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Abstract—Removing muscle activity from ictal ElectroEn- these rapid discharges on scalp EEG is critical for the presu
cephaloGram (EEG) data is an essential preprocessing stepgical evaluation of patients who are candidates for sefecti
n dla€n0_3|s_ a”det“qy of eplleﬁ)tlcééiésolf]ders. Ilndeed, "’:_t tg surgery. Unfortunately, the rapid ictal discharges areowf |
very beginning or seizures, ictal as a low amp itude . ceg
and its morphology in the time domain is quite similar to amplitude and the_refore difficult to de_tect on s_calp E_EGne\(e
muscular activity. Contrary to the time domain, ictal signals More so when signals are contaminated with various kind
have specific characteristics in the time-frequency domainin  of artifacts. Among them, muscular activity arising froneth
this paper, we use the time-frequency signature of ictal dis contraction of head muscles is often associated with @lnic
charges as a priori information on the sources of interest. @ symptoms occurring at the onset of seizures, and is paatigul

extract the time-frequency signature of ictal sources, we se = . . L
the Canonical Correlation Analysis (CCA) method. Then we difficult to remove due to its broad distribution in frequgnc

propose two time-frequency based semi-blind source sepaian ~ and its unstereotyped spatial distribution.
approaches, namely the Time-Frequency-Generalized Eig#alue Different denoising methods have been proposed and tested

Decomposition (TF-GEVD) and the Time-Frequency-Denoisig to denoise ictal signals, from simple low-pass filtering toren
Source Separation (TF-DSS), for the denoising of ictal sigls ., nhlicated algorithms, such as matched filtering [16] and

based on these time-frequency signatures. The performancef . . L
the proposed methods is compared with that of CCA and Inde- Blind Source Separation (BSS) methods. Principal Compbnen

pendent Component Analysis (ICA) approaches for the denoisg  Analysis (PCA), Independent Component Analysis (ICA) and
of simulated ictal EEGs and of real ictal data. The results sbw Canonical Correlation Analysis (CCA) are the most common

the superiority of the proposed methods in comparison with A BSS techniques. These techniques have been used to denoise
and ICA. ictal EEG data [10], [12], [14], [17]-[19] and were shown
Index Terms—Generalized EigenValue Decomposition to be efficient to retrieve the EEG rhythmic activity during
(GEVD), Denoising Source Separation (DSS), Canonical seizures. However, these studies have not specificallyeaddr
Egé?r'ggzge ’?’\]r;.?(l))gllz.m(c(%?é)Sefzsl-tb“'r(l?m S%‘é?e.t sepaqatufarg the difficult issue of denoising fast ictal activity arisiatthe
seizure P ' ' VI, €PIEPIC  onset of seizures. As their names indicate, the BSS metiwds d
not use any prior information from subspace of interest.iBut
some applications, useful knowledge about sources ofester
l. INTRODUCTION is either available or can be achieved. In our application,
although ictal fast activity does not have a specific morpgypl
PILEPSY is one of the most common neurological disa the time domain, its signature in the time-frequency dioma
orders. In diagnosis and study of epileptic disorders narrow-band while that of muscle activity is broad-band
ElectroEncephaloGraphy (EEG) is a widely used technolod$4]. These characteristics can be used to separate ichal fa
In particular, the recording and interpretation of EEG lictactivity from muscular activity.
discharges during seizures in patients with refractoryigar In this paper, we propose two methods for denoising ictal
epilepsy is a key component in the presurgical evaluation BEG data based on the Generalized EigenValue Decomposi-
these patients that contributes, along with other morgficdd tion (GEVD) and on the Denoising Source Separation (DSS)
and functional explorations, to the delineation of the egpil [15] frameworks, respectively. Indeed, we are interested i
togenic zone. The intracerebral recording of these dig@sar proposing semi-blind source separation methods instead of
in partial epilepsies have shown the occurrence of low geltacompletely blind ones. To this end, we look for some a priori
fast activity at the beginning of seizures. These rapidl ictanformation on sources of interest to define the covariance
discharges are considered as electrophysiological siggst matrix in the GEVD method and in the denoising step of the
of the epileptogenic zone, i.e. of the brain region(s) fro@SS method. Accordingly, the proposed semi-blind methods,
where the seizure starts [3], [4], [21]. The surgical résacdf namely TF-GEVD and TF-DSS, use the time-frequency sig-
regions generating rapid ictal discharges has been ctadelanature of ictal discharges to denoise ictal EEGs. To extract
with a good surgical outcome [1], [5], [22]. Therefore, kg the time-frequency information on ictal sources, we use the



CCA approach that has been shown to be the most efficiemthogonal Then there exists four matrices of coordinates
method to date for denoising ictal EEG signals contaminatggmely 4/, 2, 2™ and 4", such that:

by muscular activity [10], [12], [14]. In the rest of this pap - (0) (b) - (m) - )
we first present the problem formulation. Section Ill beging[n]=A 39Mml+A"7 30 m+A " s+ A" 5[

with the description of the CCA-based method used to extract — 4 3[p] 2)
the time-frequency signature of ictal subspace. Then waelefi .

the general formulation of the proposed semi-blind methol*ziéf‘ere the P rows {5,[n]} of the vector signas[n]} are
and mathematically compare their formulations. In sectign Pairwise orthogonal. Consequently, by assigning the vafig
we compare the performance of the proposed algorithms wiffier product:

tnat of CCA [10] qnd ICA [7] for the. den0|3|ng of both V{yln]} € RY, V{z[n]} € RV,

simulated and real ictal data. This section is followed bg th

conclusion. Hy[n]}, {z[n] iv: 3)

to RN, the (P x P) matrix Cs, whose(p;, p2)-th component
is equal to({5,, [n]}, {5,,[n]}), is a diagonal matrix.

The ictal EEG data is recorded by meansidfelectrodes ~AS a result, by computing an orthogonal vect;r'%gg)a&s
placed over the scalp according to one of the internatlonifﬂ n]} of the epileptic subspace and the correspon
systems. Mean subtraction is then performed. That is, fmﬁ”'x of coordinates from the measureme{@n]}(»)theM-
each channel, the mean of the corresponding time serftimensional signafz()[n]} given byz(*)[n] = A" 5 [n]
is subtracted from each value in order to remove constatill represent the denoised ictal EEG data.
artifacts, leavingM/ EEG signals oscillating positively and In the following sections, the-th ictal source and the-
negatively around the zero line. TR&samples of the resulting th source will correspond to the-th vector of the epileptic

M-dimensional centered ictal EEG signal can then be modele@sis{3“/[n]} and thep-th vector of the whole basi&s[n]},
as follows [2]: respectively. In addition, we denote I,  [n,k| the linear

time-frequency transform of then-th recorded ictal EEG
z[n] = A(e)s(e)[n] +A(b)s(b)[n] +A(m)s(m)[n] +uln] Q) si_gnal, i_n the time sample and frequency sample. Th_eM-
dimensional vectofl;[n, k] then contains thén, k)-th linear
time-frequency samples of the channels. Therefore, accord-
ing to (2), for each couplén, k) of {1,...,N} x {1,..., K},

Il. PROBLEM FORMULATION AND NOTATIONS

where{s(©[n]}, {s®[n]}, {s"™[n]} and{v[n]} are centered
vector signals representing. ictal epileptic activities, P,

background activities,P,,, muscular activities and an/- we have:

dimensional instrument noise, respectively, with + P, + P -

P,, > M. The mixing matricesd®), A® and A™ of size Teln, k] = de Ts,[n, k] = ATs[n, k| 4)
(M xP,), (M xP,) and(M x P,,), model the transfer function =

from all possible activities within the brain to scalp efecles. where 7 LIn, k], Ts[n,k] denote the linear time-frequency

In addition, we can assume that the four vector S|gnaisansform of thep-th source and that of th® sources in the
{s@[n]}, {s®n]}, {s"™[n]} and{v[n]} generate four lin- time-frequency samplén, k), respectively.
early independent subspacesRY, respectively, since they According to the property that the energy of thg ictal
correspond to different physiological/physical phenoméret epileptic activities is local in the time-frequency doméld],
P., P,, P,, and P, be the dimensions of the four previousor the p-th ictal source we assume that the largest portion
subspaces. Then, we will also assume the following inetyualbf its energy is reserved in a time-frequency SubBet?)
P < M whereP = P, + P, + P, + P,. of {1,..,N} x {1,..,K}. Thus, we aim at computing an
As a result, at best we can hope to identify the fowrthogonal vector basis of the epileptic subspace usirgahi
subspaces generated by the epileptic activities, the nharscyriori information on the ictal sources through specificdim
activities, the background activities and the instrumesis®, frequency matrices. Let us assign the following inner poidu
respectively, but not exactly the = P.+ P,+ P, electrophys- Nx K NXK
iological activities and thel/ noise signals involved in (1). Viyln k] € C o Vizdn, k]} € C
Note that this subspace identification is sufficient for thieGE
denoising problem since we do not want to exactly extract ({yln, K}, {n. K]} Z Zy n, k] 2[n. K]*(5)
the P. epileptic activities; in fact, we just want to remove nEtk=L
the contribution of the muscular activities, the backgaurfo CV**, where z[n, k]* denotes the conjugate afin, |.
activities and the instrument noise from the scalp datf]}. Given an L-dimensional signau[n]} and its linear time-
Let the]5 -dimensional signaf3®)[n]}, the P,- d|men5|0nal frequency transforn{](“)[n ,k]}, we define the time-frequency
signal {3®[n]}, the P,,-dimensional signa3™[n]} and matrices C,, and C,, as the (L x L) matrices whose
the P,-dimensional signa{3)[n]} be an orthogonal cen- (¢1,£2)-th component is equal t(){Tu,Zl (1, K]}, { T, [0, k]})
tered vector basis of the epileptic, background, muscuidr aand <{Tue1 (1, k] Lo [0, k1 T, [0, K] Lrpa [0, K]}), re-
instrument noise subspaces, respectively, and be mutualectively, wherd ;) [n, k] is equal to one ifn, k) belongs



: Time-frequency transform ) Identifying the ) Creating the p-th _L Semi-blind
' of all sources p-th ictal source time-frequency mask || denoising
' Extracting the time-frequency signature of the p-th ictal source {| methods:
_________________________________________________________________________________ ! >
TF-GEVD
Time-frequency transform of observations or
TF-DSS

Fig. 1. The flow chart of the denoising procedure to extraetgitth ictal subspace corresponding to fh¢h ictal source.

to TF(®) and zero otherwise. We thus define ttiex L) time- representation of each source and then we choose the sources
frequency matrixéf) by 61@ —C, - @S’). Note that for Of interest based on a signature that consists of a narrow-
L = 1, i.e. for a monodimensional signdk[n]}, we will band, high frequency mode at _the begmmng of the seizuag, th
replace the bold capital lette® by the lower case letter. decreases in frequency over time. Figures 2(a) and 2(b) show

It is also noteworthy that will denote the pseudo-inverse@n €xample of the selected ictal source extracted by CCA and
operator in the following sections. its linear time-frequency representation, respectivilythis

paper, we use the Continuous Wavelet Transform (CWT) with
real Morlet mother wavelet which shows a good represemtatio
of ictal sources in the time-frequency domain. As explained
In this section, we propose two semi-blind source separatifter in this section, since the real-valued data shoulddss u
methods to denoise ictal EEG signals. They use some a prigrithe proposed algorithms, CWT with real Morlet mother
information on the ictal sources in the time-frequency domawavelet is an appropriate choice. After selecting the sesiof
that should be initially extracted. The general flow charthef interest, we use an automatic procedure to generate the time
proposed methods to extract the ictal subspace corresppndiequency mask. To this end, we use an appropriate threshold
to the p-th ictal source is shown in figure 1. As shown ino select the dominant time-frequency samples from thetine
this figure, the proposed methods consist of three main :stepse-frequency representation of each source of intefese.
1) extracting the linear time-frequency signature of fhth  threshold used for the source of interést is obtained as
ictal source, 2) calculating the time-frequency transfarfn ths, = mir. |+ o, | Wherem\Tgp\ and o, | are the mean
the observations and 3) applying a time-frequency-based sevalue and standard deviation of the absolute valuds df, |
blind denoising method to linear time-frequency transf@im over all(n, k) € {1, ..., N} x {1, ..., K'}, respectively. Then the
the observations. The proposed methods only differ in th@solute value df’s, [n, k] is compared witlth;, at each time-
third block where either TF-GEVD or TF-DSS is used fofrequency sampldn, k) and thep-th time-frequency mask
the denoising procedure. These steps are explained indetgi») is obtained as follows:
in the rest of this section and then the relation between the 1 if [Ts, [0 K| > ths
two proposed methods is studied. S®P)[n, k] = { 0 ow

IIl. METHODOLOGY

(6)

Then, we consider the obtained time-frequency ma$k
as a bhinary image and modify it by using morphological
) operators. To this end, we use the morphologicibsing'

The CCA approach is a BSS method that extracts th@erator [11] with a disk structuring element of size 1. The
sources from observations with the main assumption that 8osing' operator performs morphological closing on the
sources are mutually uncorrelated as well as maximally-augayscale or binary image by applying a dilation followed
correlated [10]. As shown in previous studies [10], [14],A°C by an erosion, using the same structuring element for both
surpasses other methods for the denoising of ictal signalperations. By using this operator, the holes in the initial
Nevertheless, it can not achieve good results in some iostanijme-frequency mask are filled. Figure 2(c) shows the time-
such as low SNRs. In the method we propose, we use the C&fquency mask created by the above-mentioned procedure.

method to extract some a priori information on ictal sourcege time-frequency samples corresponding to g ictal
in order to improve the ictal noise cancelation processhi® t soyrce are then reserved in the &&t®)-

end, we apply the CCA method on the observed EEGs to ob-

tain M sources. The next step consists in selecting the sources ~ TF® = {(n{?), k")) € the p-th ictal mask (7)

qf ictal activit_y. A yisual selection .Of iCta_‘I sources fromeir e obtained samples will then be used in the proposed TF-
time course is difficult and sometimes |mp055|ble.. Theefol D or TE-DSS methods to denoise ictal signals.

different methods have been proposed to select ictal ssurce

from all extracted ones, such as methods based on the time-

frequency transform of each source [14] and methods basedfnTF-GEVD

spectral coherence of sources [18]. To select the sourges coln this section, we propose a Generalized EigenValue
responding to ictal activities, we use the linear time-freioqcy Decomposition-based method to identify thh ictal source

A. Extracting time-frequency mask corresponding to eatzt ic
source



005 " l ‘ ‘ ‘ ‘ ‘ ‘ z[n] = ©% x[n] is equal to the identity matrix. In practic®
-0.05/ L s s t t s . is computed as a square root of the time-frequency meltrix

0 ey 20 By means of this whitening procedure, the matfixdefined in

(CY

(2) is transformed into an orthogonal matrix of size x P).

The four consequent steps are the main steps of the TF-DSS
method which are repeated in an iterative procedure to @xtra
the p-th ictal source [15]. First, by using &-dimensional

5 10 15 20 25 30 35 initial vector w,, of unit norm, a noisy estimate of the time-
o) frequency transform of the-th ictal source for each time-
_ 50 frequency samplén, k) is calculated as follows:
I 4
3 % e T o [n, k] = w," Tx[n, k] (9)
= " Lol s . IP
s The next step, called the denoising step, is the main stage
° 0B ey 2 ® of the algorithm. In this stage, the current estimated time-
© frequency transform of the-th ictal source, for each time-

Fig. 2. Procedure used to create the time-frequency maglespmnding frequency samplén, k)’ is modified or denoised as follows:

to an ictal source, (a) selected ictal source generated b#, GR) time- + _
frequency representation (absolute value of CWT) of thal isburce and Ty§f> [n, k] - Tyéc) [n7 k] Lrp [n, k] (10)

(c) time-frequency mask corresponding to the ictal soufce@)p In the third and fourth steps by using the denoised

time-frequency transform of the-th ictal source, namely
using its time-frequency suppdf(*). More particularly, we {TE”[R’ k|}, a new estimation of the mixing vector is cal-
aim at computing the//-dimensional vectotw,, such that the culated and normalized as follows:

signal {y\”'[n]} defined byy,”[n] = w," z[n] is an estimate wh = [wh, w7 with
of thep-th ictal source. To this end, we maximize the following b P T P
quotient of energies on and outside the time-frequencyatipp wt , = <{Tz [, K], {Tfe>[n,/€]}> (11)
TF®): mr ' vy
o) - A w, = 12
) = B W Ca w ® " T e
Cy;c) w'C, w Then, the present estimated mixing vectoy, is passed to

L . _ - the first step given by (9) and this procedure continues until
which is a Rayleigh quotient. Finding the argumenf of s ,nvergence. The global convergence of the iterative DS
the maximum of (8) is equivalent to solving a specific GEVR heme is proved in [15]. The outputs of the algorithe,and

problem, i.e. computing the eigenvector as(f?cialted( \;vnh tn1e signal{y,(,e) [n]}, which is defined bw}()e) ] = w," z[n],
largest eigenvalue of the\ x M) matrix pr pr ) are the separator and an estimate ofjikté ictal source.

It should be noted that if we have extracted the first 1
sources, to extract the-th source, the fourth step given by
(12) can be replaced by:

By executing the above-mentioned procedure for gaeh
{1,..., P.}, P. vectorsw, are extracted and the matrit

#

of coordinates can be estimated XS(Y(E)) where X and wt = Tt wt (13)
Y () are the(M x N) and(P. x N) matrices standing for the ' wl '
M-dimensional signafx[n]} and theP.-dimensional signal w, = —— (14)

@) i b (€[] — [4/(©) @ [Jw |l
{y'“/[nl}, respectively, withy'“/[n] = [y, [n], -,y [n]]". , o

where the orthogonal projectdl~ is defined by:

C. TFDSS L -1 (gr-1" g-1y-1gr-1)"

The DSS [15] method is a relatively recent framework - = I1-B" (BY . B V)T BY
which can be used to design new source separation algorithms = 1- Br~UBE-Y (15)
This framework can be optimized to generate a wide ran h:
of source separation algorithms, from completely to plytia B-1 — [wi, ..., wy_1] (16)

blind methods to solve specific problems. In this framework,

the source separation algorithms incorporate denoisinp-meBy adding this deflation step to the DSS framework, the

ods, such that various kinds of prior knowledge are fornmalat convergence to previously extracted ictal sources is prtede

based on denoising goals [15]. In this section, we proposd1®]-

DSS-based method to denoise ictal EEG data in the time-BY executing the above-mentioned procedure for each

frequency domain. p € {1,...F.}, all separatorsw, and consequently the
The TF-DSS algorithm is based on a whitening of theorresponding ictal source are estimated. The ma?trﬁ(;? of

linear time-frequency transform of observatio§d,,[n,k]}, coordinates can then be obtained similarly to the TF-GEVD

such that the time-frequency matrX, of the output signal method as described at the end of section I11-B.



D. Relation between TF-GEVD and TF-DSS methods simulated and real data. We also compare these two algaithm
In this section, we study the similarity between both prd¥ith the CCA and ICA methods. CoMwas used to represent
posed algorithms to extract theth ictal source. First, for the the ICA approach based on the study proposed in [2] showing
TF-DSS method, we do not consider the deflation step (13)€ good trade-off between estimation accuracy and nuateric
which means that only one ictal source has to be estimate§omplexity of CoM.

In the TF-GEVD method, the GEVD problem of the pair of

matrices@(mp) and C’f) can be reformulated as an exact joinf\. Simulated ictal data

diagonalization by congruence problem of these two matrice The simulated EEG data were generated using a realistic
On the other hand, when the denoising stage in DSS algaodel developed by our team [8], [9], [20]. To reproduce
rithm is linear, the whole iterative algorithm can be expegb the complex geometry of the cerebral neocortex, a mesh
as a closed-form solution. In section IlI-C, by inserting&dd of the cortical surface at the interface of gray and white
(10) into (11), we can show that the four steps of the TF-DSfatter (BrainVisa, SHFJ, Orsay, France) was built from the
algorithm can be summarized by the following procedure: segmentation of 3D T1 MRI image. This mesh is composed
of 40500 triangles of mean surface 5 mirach triangle of the
(17) mesh has been associated with an elementary current dipole
w. — w; (18) located at the centroid of each triangle and perpendicolar t
P | its surface. The source of ictal epileptic activity is mahua

which is actually the classical power method applied td€lineated on the mesh. We consider a source in the left
(D) . . _ . superior temporal gyrus consisting of 100 contiguous ties
matrix C, " in order to compute its dominant eigenvectoy.

Let W@ be th h | i of th®. ei (patch) which represents a source area around 3. drhe
et e the orthogonal matrix of thé. eigenvectors temporal dynamics of the activity associated with eacmgiia

(including wy) of the symmetric matrbC ;. Consequently, are generated by a macroscopic model of neuronal popugation
the (P, x M) matrix WD(g)ST given by WS’S’)ST = W®T@* [20]. To generate the ictal discharge dynamics, we apply the
diagonalizes by congruence the time-frequency maﬁ&). settings to get a fast activity during the first 10 seconds and
Moreover, due to the orthogonality & ® and since® is a then tune the parameters to obtain a slow rhythmic activity
root square o, we can easily show that the matWD(g)ST durin.g the Igst 15 secon_ds. Betyveen these two acltivities, we
also diagonalizes by congruence the time-frequency matfRnsider a linear transition period of 2s. We assigned this
C,. As a result, the TE-DSS algorithm estimates i ictal ictal activity to all the dipoles forming the patch. Fromghi

source by means of a joint diagonalization by congruence ¥tUP: lthe lsimulﬁted icltal iEG Wa-; obtairlled at ”(‘f level ?1](
the matricesﬁ‘;p) and €. 32 scalp electrodes (placed over the scalp according to the

X . . - international 10-20 and 10-10 systems). In order to solee th
Now by comparing the two joint diagonalization IorOblem?orward problem, we used a realistic head model made of

corresponding to the TF-GEVD and TF-DSS methods, trt‘l‘ﬁeree nested homogeneous surfaces shaping the brainuthe sk

. . . . ~(p)
ff{[‘;er simultaneously diagonalizes the matriags, Aand and the scalp and the Boundary Element Method (ASA, ANT,
C: , While the latter jointly diagonalizes the matricéswp Enschede, Netherlands). Following this procedure, 50 Klont

andC.,, whereC, = é(mp)+é(ﬁ) according to the definitions Carlo simulations were generated (i.e. original simulatet).

X

P = z Wp

given in section II. In order to get noisy data, 50 realizations of a signal of non-
Now, if we consider the deflation step (13) for the TF-DS#iterest were added to the original simulated signals with a
method, equations (17) and (18) will be changed to: specified Signal-to-Noise Ratio (SNR). Signals of non+iese
N LA were composed of muscle activity, background EEG and
w, = II"C, w, (19) instrument noise extracted from rekd-channel EEG data.
wé To analyze the effectiveness of the proposed algorithms to
wy = Jwl] (20) denoise ictal data, we compared them with the CCA and ICA

methods by using two criteria. The first criterion is the Reta

which results in diagonalization of matriki™ éip). Conse- Root-Mean-Squared Error (RRMSE) [10] given by:
quently, the TF-DSS method to extract theh ictal source

2
can be described as two serial diagonalization steps, say ﬁzﬁil 2521 (3055)[”] —fcgﬁ)[n])
diagonalization ofC,, and diagonalization ofI* éip). put [RMSE = " 5 2 (21)
contrarily to the previous case, it seems that these two di- ﬁ Yo 2onet (SCSS) [n])

agonalizations cannot be simplified to a joint diagonaiirat
problem preventing us to compare more precisely the TF-D3®iere 2 [n] and 7o [n] are the original and estimated
and TF-GEVD algorithms when two or more ictal sources haepileptic subspaces on the-th channel, respectively. We also

to be estimated. compared source localization results obtained on no&se-fr
noisy and denoised data by the 4-ExSo-MUSIC algorithm [6]
IV. EXPERIMENTS AND RESULTS using the Receiver Operating Characteristic (ROC) curve as

In this section, we study the effectiveness of the twa performance criterion. This criterion represents theherat
proposed algorithms to denoise ictal EEG data by using battatical expectation of the True Positive Fraction (TPF) as a



Original EEG

(@ T3 AN
Noisy EEG >
(b) T3
CoM2 denoised
(© T3
CCA denoised
(dy T3
TF-GEVD denoised
(e) T3
TF-DSS denoised
® T3

Fig. 3. Denoising results of one trial of simulated ictaladafa) a noise free ictal EEG, (b) the noisy ictal EEG with tid¢RSvalue of —20d B, denoised
signal by using (c) CoM, (d) CCA, (e) TF-GEVD and (f) TF-DSS. For the sake of space,digplay the EEG at channel T3 only, as this channel showed
the highest amplitude of ictal activity. At the right of eaohw, the source localization results at the output of 4-EXB4SIC are illustrated for one trial
(42), as an example. Dark brown: real patch; violet: truly eated part of the patch; orange: falsely estimated part op#teh.

function of the mathematical expectation of the False Resit similar and are clearly smaller than the errors of Goahd
Fraction (FPF). The TPF is the fraction between the area GCA for low SNR values. These results show that the proposed
the patch truly retrieved and the total patch area while A€ Falgorithms are good both on a global point of view (i.e. when
is the fraction between the area falsely localized outsiae tall electrodes are considered) and on a more local point of
patch and the total cortical area minus the patch area [13]view (i.e. when only T3 electrode is considered).

Figure 3 shows an example of the denoising and sourcd-igures 5(a)-(c) show _the average source _Iocalization ROC
localization results. Figure 3(a) shows the original noisgrves of the four algorithms over the 50 trials f6NR =
free signal. The maximal amplitude of the simulated ictar30¢B, SNR = —20dB and SNR = —10dB, respectively.
signal is obtained at electrode T3. Figure 3(b) illustratd8 these figures, the ROC curves corresponding to noisy and
the same trial of ictal data, after adding muscle activitg}mse-free signals are also drawn. The source localization

(noisy data: -20 dB). Figures 3(c)-(f) show the denoisd@sults for a single trial are depicted at the bottom of each
signal by using the Col CCA, TF-GEVD and TF-DSS column to ease the comparison between the denoising meth-

algorithms, respectively. It should be noted that for théiGo ods. As it can be seen in these figures, the proposed algarithm

algorithm, we varied the number of sources in the ranéignoise better, and consequently give better source tatialn
P € {4,8,12,16,20,24, 28,32} and chose the value oP results than those obtained from CeMr CCA denoised
yielding the best RRMSE. As shown in these figures, CCAIGNals.

TF-GEVD and TF-DSS preserved ictal activity at electrode

T3. But CoM, could not perfectly denoise the signal aB. Real ictal data

this electrode and kept some undesired activity at the othefrng genoising algorithms were also tested on real ictal data

electrodes. Although the CCA method worked well to preserygqqrged from a 23 years old patient. These data were cetlect
ictal activity in the electrodes that record the highest ogle ., 5 long-term video-EEG recording (32 electrodes, 256

of ictal activity in original data, it decreased the acyvih |, gp [0.3-100] Hz) in which we could collect several
other electrodes such as FP1 and FP2. This bias affected;thg signals. One of these segments is a low noise ictal

source chalization results. The best source Ioca]iza'ésults EEG with very litle muscle activity, that can be used as
are obtained from TF-GEVD and TF-DSS denoised data. a reference signal. We apply our proposed algorithms on

Figure 4 shows the average RRMSE of each one of thiee signal acquired during a second seizure that was highly
four algorithms for different SNR values of -30 to 0 dB. Incontaminated with muscle activity. Six channels of the low
figure 4(a) and (b), RRMSE is calculated at all channels amdise and noisy ictal signals are shown in figure 6(a) anddigur
at channel T3, respectively. As illustrated in these figutles 6(b), respectively. As shown in figure 6(a), the ictal atyivi
errors of the proposed algorithms TF-GEVD and TF-DSS aof channel C3 can be segmented to three parts: 1) rhythmic
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Fig. 4. The average RRMSE denoising error of each one of the fo
algorithms in different SNR values of -30 to 0 dB, (a) at alashels and (b)

at channel T3.
CoM,

denoised

spikes (red box), 2) fast activity (green box) and 3) slowe
irregular activity (blue box). During the second seizuresth
activities, except the first rhythmic spikes, are coverethwi tg.gryvp
muscular activity as shown in figure 6(b). denoised

Figures 7(a) and 7(b) show the time course and tim
frequency representations of the channel C3 for the unno
and noisy ictal signals. The ictal fast activity is highligd TF-Dss
in the time-frequency representation of the noise free segm denoised
(figure 7(a)). This time-frequency signature is almostsible
in the time-frequency representation of the noisy segment ®)
(figure 7(b)). Figures 7(c)-(f) show the time course and {ime;jg 5. source localization results obtained from origimalisy and denoised
frequency representations of the channel C3 of the ictaldsg ictal simulated data. The average source localization R@@es (top) of the
o the second sefzure, dencisel by the TF-GEVD, TF-Dy Ao R S5 oo -
CCA and CoM algorithms, respectively. As shown in thes@g park brown: real patch; violet: truly estimated part loé fpatch; orange:
figures, the time-frequency signature of the ictal actidafy falsely estimated part of the patch.
pears in the denoised signals. The time course of the dehoise
signals are cleaner than the noisy data, showing three ictal
patterns similar to what had previously been identified rtyri
the first unnoisy seizure. Qualitatively, it is noteworthat
although all methods provide fairly good denoising, thet be$1 . . .
result is obtained with TF-DSS, which could retrieved thet fath® time-frequency signature of ictal sources, we use aodeth

activity with the highest amplitude. CCA and TF-GEVD gavgased on the CCA algorithm. To evaluate and ggantify _the
similar results for the fast activity, but with TF-GEVD sorok performance of the proposgd methqu on denoising of ictal
the spike rhythmic activity has been removed by the dengisi EGs, we apply them on simulated ictal data and compared

procedure. Col can retrieve part of the fast activity but leavede" results with those _Of_CCA and CQuEUgOI’Itth._ The .
a large amount of muscle activity. results show the superiority of the proposed algorithms in

comparison with CCA and CoM We also study the utility of

the proposed methods in denoising of a real ictal data. In tha

case, the performance of the denoising algorithms cannot be
In this paper, we propose two new semi-blind algorithmsguantified because the 'ground truth’ is unknown. However, a

namely TF-GEVD and TF-DSS, to denoise ictal EEG dataomparison of denoised signals with a different non-naitsl i

These methods use the time-frequency signature of ictidinal suggests that the proposed algorithms can be useful f

sources as a priori information to denoise ictal data. Teaext denoising real ictal data.

V. CONCLUSION
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Fig. 6. A real EEG recorded from an epileptic patient during tseparate ictal periods: (a) an almost noise free ictal EH@ channel C3 shows ictal
activity consists of three parts: 1) rhythmic spikes (red)b@) fast activity (green box) and 3) slower irregular ityi (blue box). (b) another ictal EEG
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Fig. 7. The time courses and time-frequency representatidrthe channel C3 of: (a) the noise free ictal EEG, (b) theynimital segment, (c) TF-GEVD
denoised, (d) TF-DSS denoised, (e) CCA denoised and (f) £dkhoised EEGs. Ictal fast activity is shown in the white leiron the time-frequency
representation.



