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Abstract. The global optimization of expensive-to-evaluate functions
frequently occurs in many real-world applications. Among the meth-
ods developed for solving such problems, Efficient Global Optimization
(EGO) is regarded as one of the state-of-the-art unconstrained contin-
uous optimization algorithms. The most important control on the effi-
ciency of EGO is the Gaussian process covariance function which must
be chosen together with the objective function. Traditionally, a param-
eterized family of covariance functions is considered whose parameters
are learned by maximum likelihood or cross-validation. In this paper, we
theoretically and empirically analyze the effect of length-scale covariance
parameters and nugget on the design of experiments generated by EGO
and the associated optimization performance.
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1 Introduction

We wish to find the global minimum of a function f , minx∈S f(x), where the
search space S = [LB,UB]d is a compact subset of Rd. We assume that f
is an expensive-to-compute black-box function. In this situation, optimization
can only be attempted at a low number of function evaluations. The Efficient
Global Optimization (EGO) algorithm [4] has become a standard for optimizing
such expensive unconstrained continuous problems. Its efficiency stems from an
embedded conditional Gaussian Process (GP, also known as kriging) which acts
as a surrogate for the objective function.

The way the kriging model is learned from data points is essential to the
EGO performance as the kernel determines the set of functions processed by
the algorithm to make optimization decisions. Several methods alternative to
cross-validation or ML have been proposed to tune the kernel parameters. For
example, a fully Bayesian approach is used in [2]. In [4], the process of estimating
parameters and searching for the optimum are combined together through a
likelihood which encompasses a targeted objective. In [7], the bounds on the
parameter values are changing with the iterations following an a priori schedule.
The existing methods for learning kernel parameters are complex so that the
basic phenomena taking place in the optimization when tuning the kernel cannot
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be clearly observed. This paper allows to more deeply understand the influence
of kriging parameters on the efficiency of EGO by studying the convergence of
EGO with fixed parameters on a unimodal and a multimodal function. The effect
of nugget is also investigated.

2 Kriging model summary

Let X = {x1, . . . ,xn} be a set of n design points and y = {f(x1), . . . , f(xn)}
the associated function values at X. Suppose the observations are a realization
of a GP, Y (x). The kriging model is the GP conditional on the observations,
Y (x) | Y (X) = y whose prediction (kriging mean) and variance of prediction
(kriging variance) at a point x are

m(x) = µ+ r(x)>R−1(y− 1µ), (1)

s2(x) = σ2
(
1− r(x)>R−1r(x)

)
. (2)

Here, µ and σ2 are the process mean and variance, 1 is a n × 1 vector of ones,
r(x) is the vector of correlations between point x and the n sample points,
ri = Cor(Y (x), Y (xi)), and R is an n × n correlation matrix between sample
points, Rij = Cor(Y (xi), Y (xj)). The covariance function (i.e., kernel) used in
this paper is the isotropic Mateŕn 5/2 function defined as [5]

k(x,x′) = σ2Cor(Y (x), Y (x′)) = σ2
(

1 +
√
5‖x−x′‖
θ + 5‖x−x′‖2

3θ2

)
exp

(
−
√
5‖x−x′‖
θ

)
, (3)

in which the parameter θ > 0 is called characteristic length-scale and controls
the correlation strength between pairs of response values. The smaller θ, the
least two response values at given points are correlated, and vice versa.
When a nugget, τ2, is added to the model, the covariance function becomes

kτ2(x,x′) = k(x,x′) + τ2δ(x,x′), (4)

where δ(., .) is the Kronecker’s delta. The process mean and variance are esti-
mated by ML [5], In this paper, the process mean and variance are estimated by
the following ML closed-form expressions [5],

µ̂ =
1>R−1y

1>R−11
, σ̂2 =

(y− 1µ̂)>R−1(y− 1µ̂)

n
, (5)

so that the only kernel parameters left are θ and τ2.
At any point x in S, the improvement is defined as I(x) = max(0, fmin −

Y (x) | Y (X) = y) where fmin is the best objective function value observed so
far. The improvement is the random excursion of the process at any point below
the best observed function value. The expected improvement can be calculated
analytically as

EI(x) =

{
(fmin −m(x))Φ

(
fmin−m(x)

s(x)

)
+ s(x)φ

(
fmin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 ,
(6)
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where Φ and φ denote the cumulative distribution function and probability den-
sity function of the standard normal distribution, respectively. EI(x) is null at
data points, positive everywhere else. It is increasing when the kriging variance
increases and when the kriging mean decreases. The first term in Eq. (6) is dom-
inated by the contribution of kriging mean to the improvement while the second
term is dominated by the contribution of kriging variance. The EGO algorithm
consists in the sequential maximization of EI, xn+1 = arg maxx∈S EI(x) fol-
lowed by the updating of the kriging model with X∪{xn+1} and the associated
responses y.

3 EGO with fixed length-scale

We start by discussing the behavior of EGO with two different fixed length-
scales (small and large). The magnitude of length-scale is measured with respect
to the longest possible distance in the search space, Distmax which, in our d-
dimensional search space is equal to (UB − LB)

√
d. θ is large if it is close to

or larger than Distmax and vice versa. Here, LB = −5 and UB = 5. Fig. 4
illustrates the kriging models on the Ackley test function (defined below) in 1
dimension and the associated EIs for small and large length-scales.

When θ is small, there is a low correlation between response values so that
data points have an influence on the process only in their immediate neigh-
borhood. As θ → 0 and away from the data points, the kriging mean and
variance of Equations (1) and (2) turn into the constants µ and σ2, respec-
tively, thus the EI becomes a flat function: when x is away from xi, EI(x) ≈

(fmin− µ̂)Φ
(
fmin−µ̂

σ̂

)
+ σ̂φ

(
fmin−µ̂

σ̂

)
. Also, µ̂ =

n∑
i=1

yi

n and σ̂2 =

n∑
i=1

(yi−µ̂)2

n since

R becomes an identity matrix in Equation (2). In this case, the next infill sample
is always in the immediate vicinity of the design point with the lowest function
value (if there are many points with lowest observation, the most isolated one).
Irrespectively of the function being optimized, the set of design points created
by EGO with small θ, has characteristically repeated samples near the best
observed points (cf. example at the bottom left of Fig. 4).

When the length-scale is small, the observations have low range influence. In
the limit case, one can assume that in a vicinity of ith design point the correlation
between yi and other observations is zero. LetBε((x

i, yi)) =
{
x ∈ S : ‖x− xi‖ ≤ ε

}
be the immediate vicinity of data point (xi, yi). If the amount of correlation be-
tween yi and Y (x) for x ∈ Bε((xi, yi)), is denoted by r ∈ (0, 1), the kriging mean
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and variance and the EI can be expressed by r in this region as follows:

m(r(x)) =µ+ r(1)−1(fmin − µ) = µ(1− r) + rfmin, (7)

s2(r(x)) =σ2
(
1− r(1)−1r

)
= σ2(1− r2), (8)

EI(r(x)) =(1− r)(fmin − µ)Φ

(
fmin − µ

σ

√
1− r
1 + r

)
+

σ
√

1− r2φ
(
fmin − µ

σ

√
1− r
1 + r

)
. (9)

By dividing both sides of Equation 9 by σ and introducing the new variable A
that equals fmin−µ

σ ≤ 0, the normalized expected improvement EI/σ, reads

EI(r(x))/σ = (1− r)AΦ
(
A

√
1− r
1 + r

)
+
√

1− r2φ
(
A

√
1− r
1 + r

)
. (10)

Note that when r → 0, EI/σ = AΦ(A) + φ(A). Fig. 1 illustrates the case that
EI is explained as EI(r(x)) when the length-scale of the kriging model is 10−12.
Also, EI/σ is plotted with three different values of A.
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Fig. 1: EI as a function of r ∈ (0, 1) for θ = 10−12. The next infill sample will be
taken where r ' 0.77.

An example is provided in Fig. 2: when θ tends to zero, the next EGO iter-
ate is in the neighborhood of an already observed point with minimal objective
function value. Because in practice θ has a positive finite value, after some iter-
ations the next EGO iterate will jump from a design point with lowest objective
function value to the neighborhood of the next observed point striking the best
compromise between low objective and low sampling density.
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Fig. 2: 2D illustration of search points (bullets) obtained by EGO with small
length-scale (θ = 0.01) on the Sphere (left) and Ackley (right) functions.

On the contrary, when θ →∞, it can be proved that the term r(x)>R−1r(x)
in Equation (2) tends to 1. Because r(x) and R become a vector and matrix of
ones. The matrix R has only one non-zero eigenvalue that equals n, the matrix

size [1]. The corresponding eigenvector is v =
√
n
n (1, . . . , 1)>. To invert such a

non-invertible matrix, we use Moore-Penrose pseudoinverse [6] denoted by R†

and defined as

R† = [v W]

[
1
n 01×(n−1)

0(n−1)×1 0(n−1)×(n−1)

]
[v W]

>
, (11)

in which W contains the n−1 eigenvectors associated with the zero eigenvalues.
Now, it is easy to show that r(x)>R−1r(x) = (1, . . . , 1)R†(1, . . . , 1)> = 1. As a
result, the kriging variance, s2(x), becomes zero. In this case, EI(x) → fmin −
m(x) and the EGO search degenerates to an iterative minimization and updating
of the kriging mean m(x).

Minimizing kriging mean does not define a valid global optimization scheme
because premature convergence occurs as soon as the minimum of m(x) coincides
with an observation of the true function [4]: when m(xn+1) = f(xn+1) where
xn+1 = arg minx∈S m(x), the EGO iterations with large θ stop producing new
points, however xn+1 ∪X may not even contain a local optimum of f . The DoE
created by EGO with large θ can vary greatly depending on the function and
the initial DoE. On the one hand, if the function is regular and well predicted by
m() around xn+1, like the Sphere function, the kriging mean rapidly converges
to the true function and points are accumulated in this region which may or not
be the global optimum, see Fig. 3.

On the other hand, if m(xn+1) is different from f(xn+1), the kriging mean
changes a lot between iterations because new observations have long range in-
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Fig. 3: DoE created by EGO with θ = 100. The global minimum is located at
2.5.

fluence. The kriging mean overshoots observations in both upper and lower di-
rections (cf. the dotted blue curve in the upper left plot of Fig. 4). The resulting
DoE is more space-filling than the DoE of small length scales. An example of
such DoE is provided at the bottom right of Fig. 4.

In the sequel, the efficiency of EGO with different fixed length-scales is com-
pared with the standard EGO whose length-scale is learned by ML. Tests are
carried out on two isotropic functions, the unimodal sphere and the highly mul-
timodal Ackley functions:

fsphere(x) =
d∑
i=1

(xi)
2

fAckley(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2i

)
− exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20− exp(1).

Both functions have 0 as minimal value. Each optimization is repeated 5 times
on 5 dimensional instances of the problems, d = 5. The initial DoE is fixed and
has size 3× d. The search length is 70× d. To allow comparisons of the results,
the functions are scaled (multiplied) by 2

fmax
DoE−fmin

DoE
, where fminDoE and fmaxDoE are

the smallest and the largest value of function f in the initial DoE.

Fig. 5 shows the results of the comparison in terms of median objective
functions. The θ values belong to the set {0.01, 0.1, 1, 5, 10, 20}. On both test
functions, the algorithm does not converge quickly towards the minimum when
θ = 0.01 or θ = 0.1 because it focuses on the neighborhoods of the best points
found early in the search. On the Sphere function, EGOs with large length-
scales, θ = 20 or θ = 10, have performances equivalent to that of the standard
EGO. Indeed, the Sphere function is very smooth and, as can be seen on the
rightmost plot of Fig. 5, ML estimates of θ are equal to 20 (the upper bound
of the ML) rapidly after a few iterations. With the multimodal Ackley function,
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Fig. 4: Ackley function (black solid line) approximated by a kriging model (mean
± std. deviation, thick/thin lines) with θ = 0.001 (dashed pink) and θ = 100
(dotted blue). The crosses are the initial DoE. Top, right: EIs at iteration 1 with
the stars indicating the EI maximums. Bottom, red bullets: DoEs created by
EGO after 20 iterations with θ = 0.001 (left) and θ = 100 (right).
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the best fixed θ is equal to 1. It temporarily outperforms the standard EGO
at the beginning of the search (until about 70 evaluations) but then ML allows
decreasing the θ’s until about 0.5 (see rightmost plot) and fine tuning the search
in the already located high performance region.
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Fig. 5: Median of the best objective function vs. number of calls of standard EGO
and EGO with different fixed length-scales on the Sphere (left) and the Ackley
(middle) functions, d = 5. Right: evolution of θ learned by ML in standard EGO.

4 Effect of nugget on EGO convergence

To investigate the effect of nugget on EGO, we carry out the same test protocol
as above but the length-scales are set by ML and two scenarios are considered:
1) the nugget τ2 is estimated by ML, 2) a fixed nugget is taken from the set
τ2 ∈ {10−2, 10−4, 10−6, 10−8, 0} (τ2 = 0 means no nugget). Fig. 6 shows the
results. For both test functions, when the nugget value is large (10−2 or 10−4

or ML estimated on Ackley), EGO exhibits the worst performances: it does not
converge faster and stops further from the optimum. The reason is that a large
nugget deteriorates the interpolation quality of a kriging model when observa-
tions are not noisy like here. On the Sphere function, EGO rapidly locates the
area of the optimum but the EI without nugget, which is null at data points,
pushes the search away from it. However, a nugget value equal to 10−6 or 10−8

hardly slows down convergence and significantly improves the accuracy with
which the optimum is found. Indeed, by increasing the uncertainty s2(x) every-
where including in the immediate vicinity of data points, where it would be null
without nugget, nugget increases the EI there and allows a higher concentra-
tion of EGO iterates near the best observed point. The nugget learned by ML
on the Sphere tends to 0 which, as just explained, is not the best setting for
optimization.

On Ackley, besides large nugget values (τ2 ≥ 10−4) which significantly de-
grade the EGO search, values ranging from τ2 = 0 to 10−6 do not notably affect
performance. In this case, the global optimum is not accurately located after
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70× d evaluations of f , there is no need to allow through nugget an accumula-
tion of points near the best observation.

Note that on both functions, ML estimation of nugget is not a good strategy.
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Fig. 6: Median of the best objective function vs. number of calls to f for EGO
with different nugget values on the Sphere (left) and Ackley (middle) functions
in dimension 5. Right: ML estimated nugget, τ2, vs. number of calls to f .

5 Concluding remarks

To sum up, this paper carefully explains the DoEs generated by EGO with fixed
length-scale and nugget. In terms of performance, ML estimation of the length-
scales is a good choice but ML estimation of nugget is not recommended (a
fixed small nugget value should be preferred). As a perspective, EGO strategies
starting with a large fixed length-scale and then decreasing it while keeping a
small amount of nugget should be efficient while avoiding ML estimations which
require O(n3) computations [3].
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