A detailed analysis of kernel parameters in Gaussian process-based optimization - Archive ouverte HAL
Rapport (Rapport Technique) Année : 2015

A detailed analysis of kernel parameters in Gaussian process-based optimization

Résumé

The global optimization of expensive-to-evaluate functions frequently occurs in many real-world applications. Among the methods developed for solving such problems, Efficient Global Optimization (EGO) is regarded as one of the state-of-the-art unconstrained continuous optimization algorithms. The most important control on the efficiency of EGO is the Gaussian process covariance function which must be chosen together with the objective function. Traditionally, a param-eterized family of covariance functions is considered whose parameters are learned by maximum likelihood or cross-validation. In this paper, we theoretically and empirically analyze the effect of length-scale covariance parameters and nugget on the design of experiments generated by EGO and the associated optimization performance.
Fichier principal
Vignette du fichier
A detailed analysis of kernel parameters.pdf (804.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01246677 , version 1 (18-12-2015)
hal-01246677 , version 2 (09-02-2016)

Identifiants

  • HAL Id : hal-01246677 , version 1

Citer

Hossein Mohammadi, Rodolphe Le Riche, Eric Touboul. A detailed analysis of kernel parameters in Gaussian process-based optimization. [Technical Report] Ecole Nationale Supérieure des Mines; LIMOS. 2015. ⟨hal-01246677v1⟩
510 Consultations
1198 Téléchargements

Partager

More