Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors - Archive ouverte HAL
Article Dans Une Revue IEEE Journal of Biomedical and Health Informatics Année : 2015

Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors

Résumé

Removing muscle activity from ictal ElectroEn-cephaloGram (EEG) data is an essential preprocessing step in diagnosis and study of epileptic disorders. Indeed, at the very beginning of seizures, ictal EEG has a low amplitude and its morphology in the time domain is quite similar to muscular activity. Contrary to the time domain, ictal signals have specific characteristics in the time-frequency domain. In this paper, we use the time-frequency signature of ictal discharges as a priori information on the sources of interest. To extract the time-frequency signature of ictal sources, we use the Canonical Correlation Analysis (CCA) method. Then we propose two time-frequency based semi-blind source separation approaches, namely the Time-Frequency-Generalized EigenValue Decomposition (TF-GEVD) and the Time-Frequency-Denoising Source Separation (TF-DSS), for the denoising of ictal signals based on these time-frequency signatures. The performance of the proposed methods is compared with that of CCA and Independent Component Analysis (ICA) approaches for the denoising of simulated ictal EEGs and of real ictal data. The results show the superiority of the proposed methods in comparison with CCA and ICA. Index Terms—Generalized EigenValue Decomposition (GEVD), Denoising Source Separation (DSS), Canonical Correlation Analysis (CCA), Semi-blind source separation, ElectroEncephaloGram (EEG), fast ictal activity, epileptic seizure
Fichier principal
Vignette du fichier
TF-GEVD-DSS.pdf (3.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01246033 , version 1 (17-12-2015)

Identifiants

Citer

Sepideh Hajipour, Mohammad Bagher, Laurent Albera, Isabelle Merlet. Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors. IEEE Journal of Biomedical and Health Informatics, 2015, 19 (3), pp.839-847. ⟨10.1109/JBHI.2014.2336797⟩. ⟨hal-01246033⟩
244 Consultations
299 Téléchargements

Altmetric

Partager

More