch13], but a charac-
terization using multi-logarithmic differential forms was missing. Contrary to the hypersurface case,
passing from Derk(− logC) to Ωk(logC) needs much more work.

In section 4 we study a particular family of free complete intersections: the complete intersection
curves. In general, the computation of Ωm−1(logC) is difficult. For quasi-homogeneous curves,
we determine a minimal free OS-resolution of RC and Ωm−1(logC) (see Theorem 4.10). We also
give a characterization of plane homogeneous curves using multi-residues (see Proposition 4.16).
Several properties of complete intersection curves are already studied in [Pol15b], and are used in
this section.

We then compare the notion of multi-logarithmic k-vector fields and the notion of logarithmic
vector fields studied by B. Pike in [Pik14]. We end with a list of examples of surfaces and questions.

In Appendix A we suggest several algorithms which can be used with Singular [DGPS15] to
study explicit examples. The first algorithm A.1 is used to determine if a given sequence (h1, . . . , hk)
defines a free complete intersection. Algorithms A.2.1 and A.3 compute a free resolution of the
module Ωk(logC) for curves or surfaces.

In Appendix B, we clarify the relation between the different definitions of multi-logarithmic differ-
ential forms suggested by A. Aleksandrov and A. Tsikh. In particular, it gives a proof of the stability
by the de Rham differentiation of the modules of multi-residues, which do not use the isomorphism
with regular meromorphic forms.

Acknowledgements. The author is grateful to Michel Granger for raising several questions on this
subject and many helpful discussions. The author also thanks Mathias Schulze for inviting her in
Kaiserslautern, and for his suggestion to use Ischebeck’s Lemma instead of spectral sequences in
section 2.5, and for pointing out the characterization of quasi-homogenous curves used in the proof
of Proposition 4.5.

2. Multi-logarithmic differential forms

2.1. Definitions. We give here the definitions and several properties of multi-logarithmic differ-
ential forms and their residues, which are a natural generalization of the theory of logarithmic
differential forms introduced in [Sai80].

Let S be a smooth analytic complex variety of dimension m > 1. We denote by OS the sheaf of
holomorphic functions on S. By restricting S to an open subset of S, we may assume that there
exist local coordinates (x1, . . . , xm) on S. Let h1, . . . , hk ∈ OS(S) be such that:

(1) for all x ∈ S, (h1, . . . , hk) is a regular OS,x-sequence.
(2) the ideal sheaf (h1, . . . , hk) is radical.

Notation 2.1. For all i ∈ {1, . . . , k}, we set Di the hypersurface defined by hi, and D = D1∪· · ·∪Dk.
We denote by C = D1 ∩ · · · ∩Dk the reduced complete intersection defined by the regular sequence
(h1, . . . , hk). We set OC := OS/(h1, . . . , hk).

For j ∈ {1, . . . , k}, we set ĥj =
∏
i 6=j

hi and D̂j the hypersurface of S defined by ĥj .

For q ∈ N, we denote by Ωq
S , or Ωq for short, the sheaf of holomorphic differential forms on S.

For I ⊆ {1, . . . ,m}, we set dxI =
∧
i∈I dxi, and |I| the cardinality of I.

Let us recall some definitions and results from [Ale12]. The following definition is a generalization
to the complete intersection case of the notion of logarithmic differential forms developed in [Sai80,
1.1].
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Definition 2.2. Let x ∈ S and ω ∈ 1

h
Ωq
S,x, with q ∈ N. We call ω a multi-logarithmic q-form along

the complete intersection C for the equations (h1, . . . , hk) if

∀i ∈ {1, . . . , k}, dhi ∧ ω ∈
k∑
j=1

1

ĥj
Ωq+1
S,x

We denote by Ωq
S(logC, h) the sheaf of germs of multi-logarithmic q-forms along C with respect

to (h1, . . . , hk).

Proposition 2.3. The sheaves Ωq
S(logC, h) are coherent OS-modules.

Proof. Let q ∈ N. The sheaf hΩq
S(logC, h) is the kernel of the following map of coherent sheaves:

Ωq →
(

Ωq+1/
(

(h1, . . . , hk) · Ωq+1
))k

ω 7→ (dh1 ∧ ω, . . . , dhk ∧ ω)

�

A direct consequence of the proof of Proposition 2.3 is the following:

Corollary 2.4. The modules hΩq(logC) do not depend on the choice of the defining equations
(h1, . . . , hk).

Remark 2.5. Contrary to the hypersurface case, if k > 2, the family (Ω•S(logC, h)) is not closed for
the exterior differentiation1. This problem can be solved by considering arbitrary poles instead of
simple poles, but it gives no more finite type modules (see Appendix B, where we compare [AT08,
Definition 1.1] and Definition 2.2).

Remark 2.6. Let us consider a reduced analytic subset C ⊂ S such that it is locally defined as a
complete intersection, but not globally defined by a given regular sequence. There exists an open
covering (Uα)α∈Λ of S such that for all α ∈ Λ, there exists a sequence

(
h

(α)
1 , . . . , h

(α)
k

)
satisfying the

hypothesis (1) and (2) of the beginning of this section. We can therefore define a sheaf Ωq
Uα

(logC)
on each open subset Uα, but we can not glue them together into a sheaf over S.

Notation 2.7. To simplify the notations, we set Σh :=
k∑
j=1

1

ĥj
OS and Ω̃q

h :=
k∑
j=1

1

ĥj
Ωq
S = Ωq

S ⊗OS Σh.

In particular, Σh = Ω̃0
h.

The following characterization of multi-logarithmic forms should be compared with [Sai80, (1.1)]:

Theorem 2.8 ([Ale12, §3, Theorem 1]). Let ω ∈ 1

h
Ωq
S,x, with q ∈ N and x ∈ S. Then ω is

multi-logarithmic if and only if there exist a holomorphic function g ∈ OS,x which does not induce a
zero-divisor in OC,x, a holomorphic differential form ξ ∈ Ωq−k

S,x and a meromorphic q-form η ∈ Ω̃q
h,x

such that:

(2) gω =
dh1 ∧ · · · ∧ dhk

h
∧ ξ + η

Remark 2.9. For q < k, we have the equality Ωq
S(logC, h) = Ω̃q

h.

Let q ∈ N. The module of Kähler differentials of order q, which does not depend on the choice of
the equations (h1, . . . , hk), is:

1For example,
1

h1
∈ Ω0

S(logC, h) but d
(

1
h1

)
= −dh1

h2
1

has poles of order 2.



A CHARACTERIZATION OF FREENESS FOR COMPLETE INTERSECTIONS 5

Ωq
C =

Ωq
S

(h1, . . . , hk)Ω
q
S + dh1 ∧ Ωq−1

S + · · ·+ dhk ∧ Ωq−1
S C

We then define the multi-residue of a multi-logarithmic form (see [Ale12, §4, Definition 1]):

Definition 2.10. Let x ∈ S and ω ∈ Ωq
S,x(logC, h), q > k. Let us assume that g, ξ, η satisfy the

properties of Theorem 2.8. Then the multi-residue of ω is:

resC(ω) :=
ξ

g C

∈MC,x ⊗OC,x Ωq−k
C,x =

(
π∗

(
M

C̃
⊗O

C̃
Ωq−k
C̃

))
x

where π : C̃ → C is the normalization of C andMC is the sheaf of meromorphic functions on C.

The notion of multi-residue is well-defined with respect to the choices of g, ξ, η in (2) (see [Ale12,
§4 Proposition 2]).

We denote Rq−kC,h := resC (Ωq(logC, h)). If q = k, we set RC,h := R0
C,h ⊂ MC . We will see in

Proposition 2.17 that the modules Rq−kC,h do not depend on the choice of the equations (h1, . . . , hk).

Proposition 2.11 ([Ale12, §4, Lemma 1]). Let q ∈ N. We have the following exact sequence of
OS-modules:

(3) 0 −→ Ω̃q
h −→ Ωq(logC, h) −→ Rq−kC,h −→ 0

In particular, the sheaf Rq−kC,h is coherent.

Notation 2.12. Let us fix a point x ∈ S. We denote by JC,x the Jacobian ideal of C, which is the
ideal of OC,x generated by the k × k-minors of the Jacobian matrix of (h1, . . . , hk). The Jacobian
ideal does not depend on the choice of the equations (h1, . . . , hk).

The following result is already given in [GS12] and [Sch13], but we give here a different proof
which is almost the same as the proof of [Sai80, Lemma 2.8].

Proposition 2.13 (see [GS12]). Let π : C̃ → C be the normalization of C. The ring
(
π∗OC̃

)
x
is

included in RC,x.

Proof. For the sake of simplicity, we write O
C̃

instead of
(
π∗OC̃

)
x
, OC for OC,x and so on. Let

α ∈ O
C̃
. Then, thanks to [GLS10, Lemma 4.1], for every g ∈ JC , gα ∈ OC .

Thus, for every subset J ⊆ {1, . . . ,m} with |J | = k, there exists aJ ∈ OC such that ∆Jα = aJ ∈
OC , where ∆J is the minor of the Jacobian matrix relative to the set J . Let I, J be two subsets of
{1, . . . ,m} with k elements. Then from the equality ∆I∆Jα−∆J∆Iα = 0 ∈ OC we can deduce:

∆IaJ −∆JaI = h1b
IJ
1 + · · ·+ hkb

IJ
k ∈ OS

Let us define ω =
∑
aJdxJ
h . Then the previous equality gives:

∆Iω =

∑
J ∆IaJdxJ

h
=
aI
h

∑
J

∆JdxJ + η with η ∈ Ω̃k
h

= aI
dh1 ∧ · · · ∧ dhk

h
+ η

Moreover, there exists a linear combination of the ∆J which does not induce a zero-divisor in OC
(see [GLS10, Lemma 4.1]). We can then deduce that resC(ω) = α ∈ RC,h. �

The proof of Proposition 2.13 in [Sch13] uses the isomorphism between regular meromorphic
differential forms and multi-residues (see [AT01, Theorem 2.4]). Let us recall it. We first give some
definitions:
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Definition 2.14. The OC-module

ωm−kC = ExtkOS (OC ,Ωm
S )

is called the Grothendieck dualizing module of the germ (C, 0). Since C is a complete intersection,
it is a free OC-module of rank 1.

Definition 2.15. The module ωpC of regular meromorphic differential p-forms is:

ωpC = HomOC

(
Ωm−k−p
C , ωm−kC

)
Theorem 2.16 ([AT01, Theorem 2.4]). For all p > 0, the module of multi-residues RpC is isomor-
phic to the module ωpC of regular meromorphic differential forms.

2.2. Choice of equations. Corollary 2.4 shows that the modules hΩq(logC) do not depend on the
choice of the regular sequence (h1, . . . , hk).

The following proposition describes explicitly the behaviour of the multi-residues when we change
the set of equations:

Proposition 2.17. Let (h1, . . . , hk) and (f1, . . . , fk) be two regular sequences defining the same
reduced complete intersection C of S. Then for all q ∈ N and ω ∈ f1 · · · fkΩq(logC, f):

resC

(ω
h

)
= ∆resC

(
ω

f

)
where ∆ is the determinant of the transition matrix from (h1, . . . , hk) to (f1, . . . , fk).

In particular, for all p > 0, the modules RpC do not depend on the choice of the defining equations.

Proof. Let x ∈ S. We write Ωq(logC, h) instead of Ωq
S,x(logC, h), and so on.

Let ω ∈ f1 · · · fk ·Ωq(logC, f). Then there exists g ∈ OS which induces a non zero divisor in OC ,
ξ ∈ Ωq−k and η ∈ Ω̃q

f such that

gω = df1 ∧ · · · ∧ dfk ∧ ξ + f1 · · · fkη
There exists an invertible matrix A = (aij)16i,j6k such that A(h1, . . . , hk)

t = (f1, . . . , fk)
t. There-

fore there exists ν ∈ (h1, . . . , hk)Ω
k such that:

df1 ∧ · · · ∧ dfk = ν + det(A)dh1 ∧ · · · ∧ dhk

Thus:
gω = dh1 ∧ · · · ∧ dhk ∧

(
det(A)ξ

)
+ ν ∧ ξ + f1 · · · fk · η

with
ν ∧ ξ + f1 · · · fkη

h1 · · ·hk
∈ Ω̃q

h, so that resC

(ω
h

)
= ∆ξ

g = δresC

(
ω
f

)
. �

Remark 2.18. We already mention in Remark 2.4 that the modules hΩq(logC) do not depend on
the choice of the regular sequence defining C. The proof of Proposition 2.17 gives an alternative
proof of this statement.

Remark 2.19. The independence of RpC from the choice of the equations is proved in [Ale12] thanks
to the isomorphism of Theorem 2.16.

In the remain of the paper, we will use the notation Ω•(logC), and Ω̃q where the set of equations
is implicitly (h1, . . . , hk).

The following proposition shows that we can assume that k is the embedding dimension of C.

Proposition 2.20. Let ` ∈ {1, . . . , k}. We assume2 that for all i ∈ {1, . . . , `} we have hi = xi, and3

for i > ` + 1, hi ∈ C{x`+1, . . . , xm}. We set C ′ = D`+1 ∩ . . . ∩Dk ⊆ Cm−`, so that C = C ′ × {0}.
Then for all q > `:

2Maybe after an analytic change of coordinates and change of generators
3by taking hi(0, . . . , 0, x`+1, . . . , xm) instead of hi
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Ωq(logC) =
1

x1 · · ·x`
Ωq−`(logC ′) ∧ dx1 ∧ · · · ∧ dx` + Ω̃q

(h1,...,hk)

Proof. Let ω = 1
h

∑
aIdxI . Then by definition ω ∈ Ωq(logC) if and only if for all i ∈ {1, . . . , k},

dhi ∧ ω ∈ Ω̃q+1. In particular, for all i ∈ {1, . . . , `}, dxi ∧ ω ∈ Ω̃q+1. This condition implies that for
all I such that {1, . . . , `} 6⊆ I, aI ∈ (h1, . . . , hk). We can write

ω =
1

x1 · · ·x`
ω′ ∧ dx1 ∧ · · · ∧ dx` + η

with η ∈ Ω̃q and ω′ =
1

h`+1 · · ·hk

∑
I′⊆{`+1,...,k}
|I′|=q−`

aI′dxI′ , with aI′ ∈ C {x`+1, . . . , xm}.

Since h`+1, . . . , hk ∈ C{x`+1, . . . , xm}, the conditions dhi ∧
1

x1 · · ·xk
ω′ ∧ dx1 ∧ · · · ∧ dx` ∈ Ω̃q+1

is equivalent to the condition dhi ∧ ω′ ∈ Ω̃q−`+1
(h`+1,...,hk). Therefore, ω ∈ Ωq(logC) if and only if

ω′ ∈ Ωq−`(logC ′). Hence the result. �

Corollary 2.21. With the same notations, for all q > `, the module Rq−kC is equal to the OC-module
Rq−kC′ .

2.3. A condition on the divisor. We prove here that the module of logarithmic 1-forms on the
divisor D = D1∪· · ·∪Dk satisfies a decomposition property when D1∩· · ·∩Dk is a reduced complete
intersection (see Proposition 2.24).

Lemma 2.22. If C is a reduced complete intersection defined by a regular sequence (h1, . . . , hk),
then the complete intersection defined by (h1, . . . , hk−1) is also reduced.

In addition, for all i ∈ {1, . . . , k − 1}, the complete intersection defined by (h1, . . . , hi−1, hi · · ·hk)
is also reduced. In particular, D is reduced.

Proof. Let g ∈
√

(h1, . . . , hk−1). Then, since
√

(h1, . . . , hk−1) ⊆
√

(h1, . . . , hk) = (h1, . . . , hk),
there exists f1 ∈ (h1, . . . , hk−1) and α1 ∈ OS such that g = f1 + α1hk. We then have α1hk ∈√

(h1, . . . , hk−1). Since (h1, . . . , hk) is a regular sequence, it implies that α1 ∈
√

(h1, . . . , hk−1).
Therefore, there exists f2 ∈ (h1, . . . , hk−1) and α2 ∈ OS such that g = f2 + α2h

2
k. By induction, we

can prove that for all i ∈ N∗, there exist fi ∈ (h1, . . . , hk−1) and αi ∈ OS such that g = fi + αih
i
k.

Hence, the class g of g in OS/(h1, . . . , hk−1) satisfies

g ∈
⋂
i>1

(hik) ⊆
⋂
i>1

(mi) ⊂ OS/(h1, . . . , hk−1)

By Krull’s intersection Theorem (see [dJP00, Corollary 1.3.5]), it implies that g = 0, therefore,
g ∈ (h1, . . . , hk−1). Hence the first statement.

For the second statement, it is sufficient to prove it for i = k − 1, the result will then follow by
induction.

Let us consider g ∈
√

(h1, . . . , hk−2, hk−1 · hk). Then, g ∈ (h1, . . . , hk), so that for all j ∈
{1, . . . , k} there exist αj ∈ OS such that g =

∑k
j=1 αjhj . Therefore,

αk−1hk−1 + αkhk ∈
√

(h1, . . . , hk−2, hk−1 · hk)

Let q ∈ N∗ be such that (αk−1hk−1 + αkhk)
q ∈ (h1, . . . , hk−2, hk−1 · hk). Since (h1, . . . , hk) is a

regular sequence, we then have αqk−1 ∈ (h1, . . . , hk−2, hk) and α
q
k ∈ (h1, . . . , hk−1). Since by the first

statement, these ideals are radical, it gives the result. �

First, we recall the following result:
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Proposition 2.23 ([Ale12, Proposition 1]). For all q ∈ N we have the inclusion:

Ωq(logD) ⊆ Ωq(logC)

Therefore, resC(Ωq(logD)) ⊆ resC(Ωq(logC)).

More precisely, he proves that for all i ∈ {1, . . . , k}, dhi ∧ Ωq(logD) ⊆ Ωq+1(log D̂i).

Proposition 2.24. The module of logarithmic 1-forms satisfies:

Ω1(logD) = Ω1(logD1) + · · ·+ Ω1(logDk)

Proof. We first prove the proposition for k = 2. The general case will then follow.
Let ω ∈ Ω1(logD). Then by Remark 2.9, ω = η1

h1
+ η2

h2
with ηi ∈ Ω1

S . Then:

dh ∧ ω = dh1 ∧ η2 + dh2 ∧ η1 +
h2dh1 ∧ η1

h1
+
h1dh2 ∧ η2

h2
∈ Ω2

S

Therefore, there exists θ ∈ Ω2
S such that:

h2
2dh1 ∧ η1 + h2

1dh2 ∧ η2 = h1h2θ

Since (h1, h2) is a regular sequence, h2 divides dh2 ∧ η2 and h1 divides dh1 ∧ η1.
Hence the result:

η1

h1
∈ Ω1(logD1) and

η2

h2
∈ Ω1(logD2).

The general case is obtained by induction from the case k = 2. Indeed, by Lemma 2.22, for all i ∈
{1, . . . k − 1}, (h1, . . . , hi−1, hi · · ·hk) is a regular sequence defining a reduced complete intersection,
so that Ω1(logD) = Ω1(logD1) + · · ·+ Ω1(logDi−1) + Ω1(log(Di ∪ · · · ∪Dk)). �

Remark 2.25. In particular, it gives a necessary condition on Ω1(logD) for C being a reduced
complete intersection.

It also implies the following corollary (see [AF13] and [Sch13]). A divisor is called splayed if in
some coordinate system (y1, . . . , ym) it has an equation of the form g = g1 ·g2 with g1 ∈ C {y1, . . . y`}
and g2 ∈ C {y`+1, . . . , ym}.

Corollary 2.26. Let C be a reduced complete intersection of codimension 2 defined by (h1, h2). If
the divisor D defined by h1 · h2 is free, then D is a splayed divisor.

2.4. Multi-logarithmic vector fields and multi-logarithmic forms. In the theory of Saito (see
[Sai80]), the modules of logarithmic differential 1-forms and the module of logarithmic vector fields
along a reduced hypersurface D are in duality over OS . Let us prove that an analogous property is
satisfied by complete intersections.

We first define the notion of multi-logarithmic k-vector fields, as suggested in [GS12].

Definition 2.27. Let ΘS denote the OS-module of holomorphic vector fields and Θk
S :=

∧k ΘS be
the exterior power of order k of ΘS. A k-vector field δ ∈ Θk

S is called multi-logarithmic if it satisfies:

dh1 ∧ · · · ∧ dhk(δ) ∈ (h1, . . . , hk)OS
We denote by Derk(− logC) the OS-module of multi-logarithmic k-vector fields along C.

Proposition 2.28. The module Derk(− logC) does not depend on the choice of the equations.

Proof. We keep the same notations as in the statement and proof of Proposition 2.17. Let us assume
that δ ∈ Θk satisfies dh1 ∧ · · · ∧ dhk(δ) ∈ (h1, . . . , hk). Then

df1 ∧ · · · ∧ dfk(δ) = ν(δ) + det(A) · dh1 ∧ · · · ∧ dhk(δ) ∈ (h1, . . . , hk) = (f1, . . . , fk)

Hence the result. �

The following proposition comes from Definition 2.27, where JC is the Jacobian ideal defined in
notation 2.12.
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Proposition 2.29. We have the following exact sequence of OS-modules:

(4) 0→ Derk(− logC)→ Θk
S →

dh1∧···∧dhk−−−−−−−→ JC → 0

For a hypersurface D, the evaluation of a logarithmic 1-form on a logarithmic vector field is
holomorphic. It is no more true when we consider complete intersections of codimension at least 2:

Lemma 2.30. Let ω ∈ Ωk(logC) and δ ∈ Derk(− logC). Then ω(δ) ∈ Σ =
∑k

i=1
OS

h1···hi−1hi+1···hk .

Proof. Let us write thanks to Theorem 2.8 gω = ξ dh1∧···∧dhk
h + η. Then, since δ ∈ Derk(− logC), by

definition dh1∧···∧dhk
h (δ) ∈ Σ so that gω(δ) ∈ Σ. Since g induces a non zero divisor in OC , we have

ω(δ) ∈ Σ. �

Remark 2.31. For k = 1, one has Σ = OS , so that the lemma above is still true.

Thanks to Lemma 2.30, we see that we have a natural pairing

Derk(− logC)× Ωk(logC)→ Σ

Therefore, we consider the left-exact functor HomOS (−,Σ) instead of HomOS (−,OS).

Proposition 2.32. We assume k > 2. For k = 1, we refer to [Sai80, (1.6)]. We consider the
following sequences of inclusions:

(5) Ωk
S ⊆ Ω̃k ⊆ Ωk(logC) ⊆ 1

h
Ωk
S ⊆ Σ⊗OS

Ωk
S

h

(6) Σ⊗OS Θk
S ⊇ Θk

S ⊇ Derk(− logC) ⊇
∑

hiΘ
k
S ⊇ hΘk

S

a) The functor HomOS (−,Σ) applied to the sequence of inclusions (5) gives the sequence of inclu-
sions (6).

b) Conversely, the functor HomOS (−,Σ) applied to the sequence of inclusions (6) gives the sequence
of inclusions (5).

Proof. For I = {i1, . . . , ik} ⊆ {1, . . . ,m}, we denote ∂xI = ∂xi1 ∧ · · · ∧ ∂xik ∈ Θk
S . We notice that

the module Σ is torsion-free and for any inclusion M1 ⊆M2 with M1,M2 both in (5) or both in (6),
the module M2/M1 is a torsion module, so that we have HomOS (M1,Σ) ⊇ HomOS (M2,Σ).
a) Let ϕ ∈ HomOS

(
Ωk
S ,Σ

)
. Since Ωk

S is free and HomOS
(
Ωk
S ,OS

)
= Θk

S , we have the following
isomorphism of OS-modules:

ξ : HomOS

(
Ωk
S ,Σ

)
∼−→ Σ⊗OS Θk

S

ϕ 7→ ξϕ =
∑
|I|=k

ϕ(dxI)∂xI

Thanks to the isomorphism ξ, we can see each module HomOS (M,Σ) for M in (5) as a
submodule of Θ̃k

S := Σ⊗OS Θk
S . Moreover, it gives also:

HomOS

(
1

h
Ωk,Σ

)
= h ·HomOS

(
Ωk,Σ

)
= h.

(
Σ⊗OS Θk

S

)
=

k∑
i=1

hiΘ
k
S

Obviously, we have the inclusion Θk
S ⊆ HomOS

(
Ω̃k,Σ

)
⊆ Θ̃k

S . Let δ ∈ Θ̃k
S , δ =

∑
I δI∂xI with

δI ∈ Σ. Let us assume4 that there is I such that δI /∈ OS . For example δI has a pole at least along
D1. Then dxI

h1
(δ) = δI

h1
has a pole of order at least 2 alongD1, and δ /∈ HomOS

(
Ω̃k,Σ

)
. Therefore,

HomOS

(
Ω̃k,Σ

)
' Θk

S . Since Ω̃k = Ωk
S ⊗OS Σ, it gives also HomOS

(
1
hΩk

S ⊗ Σ,Σ
)

= hΘk
S .

4We use here the assumption k > 2
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We have HomOS
(
Ωk(logC),Σ

)
⊆ Θk

S . Thanks to Lemma 2.30, we have Derk(− logC) ⊆
HomOS

(
Ωk(logC),Σ

)
. Conversely, let δ ∈ Θk

S . If δ ∈ HomOS
(
Ωk(logC),Σ

)
, then in particular

dh1∧···∧dhk
h (δ) ∈ Σ, so that δ ∈ Derk(− logC). Hence HomOS

(
Ωk(logC),Σ

)
= Derk(− logC).

b) Let ψ ∈ HomOS
(
hΘk

S ,Σ
)
. Since hΘk

S is free and HomOS
(
hΘk

S ,OS
)

= 1
hΩk

S , we have the following
isomorphism of OS-modules:

β : HomOS

(
hΘk

S ,Σ
)
→ 1

h
Ωk
S ⊗ Σ

ψ 7→ ωψ =
1

h

∑
|I|=k

ψ(h∂xI)dxI

We have ψ(h∂xI) = ωψ(h∂xI). Thanks to the isomorphism β, we can see each module

HomOS (M,Σ) for M in (6) as a submodule of
1

h
Ω̃k. It gives also HomOS

(
Θk
S ,Σ

)
= Ω̃k.

It is easy to see that 1
hΩk

S ⊆ HomOS
(∑

hiΘ
k
S ,Σ

)
⊆ 1

h Ω̃k. Let ω ∈ HomOS
(∑

hiΘ
k
S ,Σ

)
,

ω =
∑ 1

hωIdxI with ωI ∈ Σ. Let I ⊂ {1, . . . ,m} with |I| = k. For all i ∈ {1, . . . , k}, we
have ω(hi∂xI) = 1

ĥi
ωI ∈ Σ. Therefore, ωI ∈ OS and HomOS

(∑
hiΘ

k
S ,Σ

)
= 1

hΩk
S . Since

Θk
S ⊗OS Σ = 1

h

∑
hiΘ

k
S , we also have: HomOS

(
Θk
S ⊗OS Σ,Σ

)
= Ωk

S .

Since Derk(− logC) contains
∑
hiΘ

k
S , we have HomOS

(
Derk(− logC),Σ

)
⊆ 1

hΩk
S . Thanks to

Lemma 2.30, we have Ωk(logC) ⊆ HomOS
(
Derk(− logC),Σ

)
. In analogy with [Sai80, (1.6)],

we introduce a well-chosen k-vector field δ to prove the equality. Let us first notice that if
ω = 1

haIdxI with aI ∈ OS , then for all i ∈ {1, . . . , k} we have:

(7) dhi ∧ ω =
∑
j

∑
I

1

h

∂hi
∂xj

aIdxj ∧ dxI =
∑
|J |=k+1

k+1∑
`=1

(−1)`−1 1

h

∂hi
∂xj`

aJ\{j`}dxJ

We set for all J = {j1, . . . , jk+1} ⊆ {1, . . . ,m} and i ∈ {1, . . . , k}:

δiJ =
k+1∑
`=1

(−1)`−1 ∂hi
∂xj`

∂xj1 ∧ · · · ∧ ∂̂xj` ∧ · · · ∧ ∂xjk+1

We first prove that δiJ ∈ Derk(− logC). For I ⊆ {1, . . . ,m} with |I| = k we denote by ∆I

the k × k minor of the Jacobian matrix of (h1, . . . , hk) relative to the set I. We then have
dh1 ∧ · · · ∧ dhk =

∑
∆IdxI . Thus:

dh1 ∧ · · · ∧ dhk(δ
i
J) =

k+1∑
`=1

(−1)`−1 ∂hi
∂xj`

∆j1...ĵ`...jk+1
=

∣∣∣∣∣∣∣∣∣∣∣

∂hi
∂xj1

. . . ∂hi
∂xjk+1

∂h1
∂xj1

. . . ∂h1
∂xjk+1

...
...

∂hk
∂xj1

. . . ∂hk
∂xjk+1

∣∣∣∣∣∣∣∣∣∣∣
= 0

Therefore, δiJ ∈ Derk(− logC). Let us consider ω =
∑ 1

haIdxI ∈ HomOS
(
Derk(− logC),Σ

)
,

with aI ∈ OS . Then, for all J ⊆ {1, . . . ,m} and i ∈ {1, . . . , k} we have:

ω(δiJ) =
∑
I

1

h
aIdxI(δ

i
J) =

k+1∑
`=1

(−1)`−1 1

h

∂hi
∂xj`

aJ\{j`} ∈ Σ

Thus, by (7), for all i ∈ {1, . . . , k}, we have dhi ∧ ω =
∑
|J |=k+1 ω(δiJ)dxJ ∈ Ω̃k+1, so that

ω ∈ Ωk(logC). Hence the result: HomOS
(
Derk(− logC),Σ

)
= Ωk(logC).

�
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2.5. Multi-residues and the Jacobian ideal. In this subsection, we give another proof of [Sch13,
Proposition 4.1], which does not depend on the isomorphism of Theorem 2.16. Our proof uses the
duality of Proposition 2.32 and is analogous to the proof of [GS14, Proposition 3.4]. We recall that
JC ⊆ OC is the Jacobian ideal.

We will need the following lemma:

Lemma 2.33. We assume k > 2. Then Ext1
OS (JC ,OS) = 0 and:

Ext1
OS (JC ,Σ) = HomOC (JC ,OC)

Proof. Let us apply the functor HomOS (JC ,−) to the exact sequence:

0→ Σ
×h−−→ OS → OC → 0

It gives:
0→ HomOS (JC ,OC)→ Ext1

OS (JC ,Σ)→ Ext1
OS (JC ,OS)→ . . .

The depth of OS is m and since JC is a fractional ideal, the dimension of JC is m − k = dimOC .
Thus, by Ischebeck’s Lemma (see [Mat80, 15.E]), we have Ext1

OS (JC ,OS) = 0. Hence the result. �

Definition 2.34. Let I ⊂MC be a fractional ideal. The dual of I is I∨ = HomOC (I,OC).

Remark 2.35. Thanks to [dJP00, Proof of Lemma 1.5.14], we can identify I∨ = {f ∈MC ; f · I ⊆ OC}.

Proposition 2.36. The dual of the Jacobian ideal is J ∨C = RC .

Proof. We assume k > 2. For k = 1, we refer to [GS14, Proposition 3.4].
We consider the double complex HomOS

(
Derk(− logC) ↪→ Θk

S , h : Σ→ OS
)
, which gives almost

the same diagram as the dual of (3.8) in [GS14]. By Lemma 2.33, Ext1
OS (JC ,OS) = 0, so that we

obtain the following commutative diagram:

0 0

0 HomOS

(
Θk

S ,Σ
)

HomOS

(
Derk(− logC),Σ

)
Ext1OS

(JC ,Σ) 0

0 HomOS

(
Θk

S ,OS

)
HomOS

(
Derk(− logC),OS

)
0

0 HomOS
(JC ,OC) HomOS

(
Θk

S ,OC

)
HomOS

(
Derk(− logC),OC

)
Ext1OS

(JC ,OC) 0

Ext1OS
(JC ,Σ) 0 Ext1OS

(
Derk(− logC),Σ

)
Ext2OS

(JC ,Σ) 0

0

Let us prove by a diagram chasing process that J ∨C = RC .
Let ϕ : Derk(− logC) → Σ. Thanks to the isomorphism β of the proof of Proposition 2.32, ϕ

coresponds to ωϕ = 1
h

∑
I ϕ(h∂xI)dxI ∈ Ωk(logC). Then ϕ(δ) = ωϕ(δ).

By the vertical map, ϕ is sent on hϕ : Derk(− logC)→ OS , δ 7→ hωϕ(δ). Since the horizontal map
is an isomorphism, there exists Φ : Θk

S → OS such that Φ|Derk(− logC) = hϕ. For all i ∈ {1, . . . , k},
hiΦ(∂xI) = hϕ(hi∂xI) = hiϕ(h∂xI) and therefore, Φ(∂xI) = ϕ(h∂xI) = hωϕ(∂xI).

Let us denote by Φ : Θk
S → OC the image of Φ by the vertical map. The image of Φ by the

horizontal map is zero, so that Φ is the image of an element of HomOS (JC ,OC). Let us compute it
explicitely. Since ωϕ ∈ Ωk(logC), we can write thanks to Theorem 2.8, gωϕ = ξ dh1∧···∧dhk

h + η with
g ∈ OS which does not induce a zero divisor in OC , ξ ∈ OS and η ∈ Ω̃k. Then:

gΦ(∂xI) = ghωϕ(∂xI) = ξ∂xI(dh1 ∧ · · · ∧ dhk) ∈ OC
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Since g is a non zero divisor in OC , we have: Φ(∂xI) = resC(ωϕ)∂xI(dh1 ∧ · · · ∧ dhk). Hence,
by identifying HomOS

(
Derk(− logC),Σ

)
and Ωk(logC), we obtain the map resC : Ωk(logC) →

J ∨C , ω 7→ resC(ω).
In fact, by a similar diagram chasing process starting from the lower left HomOS (JC ,OC) to

the upper right HomOS
(
Derk(− logC),Σ

)
, one can show that resC : Ωk(logC)→ J ∨C is surjective,

hence, J ∨C = RC . �

Remark 2.37. As in [GS14, (3.8)], we can also consider the double complex associated with

HomOS

(
Ω̃k ↪→ Ωk(logC), h : Σ→ OS

)
It yields to the long exact sequence

(8) 0→ Derk(− logC)→ Θk
S

σ−→ Ext1
OS (RC ,Σ)→ Ext1

OS

(
Ωk(logC),Σ

)
→ Ext1

OS

(
Ω̃k,Σ

)
→ · · ·

A proof similar to the proof of Lemma 2.33 and [GS14, Proposition 3.4] gives Ext1
OS (RC ,Σ) = R∨C

and σ(δ) = dh1 ∧ · · · ∧ dhk(δ).

3. Free complete intersections

In [Sai80], K. Saito studies a particular family of hypersurfaces for which the module of logarithmic
vector fields is free. This kind of hypersurfaces are called free divisors. Several characterizations
of freeness for divisors can be extended to the complete intersection case (see Proposition 3.4 and
Theorem 3.5).

We first recall the definition and a characterization of freeness for reduced divisors.

Definition 3.1. Let D ⊂ S be the germ of a reduced divisor defined by f ∈ OS. We call D a germ
of free divisor if Ω1(logD) is a free OS-module, or equivalently Der(− logD) is a free OS-module.

Theorem 3.2 ([Ale88]). The germ of a reduced singular divisor is free if and only if its singular
locus is Cohen Macaulay of codimension 1 in D. It is equivalent to the Jacobian ideal being maximal
Cohen-Macaulay.

Our purpose here is to extend the notion of freeness to the case of complete intersections. As
in [GS12] and [Sch13], we give the following definition for freeness, which comes obviously from
Theorem 3.2.

Definition 3.3. A reduced complete intersection C is called free if it is smooth or if its singular locus
is Cohen-Macaulay of codimension 1 (i.e. OC/JC is a Cohen-Macaulay OS-module of dimension
m− k − 1).

They also give the following characterizations of freeness, where projdim(M) denotes the minimal
length of a projective OS-resolution of a OS-module M :

Proposition 3.4. Let C be a singular reduced complete intersection. The following statements are
equivalent:

(1) C is free
(2) JC is a Cohen-Macaulay OC-module
(3) projdim

(
Derk(− logC)

)
6 k − 1

(4) projdim
(
Derk(− logC)

)
= k − 1

We add to this list other characterizations, which leads to our main result:

Theorem 3.5. We can extend the list of equivalences of Proposition 3.4 with:
(5) projdim

(
Ωk(logC)

)
6 k − 1

(6) projdim
(
Ωk(logC)

)
= k − 1
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In particular, for k = 1, we recognize the several characterizations of freeness for divisors we
have just mentioned. In the hypersurface case, the duality between Der(− logD) and Ω1(logD)
gives immediately the fact that if one of the two modules is free, the other is also free, whereas for
complete intersections with k > 2, the statement on the projective dimension of Ωk(logC) needs
much more work.

3.1. Proof of Proposition 3.4. We first prove the equivalences of Proposition 3.4. These equiv-
alences are already proved or mentioned in [GS12] or [Sch13]. The proof is based on the Depth
Lemma and the Auslander-Buchsbaum Formula, which are recalled below, and can be found for
example in [dJP00].

Proposition 3.6 (Depth Lemma, [dJP00, Lemma 6.5.18]). Let R be a Noetherian local ring. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of R-modules. Then:

depth(M2) > min (depth(M1), depth(M3))

In case this inequality is strict, we have: depth(M1) = depth(M3) + 1.

Proposition 3.7 (Auslander-Buchsbaum Formula, [dJP00, Theorem 6.5.20]). Let R be a Noetherian
local ring and M be a finite type R-module of finite projective dimension. Then:

depth(M) + projdim(M) = depth(R)

Remark 3.8. By Hilbert’s Syzygy Theorem (see [dJP00, Theorem 6.5.16]), since the ring OS is a
regular local ring, all finite type OS-module has finite projective dimension, so that we can apply
Auslander-Buchsbaum Formula.

Remark 3.9. The dimension of a fractional ideal of OC (as a OS-module or a OC-module) is m− k.
The depth of a fractional ideal of OC as a OC-module is equal to its depth as a OS-module.

Proof of Proposition 3.4. The equivalence 1. ⇐⇒ 2. is proved in [Sch13], but we recall here the
proof.

Let us consider the following exact sequence of OC-modules:

(9) 0→ JC → OC → OC/JC → 0

We set n = m − k, which is the dimension of C. Since C is a complete intersection, OC is Cohen-
Macaulay of dimension n. Moreover, since we assume C to be reduced, the singular locus of C is of
dimension at most n− 1, and therefore the depth of OC/JC is at most n− 1. Then, by the Depth
Lemma 3.6, we have

depth(JC) = depth(OC/JC) + 1

Therefore, depth(JC) = n ⇐⇒ depth(OC/JC) = n− 1, hence 1. ⇐⇒ 2.

We now prove 2.⇒ 4. We recall the following exact sequence:

(10) 0→ Derk(− logC)→ Θk
S → JC → 0

Then, thanks to the Depth Lemma 3.6, since the depth of JC is m − k and the depth of Θk
S is

m, we have depth(Derk(− logC)) = m− k+ 1. By the Auslander-Buchsbaum Formula 3.7, we have
projdim(Derk(− logC)) = k − 1.

The implication 4⇒ 3. is trivial.
Let us prove 3. ⇒ 2. This implication is already mentioned in [GS12] but we give here a more

detailed proof. By the Auslander-Buchsbaum Formula 3.7, depth(Derk(− logC)) > m − k + 1.
Moreover, depth(Θk

S) = m, and depth(JC) 6 m − k. As a consequence of the exact sequence (10)
and the Depth Lemma 3.6 we have depth(Derk(− logC)) = m− k + 1 and depth(JC) = m− k, so
that JC is maximal Cohen-Macaulay. �
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3.2. Preliminary to the proof of Theorem 3.5. The methods used to prove Proposition 3.4
are not sufficient for Theorem 3.5. We will study the long exact sequence obtained by applying the
functor HomOS (−,OS) to the short exact sequence

0→ Ω̃k → Ωk(logC)→ RC → 0

We also introduce the Koszul complex associated to a regular sequence and the change of rings
spectral sequence, which are used to determine the modules and morphisms involved in the long
exact sequence.

Notation 3.10. We denote by K(h) the Koszul complex of (h1, . . . , hk) in OS :

(11) K(h) : 0→
k∧
OkS

dk−→ · · · d2−→
1∧
OkS

d1−→ OS → 0

where for I ⊆ {1, . . . , k} of cardinal p, di(eI) =
∑p

`=1(−1)`−1hi`ei1 ∧ · · · ∧ êi` ∧ · · · ∧ eip .
We also set K̃(h) the complex obtained from K(h) obtained by removing the last OS .

Lemma 3.11 ([Eis95, Corollary 17.5, Proposition 17.15]). Since the sequence (h1, . . . , hk) is regular,
K(h) is a free OS-resolution of OC .

The dual complex HomOS (K(h),OS) of the Koszul complex is a free resolution of OC .

Remark 3.12. One can see that a consequence of Lemma 3.11 is that K̃(h) is a free OS-resolution
of Σ ' (h1, . . . , hk).

The following properties will be useful to prove Theorem 3.5.

Proposition 3.13. If C is a free complete intersection, then RC is a maximal Cohen-Macaulay
module and R∨C = JC .

Proof. Since C is free, JC is a maximal Cohen-Macaulay module. Thanks to [Eis95, Theorem
21.21], we can deduce that J ∨C is also a maximal Cohen-Macaulay module, and J ∨∨C = JC . But
from Proposition 2.36, J ∨C = RC . Hence the result. �

Lemma 3.14. We have:
HomOS

(
Ω̃k,OS

)
= hΘk

S

Extk−1
OS

(
Ω̃k,OS

)
= Θk

S ⊗OS OC

and for all j 6= 0, k − 1, ExtjOS

(
Ω̃k,OS

)
= 0.

Moreover, projdim(Ω̃k) = k − 1.

Proof. Since Ω̃k = Ωk
S ⊗OS Σ, we have HomOS

(
Ω̃k,OS

)
= Θk

S ⊗OS HomOS (Σ,OS).

Let ψ ∈ HomOS (Σ,OS). Then it is determined by ψ(1). Since for all i ∈ {1, . . . , k}, ψ
(

1

ĥi

)
=

1

ĥi
ψ(1) ∈ OS , we have ψ(1) ∈ (h)OS . Hence the first equality.

By Remark 3.12, the complex K̃(h) is a free resolution of Σ. Therefore K̃(h) ⊗OS Ωk
S is a free

resolution of Ω̃k. The lemma follows from Lemma 3.11. �

The same methods as the ones used in the proof of Proposition 3.4 applied to the exact sequence
0→ Ω̃k → Ωk(logC)→ RC → 0 give the following result, which will be used in the end of the proof
of Theorem 3.5:

Lemma 3.15. If C is free, then projdim(Ωk(logC)) 6 k.
Let C be a reduced complete intersection, not necessarily free. If projdim(Ωk(logC)) 6 k − 1,

then RC is a maximal Cohen-Macaulay module.
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Proof. Let us consider the exact sequence 0 → Ω̃k → Ωk(logC) → RC → 0. Then, if C is
free, by Proposition 3.13, we have depth(RC) = m − k. By Lemma 3.14 and the Auslander
Buchsbaum Formula 3.7, we have depth(Ω̃k) = m − k + 1. Therefore, by the Depth Lemma 3.6,
depth(Ωk(logC)) 6 m− k.

Let us assume now that projdim(Ωk(logC)) 6 k− 1. Then, depth(Ωk(logC)) > m− k+ 1. Since
depth(Ω̃k) = m − k + 1 and depth(RC) 6 m − k, by the Depth Lemma, depth(RC) = m − k =
dim(RC). Hence the result. �

We have to use extra tools to prove Theorem 3.5. Let us apply the functor HomOS (−,OS) to the
short exact sequence

0→ Ω̃k → Ωk(logC)→ RC → 0

It gives the following long exact sequence:

(12)
0→ HomOS (RC ,OS)→ HomOS (Ωk(logC),OS)→ HomOS (Ω̃k,OS)→ Ext1

OS (RC ,OS)→ . . .

The purpose of the remaining of this subsection is to prove the following proposition:

Proposition 3.16. The long exact sequence (12) gives:
(13)
· · · → 0→ Extk−1

OS

(
Ωk(logC),OS

)
→ Θk

S ⊗OS OC
α−→ R∨C → ExtkOS

(
Ωk(logC),OS

)
→ 0→ . . .

Moreover, α : Θk
S ⊗OC 3 δ ⊗ a 7→ a.δ(dh1 ∧ · · · ∧ dhk) ∈ R∨C , so that the image of α is JC .

All the modules involving Ω̃k in (12) are computed in Lemma 3.14. To compute the modules
involving RC , we introduce the change of rings spectral sequence (see for example [CE56, Chapter
XV and XVI] for details on spectral sequences). The change of rings spectral sequence applied to
RC and OS gives:

(14) Epq2 = ExtpOC

(
RC ,ExtqOS (OC ,OS)

)
⇒ Extp+qOS (RC ,OS)

Lemma 3.17. For all q < k, ExtqOS (RC ,OS) = 0 and ExtkOS (RC ,OS) = HomOC (RC ,OC). More
precisely, if I• is an injective resolution of OS, the change of ring isomorphism is given by:

β : Hk (HomOS (RC , I•))→ HomOC

(
RC , Hk (HomOS (OC , I•))

)
[ψ] 7→ ψ̃ : ρ 7→ [ψ̃ρ : a 7→ a.ψ(ρ)]

Proof. Since (h1, . . . , hk) is a regular sequence, we have for all q 6= k, ExtqOS (OC ,OS) = 0 and
ExtkOS (OC ,OS) = OC . Therefore, the only non zero terms of the second sheet of the spectral
sequence (14) are the Epk2 , so that the spectral sequence degenerates at rank 2. Hence the first
claim.

To compute explicitely the isomorphism between ExtkOS (RC ,OS) and HomOC (RC ,OC), we con-
sider a free OC-resolution of RC (with differential δ) and an injective OS-resolution of OS (with
differential ε). It leads to the double complex Apq = HomOC (Pp,HomOS (OC , Iq)). There are two
associated spectral sequences:

′Epq2 = Hp (HomOC (P∗, H
q(HomOS (OC , I•))) = ExtpOC

(
RC ,ExtqOS (OC ,OS)

)
′′Epq2 = Hq(HomOC (Hp(P∗),HomOS (OC , I•)))

For the first spectral sequence, the only non zero terms are the ′Epk2 and for the second spectral
sequence, the only non zero terms are ′′E0q

2 . In particular, it means that the two spectral sequences
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degenerates at rank 2, and for all j > 1, ′′Ej,k−j∞ and ′Ej,k−j∞ are both zero. Therefore, one has:

ExtkOS (RC ,OS) = ′E0k
2 =′ E0k

∞ = ′′E0k
∞ = ′′E0k

2

One can then see from the definitions of spectral sequences (see [CE56, Chapter XV and XVI])
that an element in ′E0k

∞ can be represented by an element ψ ∈ HomOC
(
P0,HomOS

(
OC , Ik

))
, which

defines the same class in ′′E0k
∞ . Moreover, in ′E0k

2 , ψ defines an element [ψ] ∈ Hk (HomOS (RC , I•)),
and in ′′E0k

2 , it defines ψ̃ : ρ 7→ [ψ̃ρ : a 7→ a.ψ(ρ)] ∈ HomOC
(
RC , Hk (HomOS (OC , I•))

)
, which

gives the announced isomorphism. �

Proof of Proposition 3.16. The exactness of the sequence comes from Lemmas 3.14 and 3.17. We
only have to compute α. We consider an injective OS resolution I• of OS with differential εj : Ij →
Ij+1.

We want to construct the connecting homomorphism

α : Hk−1
(

HomOS

(
Ω̃k, I•

))
→ Hk (HomOS (RC , I•))

For all j ∈ N, we have an isomorphism HomOS

(
Ω̃k, Ij

)
→ Θk

S ⊗OS HomOS
(
Σ, Ij

)
.

Since 0→ Σ
h−→ OS → OC → 0 is exact and Ij is injective, the following map is an isomorphism:

HomOS
(
OS , Ij

)
/HomOS

(
OC , Ij

)
→ HomOS

(
Σ, Ij

)[
ϕ : OS → Ij

]
7→ (a 7→ ϕ(h · a))

Moreover, HomOS
(
OS , Ij

)
' Ij and HomOS

(
OC , Ij

)
' AnnIj (h1, . . . , hk), so that we construct

the isomorphism

βk−1 : Hk−1
(

HomOS

(
Ω̃k, I•

))
→ Θk

S ⊗OS H
k−1 (I•/AnnI•(h1, . . . , hk))

which is given by: [ϕ] ∈ Hk−1
(

HomOS

(
Ω̃k, I•

))
7→
∑

I ∂xI ⊗ [mI ] where h ·mI = ϕ(dxI). The
inverse is given by δ ⊗ [m] 7→ [ϕ : ω 7→ δ(hω) ·m].

On the other hand, let us prove that the following homomorphism is well defined and is an
isomorphism:

γ : Hk−1 (I•/AnnI•(h1, . . . , hk))→ Hk (AnnI•(h1, . . . , hk))

[m] 7→ [εk−1(m)]

Let us denote εk−1 : Ik−1/AnnIk−1(h1, . . . , hk) → Ik/AnnIk(h1, . . . , hk). If m ∈ Ker(εk−1) then
εk−1(m) ∈ AnnIk(h1, . . . , hk). If m = εk−2(m′) for an element m′ ∈ Ik−2/AnnIk−2(h1, . . . , hk),
then [εk−1(εk−2(m′))] = 0 so that the map γ is well defined. Let us assume that [εk−1(m)] = 0.
Then, there exists m′ ∈ AnnIk−1(h1, . . . , hk) such that εk−1(m) = εk−1(m′), so that m − m′ ∈
Ker(εk−1) = Im(εk−2). Hence [m] = 0, therefore, the map γ is injective. Let us consider [m] ∈
Hk (AnnI•(h1, . . . , hk)). Then εk(m) = 0 thus there exists m′ ∈ Ik−1 such that εk−1(m′) = m.
Then [m] = γ([m′]).

We now have all the identifications we need to compute α. This homomorphism can be computed
thanks to a diagram chasing process based on the following commutative diagram:

0 HomOS

(
Ω̃k, Ik−1

)
HomOS

(
Ωk(logC), Ik−1

)
HomOS

(
RC , Ik−1

)
0

0 HomOS

(
Ω̃k, Ik

)
HomOS

(
Ωk(logC), Ik

)
HomOS

(
RC , Ik

)
0

i∗ res∗C

i∗ res∗C

εk−1 εk−1 εk−1

Let δ ⊗ [m] ∈ Θk
S ⊗Hk−1 (I•/AnnI•(h1, . . . , hk)). It corresponds to the class of an element

ϕ : Ω̃k → Ik−1

η 7→ δ(hω) ·m
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which satisfies εk−1(ϕ) = 0.
There exists Φ : Ωk(logC) → Ik−1 such that Φ ◦ i = ϕ. Let ω ∈ Ωk(logC). By Theorem 2.8,

there exists g, ξ, η such that gω = ξ dh1∧···∧dhk
h1···hk + η. Then

gΦ(ω) = ξΦ

(
dh1 ∧ · · · ∧ dhk

h1 · · ·hk

)
+ ϕ(η)

Moreover, for all i ∈ {1, . . . , k}, hiΦ
(

dh1∧···∧dhk
h1···hk

)
= ϕ

(
hi

dh1∧···∧dhk
h1···hk

)
= hiδ(dh1 ∧ · · · ∧ dhk) ·m.

Therefore,

Φ

(
dh1 ∧ · · · ∧ dhk

h1 · · ·hk

)
= δ(dh1 ∧ · · · ∧ dhk) ·m+m′

with m′ ∈ AnnIk−1(h1, . . . , hk).
The image by εk−1 of Φ satisfies:

g · εk−1(Φ)(ω) = ξ
(
δ(dh1 ∧ · · · ∧ dhk) · εk−1(m) + εk−1(m′)

)
Since i∗εk−1(Φ) = 0, there exists Ψ : RC → Ik such that Φ = res∗C(Ψ). We set:

Ψ : RC → Ik

ρ 7→ ρ ·
(
δ(dh1 ∧ · · · ∧ dhk) · εk−1(m) + εk−1(m′)

)
The image of the class [Ψ] ∈ Hk (HomOS (RC , I•)) by the isomorphism β of Lemma 3.17 with the

identification Hk (HomOS (OC , I•)) = Hk (AnnI•(h1, . . . , hk)) is, since m′ ∈ AnnIk−1(h1, . . . , hk):

RC → Hk (AnnI•(h1, . . . , hk))

ρ 7→ [ρ · δ(dh1 ∧ · · · ∧ dhk) · εk−1(m)]

Moreover, there are isomorphisms:

OC
γ1←− Hk−1 (I•/AnnI•(h1, . . . , hk))

γ−→ Hk (AnnI•(h1, . . . , hk))
γ2−→ OC

Let a = γ1([m]) ∈ OC . Since γ, γ1, γ2 are isomorphisms, we can assume that γ2 ◦ γ ◦ γ−1(1) = 1,
so that γ2([εk−1(m)]) = a ∈ OC .

Hence the result: let δ ⊗ a ∈ ΘS ⊗OS OC , then α(δ ⊗ a) = a · δ(dh1 ∧ · · · ∧ dhk). �

3.3. End of the proof of Theorem 3.5. The explicit computation of the connecting morphism
α in Proposition 3.16 allows us to compare Im(α) = JC and R∨C , which is useful to finish the proof
of Theorem 3.5.

End of the proof of Theorem 3.5. We start with the implication 2. ⇒ 6. By Lemma 3.15, we have
projdim(Ωk(logC)) 6 k. Moreover, by Proposition 3.13, R∨C = JC so that the map α of Proposi-
tion 3.16 is surjective. Therefore, we have ExtkOS

(
Ωk(logC),OS

)
= 0.

Let

(15) 0→ O`kS
dk−→ O`k−1

S → · · · → O`0S → Ωk(logC)→ 0

be a minimal free resolution of Ωk(logC). In particular, it means that the coefficients of dk are in
the maximal ideal m of OS . We apply the functor HomOS (−,OS) to this resolution, and we identify
HomOS

(
O`jS ,OS

)
with O`jS . Then ExtkOS

(
Ωk(logC),OS

)
is equal to O`kS /Im(tdk). Since it is zero,

by Nakayama lemma, O`kS = 0 and therefore projdim(Ωk(logC)) 6 k − 1.
In addition, since there are relations between the maximal minors of the Jacobian matrix, the

map α has a non zero kernel.
Therefore, Extk−1

OS

(
Ωk(logC),OS

)
6= 0 and projdim(Ωk(logC)) = k − 1.

The implication 6.⇒ 5. is trivial.
Let us prove 5.⇒ 2.
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We assume projdim
(
Ωk(logC)

)
6 k − 1. The exact sequence (13) becomes:

0→ Extk−1
OS

(
Ωk(logC),OS

)
→ Θk

S ⊗OS OC
α−→ R∨C → 0

Since the image of α is JC by proposition 3.16, we have R∨C = JC . By Lemma 3.15, RC is a
maximal Cohen-Macaulay OC-module. Therefore, by [Eis95, Theorem 21.21], JC is also maximal
Cohen-Macaulay. �

4. Complete intersection curves

Several families of Saito free divisors are known: normal crossing divisors, plane curves, dis-
criminants of deformation of isolated singularities... In that case, the module Ω1(logD) is a free
OS-module of rank m, so that we know exactly how many generators are needed, and it depends
only on the dimension of the ambient space. Moreover, there is a criterion, known as Saito criterion
(see [Sai80, (1.8)]) which can be used to check if a given family is a basis of Ω1(logD).

For complete intersections the situation is more complicated. Indeed, if we have a free complete
intersection, we proved in Theorem 3.5 that the projective dimension of Ωk(logC) is k − 1. But it
does not give any information on the minimal number of generators of Ωk(logC). In addition, we do
not have a criterion as Saito criterion to determine if a given family of multi-logarithmic differential
forms generates the module Ωk(logC). In this section, we describe explicitly a free OS-resolution
of Ωm−1(logC) when C is a quasi-homogeneous curve. In particular, it gives a minimal generating
family of Ωm−1(logC). For more general curves, computations can be made using a computer system
such as Singular and algorithm A.2.1.

First of all, let us notice the following property which is easy to prove from the definition of
freeness:

Proposition 4.1. Reduced complete intersection curves are free complete intersections.

Proof. If the curve is smooth, there is nothing to do. Otherwise, since C is reduced, the singular
locus is of dimension 0 and therefore is Cohen-Macaulay. �

Complete intersection curves are studied in [Pol15b]. In this paper, the author proves that the
set of values of the module of multi-residues RC defined below satisfies a symmetry with the values
of the Jacobian ideal, and gives the relation between the values of RC and the values of the Kähler
differentials.

4.1. Quasi-homogeneous curves. We describe here explicitly the module of multi-logarithmic
differential forms for a quasi-homogeneous complete intersection curve. We will need several results
and notations from [Pol15b], which are recalled below.

Let C = C1 ∪ · · · ∪ Cp be a reduced complete intersection curve with p irreducible components.
The normalization of C satisfies O

C̃
=
⊕p

i=1 C {ti}. It induces for all i ∈ {1, . . . , p} a valuation map

vali :MC 3 g 7→ vali(g) ∈ Z ∪ {∞}
The value of an element g ∈MC is val(g) = (val1(g), . . . , valp(g)) ∈ (Z ∪ {∞})p. For a fractional

ideal I ⊂MC , we set

val(I) := {val(g); g ∈ I non zero divisor } ⊂ Zp

We consider the product order on Zp, so that for all α, β ∈ Zp, α 6 β means that for all
i ∈ {1, . . . , p}, αi 6 βi. We set 1 = (1, . . . , 1).

We denote by CC = O∨
C̃

the conductor ideal. There exists γ ∈ Np such that CC = tγO
C̃
. In

particular,
γ = inf {α ∈ Np;α+ Np ⊆ val(OC)}

Let C be a reduced complete intersection curve defined by a regular sequence (h1, . . . , hm−1). Let
us consider the following properties:
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a) There exist (w1, . . . , wm) ∈ Nm such that for all i ∈ {1, . . . ,m− 1}, hi is quasi-homogeneous of
degree di with respect to the weight (w1, . . . , wm).

b) m > 3
c) m − 1 is the embedding dimension. Equivalently, for all i ∈ {1, . . . ,m− 1}, hi ∈ m2 where m is

the maximal ideal of OS (see Proposition 2.20).

Lemma 4.2. Let C be a complete intersection curve satisfying condition a). Then

ω0 =

∑m
i=1(−1)i−1wixid̂xi

h
∈ Ωm−1(logD)

Proof. Let i ∈ {1, . . . ,m− 1}. We have
∑m

i=1wixi
∂hi
∂xi

= dihi so that dhi ∧ ω0 =
di

ĥi
dx. Since

dh =
∑m−1

i=1 ĥidhi, we have dh ∧ ω0 ∈ Ωm
S . Thus, ω0 ∈ Ωm−1(logD). �

Remark 4.3. By Proposition 2.23, we also have ω0 ∈ Ωm−1(logC).

Let us prove the following lemma:

Lemma 4.4. With the notations of Lemma 4.2, we have:

inf(val(RC)) = val(resC(ω0)) = −γ + 1

Proof. By [Pol15b, Proposition 3.30], we have val(resC(ω0)) = −γ + 1 and

(16) γ + val(OC)− 1 ⊆ val(JC)

Let us prove that inf(val(RC)) = val(resC(ω0)).
By the inclusion (16), we have 2γ − 1 + Np ⊆ val(JC).
As in [Pol15b], we set for v ∈ Zp, ∆i(v,JC) = {α ∈ val(JC);αi = vi and ∀j 6= i, αj > vj} and

∆(v, I) =
⋃p
i=1 ∆i(v, I).

We then have:
max {v ∈ Zp; ∆(v,JC) = ∅} 6 2γ − 2

By [Pol15b, Theorem 2.4] we have

v ∈ val(RC) ⇐⇒ ∆(γ − v − 1,JC) = ∅
It implies that inf(val(RC)) > −γ + 1.

Hence the result: inf(val(RC)) = val(resC(ω0)). �

Proposition 4.5. Let C be a singular complete intersection satisfying condition a). Then RC is
generated by resC

(
dh1∧···∧dhk

h

)
= 1 and resC(ω0), where ω0 is given in Lemma 4.2.

Proof. We set Z = Sing(C) the singular locus of C. By dualizing over OC :
0→ JC → OC → OZ → 0

we obtain

(17) 0→ OC → RC → ωZ → 0

where ωZ is the dualizing module of Z. Moreover, the singular locus of a quasi-homogeneous curve
is Gorenstein (see [KW84, Satz 2]), so that ωZ = OZ . The exact sequence (17) implies that RC is
generated by two elements, the image of 1 ∈ OC , which is 1 ∈ RC , and the antecedent of 1 ∈ OZ .
Therefore, there exists ρ0 ∈ RC such that (1, ρ0) generates RC .

It remains to prove that we can take ρ0 = resC(ω0).
By Lemma 4.4, we have val(resC(ω0)) = −γ + 1.
We assume first that −γ+ 1 /∈ Np. For example, −γ1 + 1 < 0. There exists α0, α1 ∈ OC such that

ω0 = α0ρ + α1. Since val(α1) > 0, and inf(val(RC)) = val(resC(ω0)), we have val1(ρ) = val1(ω0)
therefore val1(α0) = 0. By [DdlM88, (1.1.1)], it implies that val(α0) = 0 so that α0 is invertible,
and (resC(ω0), 1) generates RC .
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Let us assume that −γ+ 1 ∈ Np. Since γ > 0, by [DdlM88, (1.1.1)], we must have γ = 1 or γ = 0.
However, if γ = 0, we have OC = O

C̃
so that C is smooth. Therefore, γ = 1. By [Pol15b, Corollary

3.32], we have
val(JC) = val(CC) = 1 + Np

It implies that JC = CC , so that by duality, RC = O
C̃
. By [Sch13, Proposition 3.14], it implies

that C is a plane normal crossing curve. By Saito criterion [Sai80, (1.8)], if h = xy defines a plane
curve C, then (ω0 = xdy−ydx

h , dh
h ) is a basis of Ω1(logC). Hence the result.

�

Since the family
{
hid̂xj
h ; i ∈ {1, . . . ,m− 1} , j ∈ {1, . . . ,m}

}
generates Ω̃m−1, Proposition 4.5

gives:

Corollary 4.6. Let C be a singular complete intersection curve satisfying condition a). Then

Ωm−1(logC) is generated by the multi-logarithmic form ω0 of Lemma 4.2,
dh1 ∧ · · · ∧ dhk

h
, and

the family
{
hid̂xj
h ; i ∈ {1, . . . ,m− 1} , j ∈ {1, . . . ,m}

}
.

With additional hypothesis, the generating family of Corollary 4.6 is minimal:

Proposition 4.7. Let C be a singular complete intersection curve satisfying condition a), b), c).
The generating family of Corollary 4.6 is a minimal generating family of Ωm−1(logC).

Proof. Let α0, α1, (βij) 16i6m
16j6m−1

be such that:

(18) α0ω0 = α1
dh1 ∧ · · · ∧ dhm−1

h
+

m∑
i=1

m−1∑
j=1

βijhj
d̂xi
h

Since (resC(ω0), 1) is a minimal generating family of RC , we have α0 ∈ m and α1 ∈ m, where m
is the maximal ideal of OS .

Let us prove that for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m− 1}, βij ∈ m.
We notice that the class α0 ∈ OC satisfies α0 · resC(ω0) = α1 ∈ OC and α0 ∈ OC . Thus,

α0 ∈ R∨C = JC . We denote by Ji the maximal minor of the Jacobian matrix of (h1, . . . , hm−1)
obtained by removing the ith column. Then α0 ∈ (J1, . . . , Jm, h1, . . . , hm−1) ⊆ OS . We notice that

dh1 ∧ · · · ∧ dhm−1 =
m∑
i=1

Jid̂xi

Let i0 ∈ {1, . . . ,m}. Let us compute Ji0ω0. We have:

(19) Ji0ω0 = (−1)i0−1wi0xi0
dh1 ∧ · · · ∧ dhm−1

h
+

m∑
i=1
i 6=i0

(
(−1)i−1wixiJi0 − (−1)i0−1wi0xi0Ji

)︸ ︷︷ ︸
=:λi

d̂xi
h

For i 6= j ∈ {1, . . . ,m} and ` ∈ {1, . . . ,m− 1}, we denote by ∆`
i,j the (k − 1)× (k − 1) minor of

the Jacobian matrix obtained by removing the ith and jth columns and the `th line.
Let i ∈ {1, . . . ,m}, i 6= i0. We develop Ji with respect to the i0th column, and Ji0 with respect

to the ith column. We denote by εi0−i the sign of i0 − i. We obtain:

λi =(−1)i−1wixiεi0−i(−1)i−1

(
m−1∑
`=1

(−1)`−1∂h`
∂xi

∆`
i0,i

)
+ (−1)i0wi0xi0εi0−i(−1)i0

(
m−1∑
`=1

(−1)`−1 ∂h`
∂xi0

∆`
i0,i

)

=εi0−i

m−1∑
`=1

(−1)`−1

(
wixi

∂h`
∂xi

+ wi0xi0
∂h`
∂xi0

)
·∆`

i0,i
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In addition, we notice that for all p ∈ {1, . . . ,m} \ {i, i0}:

m−1∑
`=1

(−1)`−1 ∂h`
∂xp

∆`
i0,i = 0

Thus, thanks to condition c), we have:

λi = εi0−i

m−1∑
`=1

(−1)`−1

 m∑
p=1

wpxp
∂h`
∂xp

∆`
i0,i = εi0−i

m−1∑
`=1

(−1)`−1d`h`∆
`
i0,i ∈ m(h1, . . . , hm−1)

Therefore:

Ji0ω0 − (−1)i0−1wi0xi0
dh1 ∧ · · · ∧ dhm−1

h
=

m∑
i=1
i 6=i0

εi0−i

(
m−1∑
`=1

(−1)`−1d`h`∆
`
i0,i

)
d̂xi
h

=: ηi0

In addition, for all j ∈ {1, . . . ,m− 1}, hjω0 ∈ m(h1, . . . , hm−1) · 1
hΩm−1.

Moreover, if Ji0 · ω0 = α1,i0
dh1∧···∧dhm−1

h + η′ with η′ ∈ Ω̃m−1
S , then α1,i0 = (−1)i0−1wi0xi0 + α′,

with α′ ∈ (h1, . . . , hm−1) Therefore,

η′ = ηi0 − α′
m∑
i=1

Ji
d̂xi
h
∈ m(h1, . . . , hm−1) · 1

h
Ωm−1
S

With the notations of (19), α0 is a linear combination of J1, . . . , Jm, h1, . . . , hm−1. Therefore, we
have:

m∑
i=1

m−1∑
j=1

βijhj
d̂xi
h
∈ m(h1, . . . , hm−1) · 1

h
Ωm−1

Since the sequence (h1, . . . , hm−1) is regular, any relation
∑

j µjhj = 0 satisfies for all j ∈
{1, . . . ,m− 1}, µj ∈ (h1, . . . , hm−1) ⊆ m. Therefore, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m− 1},
βij ∈ m. �

Remark 4.8. For plane curves, the statement of Proposition 4.7 is not true. Indeed, a plane curve
D defined by a reduced equation h is always a free divisor so that the module Ω1(logD) is free of

rank 2. A basis of Ω1(logD) is given by ω0 and
dh

h
, but we do not need dx and dy.

Remark 4.9. The statement of Proposition 4.7 is still true if we weaken the condition c) as follows:
at least two equations are in m2.

Since curves are free, by Proposition 3.13, we have depth(RC) = m− (m− 1) = 1 so that by the
Auslander-Buchsbaum Formula 3.7, the projective dimension of RC as a OS-module is m − 1. In
addition, by Theorem 3.5, the projective dimension of Ωm−1(logC) is m− 2.

In Proposition 4.7, we give a minimal generating family of Ωm−1(logC). By using similar methods,
we can go further and compute explicitly a free OS-resolution of RC and Ωm−1(logC) for a quasi-
homogeneous complete intersection curve.

Theorem 4.10. Let C be a reduced quasi-homogeneous complete intersection curve satisfying con-
ditions a) ,b) and c). We set for i ∈ {0, . . . ,m− 2}, Fi =

∧iOm−1
S ⊕

∧iOmS and Fm−1 =
∧m−1OmS .

For all i ∈ {1, . . . ,m− 1}, there exists a map δi : Fi → Fi−1 such that (F•, δ•) is a minimal free
OS-resolution of RC .

In addition, a minimal free OS-resolution (Pj , αj)06j6m−2 of Ωm−1(logC) is given by

∀j ∈ {0, . . . ,m− 3} , Pj =

j+1∧
Om−1
S ⊗ Ωm−1

S ⊕ Fj and Pm−2 = Fm−2
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Therefore, the Betti number bj of Ωm−1(logC) are:

∀j ∈ {0, . . . ,m− 3} , bj =

(
m− 1

j + 1

)(
m

m− 1

)
+

(
m− 1

j

)
+

(
m

j

)
and bm−2 =

(
m− 1

m− 2

)
+

(
m

m− 2

)
Remark 4.11. In both case, the differentials of the free resolutions can be computed explicitly from
the differentials of the Koszul complexes K(h) and K(w1x1, . . . , wmxm).

Proof. Maybe after a change of coordinates, we assume that x1 is a non-zero divisor of OC . We
denote by J1 the minor of the Jacobian matrix obtained by removing the first column. By [Pol15b,
Proposition 3.30], the condition on x1 implies that J1 is also a non zero divisor of OC . Moreover,
since resC(ω0) = w1x1

J1
and (resC(ω0), 1) is a minimal generating family of RC by Proposition 4.5,

J1 /∈ (x1, h1, . . . , hm−1).
By Proposition 4.5, the module RC is generated by resC(ω0) = w1x1

J1
and 1. Therefore, since J1

is a non zero divisor, a free OS-resolution of (w1x1, J1)OC gives a free OS-resolution of RC .
Let us consider the following exact sequence:

(20) 0→ OC
×w1x1−−−−→ (w1x1, J1)OC → (w1x1, J1)OC/(w1x1)OC → 0

A free OS-resolution of OC is given by the Koszul complex K(h) (see Lemma 3.11).
For the right-hand side term, we obviously have

(w1x1, J1)OC/(w1x1)OC = J1 · (OS/(x1, h1, . . . , hm−1))

In addition, for all i ∈ {1, . . . ,m}:

(−1)i−1wixiJ1 = w1x1Ji mod(h1, . . . , hm−1)

Thus, we have the following exact sequence:

0→ (w1x1, . . . , wmxm)→ OS
×J1−−→ J1 · (OS/(x1, h1, . . . , hm−1))→ 0

Therefore a free OS-resolution of J1 · (OS/(x1, h1, . . . , hm−1)) is given by the Koszul complex
K(w1x1, . . . , wmxm). From the resolutions of OC and J1 · (OS/(x1, h1, . . . , hm−1)), we deduce a free
resolution (Pj , δ

′
j)06j6m of (w1x1, J1)OC , with Pj =

∧j Om−1
S ⊕

∧j OmS for 0 6 j 6 m − 1 and
Pm =

∧mOmS . Since the projective dimension of (w1x1, J1)OC is m − 1, the previous resolution is
not minimal.

Thanks to computations analogous to the ones of Proposition 4.7, we can compute explicitly the
maps δ′j . In particular, let (a, b1, . . . , bm) be the image of the generator of

∧mOmS by δ′m. One can
check that a ∈ C\ {0}, and all the other coefficients of the differentials δ′j are in m. It implies the
first statement. For all j ∈ {0, . . . ,m− 2}, δj = δ′j and δm−1 is the restriction of δ′m−1 to

∧m−1OmS .
For the second statement, we use the exact sequence 0 → Ω̃m−1 → Ωm−1(logC) → RC → 0

together with the free OS-resolutions (F•, δ•) of RC and K̃(h)⊗Ωm−1
S of Ω̃m−1 to compute explicitly

a free resolution (P ′j , α
′
j)06j6m−1 of Ωm−1(logC), which is again not minimal. The map α′m−1

composed with the projection on
∧m−1Om−1

S ⊗ Ωm−1
S gives a unit multiple of the identity. All the

other coefficients of the differentials α′j are in m. Hence the second statement. �

Remark 4.12. Let C ⊆ C3 be a space quasi-homogeneous complete intersection curve. By Theo-
rem 4.10, a free resolution of Ω2(logC) is

0→ O5
S → O8

S → Ω2(logC)→ 0

A free resolution of Der2(− logC) is also known (see [GS12, Proposition 5.5]):

(21) 0→ O2
S → O5

S → Der2(− logC)→ 0

The authors of [GS12] also give explicitly the maps of the resolution (21).

If the curve is not quasi-homogeneous, the number of generators can be strictly greater. Let us
give an example.
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Example 4.13. Let h1 = x7
1−x5

2 +x5
1x

3
2 and h2 = x3

1x2−x2
3. The sequence (h1, h2) defines a reduced

complete intersection curve of C3. We use Singular with the algorithm of section A.2.1 to compute
a minimal free resolution of Ω2(logC):

0→ O6
S → O9

S → Ω2(logC)→ 0

Thus, the minimal number of generators of Ω2(logC) is 9. Moreover, among these nine generators,
five are needed to generate RC .

We end this subsection with the following property, which gives counterexamples to the surjectivity
of the map of [Ale12, §6, Theorem 2].

We denote by w-deg(f) the weighted degree of a quasi-homogeneous element f ∈ OC , with respect
to the weight (w1, . . . , wm).

Proposition 4.14. Let C be a reduced complete intersection curve defined by a regular sequence
(h1, . . . , hm−1) satisfying conditions a),b),c).

Let A = (aij)16i,j6m−1 ∈ Mm−1(C) be an invertible matrix with constant coefficients. We set
(f1, . . . , fm−1)t = A · (h1, . . . , hm−1)t. In particular, (f1, . . . , fm−1) also defines the complete inter-
section C. Let Df be the hypersurface defined by f = f1 · · · fm−1.

If there exists `, i, j ∈ {1, . . . ,m− 1} such that f` =
∑m−1

q=1 a`,qhq with w-deg(hi) 6= w-deg(hj)
and a`,ia`,j 6= 0 then:

resC(Ωm−1(logDf )) 6= resC(Ωm−1(logC))

Proof. For the sake of simplicity, we assume that there exist i0, j0 ∈ {1, . . . ,m− 1} such that
a1,i0 · a1,j0 6= 0 and w − deg(hi0) 6= w − deg(hj0).

By Lemma 4.2 and Corollary 2.4, ω =

∑m
i=1(−1)i−1wixid̂xi
f1 . . . fm−1

∈ Ωm−1(logC, f). Let us prove that

resC(ω) /∈ resC(Ωm−1(logDf ). Thus, since the kernel of the residue map is Ω̃m−1
f , we have to prove

that for all η ∈ Ω̃m−1
f , ω + η /∈ Ωm−1(logDf ).

Let η ∈ Ω̃m−1
f . Then η =

∑m−1
j=1

fjηj
f

with ηi ∈ Ωm−1
S . We have dfi =

∑m−1
j=1 aijdhj and:

df ∧ (ω + η) =

m−1∑
i=1

f̂i ·

m−1∑
j=1

(aijdjhj)
dx

f
+

m−1∑
j=1

(dfi ∧ fjηj)


If ω + η ∈ Ωm−1(logDf ) then df ∧ (ω + η) is holomorphic. Since the sequence (f1, . . . , fm−1) is

regular, it implies that f1 divides
∑m−1

j=1 (a1jdjhj + fjθ1,j), where θ1,jdx = df1 ∧ ηj . In particular,
since for all i ∈ {1, . . . ,m− 1}, hi ∈ m2, we also have fi ∈ m2 so that we have θ1,j ∈ m. There exists
q ∈ OS such that:

m−1∑
`=1

a1`d` +
m−1∑
j=1

(aj,`θ1,j)− qa1,`

 · h` = 0

Since (h1, . . . , hm−1) is a regular sequence, we have for all j ∈ {1, . . . ,m− 1},

a1`d` +

m−1∑
j=1

aj,`θ1,j − qa1,` ∈ (h1, . . . , hm−1)

It implies that for all ` ∈ {1, . . . ,m− 1}, a1`(d`−q(0, · · · , 0)) = 0. In particular, for i0 and j0, since
a1,i0 6= 0 and a1,j0 6= 0, we have di0 − q(0, . . . , 0) = 0 and dj0 − q(0, . . . , 0) = 0. Since by assumption,
di0 6= dj0 , it leads to a contradiction, so that df ∧ (ω + η) /∈ Ωm

S and ω + η /∈ Ωm−1(logDf ). �
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4.2. A characterization of plane homogeneous curves via multi-residues. We first describe
the set of values of the logarithmic residues of a plane arrangement of lines. Logarithmic residues
along plane curves are studied in [Pol15a] and [Pol15b].

Proposition 4.15. Let C = C1 ∪ · · · ∪ Cp be the union of p lines in (C2, 0) with p > 2. Let
h =

∏p
i=1(αix+ βiy) be a reduced equation of C. Then:

inf(val(RC)) = (−p+ 2, . . . ,−p+ 2)

Moreover, val(RC) = ((−p+ 2, . . . ,−p+ 2) + val(OC)) ∪ Np.

Proof. A basis of Ω1(logC) is given by ω1 = df
f and ω2 = −ydx+xdy

f . Then, resC(ω1) = 1 and
resC(ω2) = −ay+bx

ah′x+bh′y
with a, b ∈ C such that ah′x + bh′y is a non zero divisor in OC . The denominator

is homogeneous of degree p− 1. Hence the result. �

The following proposition characterizes plane arrangements of lines.

Proposition 4.16. Let (h1, . . . , hm−1) be a regular sequence defining a reduced complete intersection
curve C such that for all i ∈ {1, . . . ,m− 1}, hi is homogeneous of degree di. We set C = C1∪. . .∪Cp
the irreducible decomposition of the complete intersection defined by (h1, . . . , hm−1). In particular,
each Ci is a line.

We assume p > 2. Then

inf(val(RC)) = (−p+ 2, . . . ,−p+ 2) ⇐⇒ C is plane

Proof. The implication ⇐ comes from the previous proposition.
Lemma 4.2 gives an element ω0 in Ωm−1(logC) such that val(resC(ω0)) = 1 −

∑m−1
i=1 (di − 1).

Moreover, this multi-residue satisfies inf(val(RC)) = val(resC(ω0)).
Since the curve C is reduced, the number of lines is equal to the product of degrees: p =

d1 · · · dm−1.
First of all, if there exists i ∈ {1, . . . ,m− 1} such that di = 1, this equation can be removed,

and we consider the complete intersection in Cm−1 instead of Cm (see Proposition 2.20). We can
therefore assume that for all i ∈ {1, . . . ,m− 1}, di > 2.

Let us assume that inf(val(RC)) = (−p+ 2, . . . ,−p+ 2). It means that

1−
m−1∑
i=1

(di − 1) = −d1 · · · dm−1 + 2

which is equivalent to d1 · · · dm−1 =
(∑m−1

i=1 di

)
− m + 2. We assume that d1 = max(di). The

left-hand-side term is greater than 2m−2d1, the right-hand-side term is stricly lower than (m− 1)d1.
Therefore, equality cannot hold if m > 3. Hence the result. �

5. Other results, examples and questions

5.1. Relation with logarithmic vector fields. The notion of logarithmic vector field is defined
in [Pik14], for arbitrary reduced analytic germs. We want to compare it with the notion of multi-
logarithmic k-vector fields in case of a complete intersection.

Definition 5.1 ([Pik14]). The module of logarithmic vector fields is

Θ(− logC) = {η ∈ ΘS ,∀i ∈ {1, . . . , k} ,dhi(η) ∈ (h1, . . . , hk)}

A vector field η ∈ ΘS satisfies η ∈ Θ(− logC) if and only if η is tangent to the complete intersection
at its smooth points. The following property shows that we can deduce multi-logarithmic k-vector
fields thanks to Θ(− logC).

Proposition 5.2.
Θ(− logC) ∧Θk−1

S ⊆ Derk(− logC)
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Proof. Let η ∈ Θ(− logC), and δ2, . . . , δk ∈ ΘS . Then, since for all i ∈ {1, . . . , k}, dhi(η) ∈
(h1, . . . , hk), we have:

dh1 ∧ · · · ∧ dhk (η ∧ δ2 ∧ · · · ∧ δk) ∈ (h1, . . . , hk)

�

Remark 5.3. Let η ∈ Der(− logD). Then, dh(η) =
∑k

i=1 ĥidhi(η) ∈ (h). Since (h1, . . . , hk) is a
regular sequence, it implies for all i ∈ {1, . . . , k}, dhi(η) ∈ (hi) so that Der(− logD) ⊆ Θ(− logC).
In particular, it implies (see [GS12, (5.3)]):

Der(− logD) ∧Θk−1
S ⊆ Derk(− logC)

In the particular case of a complete intersection curve, we have an isomorphism between the
module Θ(− logC) and the module Ωm−1(logC) of multi-logarithmic (m− 1)-forms. We denote by
iη(ω) the interior product of a differential form ω by a vector field η.

Proposition 5.4. Let C be a reduced complete intersection curve. The following map is an isomor-
phism:

Υ : Θ(− logC)→ Ωm−1(logC)

η =

m∑
i=1

αi∂xi 7→
1

h
iη(dx1 ∧ · · · ∧ dxm) =

1

h

m∑
i=1

(−1)i−1αid̂xi

Proof. The map ΘS → Ωm−1, η 7→ iη(dx1 ∧ · · · ∧ dxm) is an isomorphism. Let η =
∑m

i=1 αi∂xi . One
can easily check that for all j ∈ {1, . . . , k}:

dhj(η) = dhj ∧ iη(dx1 ∧ · · · ∧ dxm)

As a consequence, the map Υ is an isomorphism.
�

5.2. Examples of surfaces. In this subsection, we describe several examples computed with the
algorithms of Appendix A. The situation with surfaces seems to be more complicated than in the
curve case.

Example 5.5. Let us consider the complete intersection surface C in C4 given by h1 = t2 + y3 + x3t
and h2 = x2 +z3. It can be checked by Singular using algorithm A.1 that this surface is a reduced
complete intersection, which is not free. Moreover it is a quasi-homogeneous surface, for the weights
(3, 6, 2, 9).

A computation by Singular using algorithm A.3 gives 14 generators for the module Ω2(logC).
It can be seen that a generating family of Ω2(logC) is given by the 12 obvious generators of Ω̃2 and
two more forms: dh1∧dh2

h1h2
and

ω =
6y2zdx ∧ dy + 9xz3tdx ∧ dz − 2z(2t− xz3)dx ∧ dt− 9xy2dy ∧ dz + 3x(2t− xz3)dz ∧ dt

h1h2

A free resolution of Ω2(logC) is:

0→ O2
S → O10

S → O14
S → Ω2(logC)

The module of multi-residues RC is generated over OC by 1 and z
x .

It is possible to check that in that case resC(Ω2(logD)) = resC(Ω2(logC)).

Example 5.6. Let us consider h1 = xyzt and h2 = (x + y + z + t)(x − y + z − t). It defines a
homogeneous reduced complete intersection which is not free. A free resolution of Ω2(logC) is:

0→ OS → O11
S → O16

S → Ω2(logC)→ 0

The module Ω2(logC) is generated by the twelve generators of Ω̃2, and four other forms, including
dh1∧dh2
h1h2

.
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Example 5.7. Let us consider h1 = xz(x + z) and h2 = yt. It defines a free complete intersection.
The hypersurface D is free and splayed (see Proposition 2.24).

0→ O10
S → O16

S → Ω2(logC)→ 0

The module Ω2(logC) is generated by the twelve generators of Ω̃2, and four other forms, including
dh1∧dh2
h1h2

.

5.3. Questions.

Question 1. For curves of codimension at least 2, does the fact that RC is generated by two elements
characterize quasi-homogeneous curves ? For curves of codimension 1, it is wrong, sinceRC is always
generated by two elements (free divisor).

If a minimal generating family of RC contains 1, is C quasi-homogeneous ?

Question 2. Is there again a relation between Ωk(logC) and Tors(Ωm−k
C ) as in [Ale05] for hypersur-

faces ?

Question 3. Let C = C1 ∪ · · · ∪ Cp be a reducible reduced complete intersection curve. For a plane
curve D = D1 ∪ · · · ∪ Dp, the intersection of val(RD) with the axis j for j ∈ {1, . . . , p} gives the
values of the logarithmic residues of the branch Dj . What can we say about the intersection of
val(RC) with an axis ? A component Cj may not be a complete intersection.

Question 4. For a complete intersection C, is there always or when is there a regular sequence
(h1, . . . , hk) defining it so that resC(Ωk(logD)) = resC(Ωk(logC)) ?

Appendix A. Algorithms for Singular

We use Singular for the computation of the examples. Here are given the algorithms used in
this paper. We need the following libraries:
LIB "sing.lib";
LIB "homolog.lib";
LIB "primdec.lib";
LIB "latex.lib";
LIB "general.lib";

A.1. Freeness. This first procedure checks if a sequence (h1, . . . , hk) defines a free reduced complete
intersection. We denote by I the ideal generated by (h1, . . . , hk). We assume that I defines a singular
variety.
proc is_freeci (ideal I)
{ int m=dim(std(0));
int k=size(I);
intvec ci=is_ci(I);
int q=size(ci);
int qq=ci[q];
int p=(m-k)-qq;

if (p<>0)
{"//not a regular sequence"; };

if (p==0)
{ ideal pr=radical(I);

int q=size(pr);
int pp=0;

for (int i=1; i<=q; i=i+1)
{ list S(i)=division(pr[i],I);

poly R(i)=S(i)[2][1];
if (R(i)<>0)
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{pp=1;};};
if (pp<>0)

{"//non reduced complete intersection";};
if (pp==0)

{ matrix Jac=jacob(I);
ideal mi=minor(Jac,k);
ideal J=I,mi;
int u=isCM(J);

if (u==0)
{"// It is a reduced complete intersection with a
non Cohen Macaulay singular locus";};

if (u==1)
{int ss=dim(std(J))+1;
int n=dim(std(I));

if (ss<>n)
{"// It is a reduced complete intersection with a Cohen

Macaulay singular locus, but not of codimension 1";};
if (ss==n)

{"// It is a free complete intersection";};}; };};}

A.2. Curves.

A.2.1. Multi-logarithmic forms. Let C be a reduced complete intersection curve in Cm defined by
I = (h1, . . . , hm−1). The following procedure returns a list which is a minimal free OS resolution of
Ωm−1(logC).
proc logcur (ideal I)
{ int m=dim(std(0));

int k=size(I);
int n=m-k;

if (n<>1)
{"// It is not a curve...";};

if (n==1)
{ for (int i=1; i<=k; i=i+1)
{ideal J(i)=jacob(I[i]);};

int q=m+k*k;
matrix A[k][q];

for (int i=1; i<=k; i=i+1)
{ for (int j=1; j<=m; j=j+1)

{ A[i,j]=(-1)^(j-1)*J(i)[j];};
for (int j=1; j<=k; j=j+1)

{ A[i,m+k*(i-1)+j]=I[j];};};
module K=syz(A); int qK=size(K);
for (int i=1; i<=qK; i=i+1)

{ for (int j=1; j<=m; j=j+1)
{ vector kk(j)=K[i][j]*gen(j);};

vector v(i)=sum(kk(1..m));};
module om=v(1..qK);
list L=mres(om,0);
return(L); };}

A.2.2. Multi-residues. The following procedure gives a family of multi-logarithmic forms whose
residues generate RC .
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proc rescur (ideal I)
{list L=logcur(I);
int m=dim(std(0));
module omk=L[1];
int q=size(omk);
int k=size(I);

for (int j=1; j<=k; j=j+1)
{ for (int i=1; i<=m; i=i+1)

{ vector v(i)=I[j]*gen(i); };
module tom(j)=v(1..m);};

module tom=tom(1..k);
module omt(0)=tom;
module M(0);

for (int i=1; i<=q; i=i+1)
{list S=division(omk[i], omt(i-1));

vector q(i)=S[2][1];
if (q(i)==0)

{ module omt(i)=omt(i-1);
module M(i)=M(i-1);};

if (q(i)<>0)
{module omt(i)=omt(i-1),q(i);
module M(i)=M(i-1),q(i);};};

int s=size(M(q))+1;
module genRc=M(q)[2..s];
return(genRc);}

A.3. Surfaces. Let C be a reduced surface in Cm defined by a regular sequence I = (h1, . . . , hm−2).
The following procedure returns a list which is a minimal free OS resolution of Ωm−2(logC).

proc om2logC (ideal I)
{ int m=dim(std(0));

int k=size(I);
int q=m*(m-1) div 2;
int p=m*(m-1)*(m-2) div 6;

for (int s=1; s<=k; s=s+1)
{ ideal jac(s)=jacob(I[s]);}

matrix A[k*p][q+k*k*p];
for (s=1; s<=k; s=s+1)

{ int c=0;
for (int i=1; i<=m-2; i=i+1)
{ intvec iv(1)=intvec(0..i-1);

int u(1)=(i-1)*m-sum(iv(1));
for (int j=i+1; j<=m-1; j=j+1)
{intvec iv(2)=intvec(0..j-1);
int u(2)=(j-1)*m-sum(iv(2));
for (int l=j+1; l<=m; l=l+1)

{ A[p*(s-1)+c+l-j,u(2)+l-j]=jac(s)[i];
A[p*(s-1)+c+l-j,u(1)+l-i]=-jac(s)[j];
A[p*(s-1)+c+l-j,u(1)+j-i]=jac(s)[l];

};
int d=c; int c=d+m-j;

};
};};
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for (int i=1; i<=k*p; i=i+1)
{ for (int s=1; s<=k; s=s+1)

{ A[i,q+(i-1)*k+s]=I[s];};};
module K=syz(A); int qK=size(K);

for (int i=1; i<=qK; i=i+1)
{

for (int j=1; j<=q; j=j+1)
{
vector kk(j)=K[i][j]*gen(j);
};

vector v(i)=sum(kk(1..q));
};

module om=v(1..qK);
list L=mres(om,0);
module omk=L[1];
int g=size(omk);
return(L);

}

Appendix B. Comparison between simple poles and arbitrary poles

Since the de Rham differentiation induces a complex (ω•C , d), it induces also a complex on R•C by
Theorem 2.16. Nevertheless, we suggest here another proof of the stability of R•C by differentiation.
To do this, we compare the two definitions of multi-logarithmic differential forms suggested by A.G.
Aleksandrov and A. Tsikh.

For q ∈ N, we set Ωq(∗D) the module of meromorphic q-forms with arbitrary poles along D.

Definition B.1 ([AT01], [AT08]). Let ω ∈ Ωq(?D) with q ∈ N. We say that ω is a multi-logarithmic
differential form along C with arbitrary poles along D if the following properties are satisfied:

(1) for all j ∈ {1, . . . , k}, hjω ∈
∑k

i=1 Ωq
(
?D̂i

)
(2) for all j ∈ {1, . . . , k}, dhj ∧ ω ∈

∑k
i=1 Ωq+1

(
?D̂i

)
We denote by Ωq(logC) the module of multi-logarithmic differential forms along C with

arbitrary poles along D.

To simplify the notations, we set Ω̃q =
∑k

i=1 Ωq
(
?D̂i

)
.

Remark B.2. As we will see, the modules Ω•(logC) induce a complex for the de Rham differentiation.
This property is not satisfied by Ω•(logC).

Thus, as regards the stability by d, the modules Ω•(logC) are better, but their main drawback
is that they are not of finite type, whereas the modules Ω•(logC) are.

The relation between the modules Ωq(logC) and Ωq(logC) is:

Proposition B.3. For all q ∈ N we have the equality:

Ωq(logC) = Ωq(logC) + Ω̃q

Proof. The inclusion Ωq(logC) + Ω̃q ⊆ Ωq(logC) is obvious. For the other inclusion, we need the
following lemma, which can be proved by induction on j ∈ {1, . . . , k}, using the fact that (h1, . . . , hk)
is a regular sequence in a local ring:

Lemma B.4 ([CMNM02, Lemma 2.3]). Let p = (p1, . . . , pk) ∈ Nk and n = (n1, . . . , nk) ∈ Nk be
such that for all i ∈ {1, . . . , k}, pi > ni > 1 and a ∈ OS.

If hp1−n1
1 · · ·hpk−nkk a ∈

(
hp11 , . . . , h

pk
k

)
, then a ∈

(
hn1

1 , . . . , hnkk
)
.
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Let us prove Proposition B.3. Let ω ∈ Ωq(logC). We can choose η ∈ Ω̃q and for all I ⊆ {1, . . . ,m}
with |I| = q, aI ∈ OS and nI ∈ Nk such that:

ω =
∑
I

aIdxI

h
nI1
1 · · ·h

nIk
k

+ η

with aI /∈ (h
nI1
1 , . . . , h

nIk
k ), and for all j ∈ {1, . . . , k}, aI /∈ (hj).

Let us prove that we can take for all I, nI = (1, . . . , 1).
Since ω ∈ Ωq(logC), we have h1ω ∈ Ω̃q. We fix I ⊆ {1, . . . ,m} with |I| = q. There exist

(b1, . . . , bk) ∈ OkS and for all j ∈ {1, . . . , k}, mj = (mj
1, . . . ,m

j
k) ∈ Nk with mj

j = 0 such that

aI

h
nI1−1
1 h

nI2
2 · · ·h

nIk
k

=
k∑
j=1

bj

hm
j

where hm
j

= h
mj1
1 · · ·h

mjk
k . To simplify the notations, we denote for all j ∈ {1, . . . , k} nIj by nj , and

n′ = (n1 − 1, n2, . . . , nk). We set for all i ∈ {1, . . . , k}, pi = maxj∈{1,...,k}m
j
i . We have:

aI

hn
′ =

hp−m
1
b1 + · · ·+ hp−m

k
bk

hp

Thus, since aIh
p

n′ is holomorphic and by assumption, for all i ∈ {1, . . . , k}, aI /∈ (hi), we have for
all i ∈ {1, . . . , k}, pi > n′i. Since for all j ∈ {1, . . . , k}, mj

j = 0, we have hp−n
′
aI ∈

(
hp11 , . . . , h

pk
k

)
.

Lemma B.4 gives aI ∈
(
hn1−1

1 , hn2
2 , . . . , hnkk

)
, so that

aIdxI
hn

=
cI

h1h
n2
2 · · ·h

nk
k

+ η′

with η′ ∈ Ω̃q and cI ∈ OS . By induction, one can prove that there exists a q-form ω′ ∈ 1
hΩq with

simple poles along D and η′′ ∈ Ω̃q such that

ω = ω′ + η′′

For all j ∈ {1, . . . , k}, dhj ∧ ω ∈ Ω̃q, thus, dhj ∧ ω′ ∈ Ω̃q. Lemma B.4 can be used in a
similar proof to show that dhj ∧ ω′ ∈ Ω̃q, and therefore, ω′ ∈ Ωq(logC), which finishes the proof of
Proposition B.3. �

The following result is then a direct consequence of both Proposition B.3 and Theorem 2.8:

Corollary B.5 ([AT01, Proposition 2.1]). Let ω ∈ Ωq(logC). There exist g ∈ OS which induces a
non zero divisor in OC , a holomorphic (q − k)-form ξ ∈ Ωq−k

S , and η ∈ Ω̃q such that

gω = ξ ∧ dh1 ∧ · · · ∧ dhk
h1 · · ·hk

+ η

Definition B.6. The multi-residue of ω ∈ Ωq(logC) is resC(ω) =
ξ

g C

∈ Ωq−k
C ⊗OCMC .

As for resC , the map resC is well-defined (see [AT08, Proposition 1.2]). Thanks to Lemma B.3,
we have the following equality:

(22) resC(Ωq(logC)) = resC(Ωq(logC))

We can now state the result announced at the beginning of this appendix:

Corollary B.7. The following diagramm is commutative:
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Ωq(logC) Ωq+1(logC)

Rq−kC Rq+1−k
C

d

d

resC resC

In particular, R•C is stable by differentiation.

Proof. It is a consequence of the Corollary B.5. �
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