Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory - Archive ouverte HAL
Article Dans Une Revue Mathematical Control and Related Fields Année : 2017

Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory

Résumé

In this paper, we construct some interesting Gevrey functions of order α for every α > 1 with compact support by a clever use of the Bray-Mandelbrojt iterative process. We then apply these results to the moment method, which will enable us to derive some upper bounds for the cost of fast boundary controls for a class of linear equations of parabolic or dispersive type that partially improve the existing results proved in [P. Lissy, On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension SIAM J. Control Optim., 52(4), 2651-2676]. However this construction fails to improve the results of [G. Tenenbaum and M. Tucsnak, New blow-up rates of fast controls for the Schrödinger and heat equations, Journal of Differential Equations, 243 (2007), 70-100] in the precise case of the usual heat and Schrödinger equation.
Fichier principal
Vignette du fichier
upper.pdf (473.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01245852 , version 1 (17-12-2015)

Identifiants

Citer

Pierre Lissy. Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control and Related Fields, 2017, 7 (1), pp.21-40. ⟨10.3934/mcrf.2017002⟩. ⟨hal-01245852⟩
146 Consultations
365 Téléchargements

Altmetric

Partager

More