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Construction of Gevrey functions with compact support
using the Bray-Mandelbrojt iterative process and

applications to the moment method in control theory

Pierre Lissy∗†

December 17, 2015

Abstract
In this paper, we construct some interesting Gevrey functions of order α for every α > 1

with compact support by a clever use of the Bray-Mandelbrojt iterative process. We then
apply these results to the moment method, which will enable us to derive some upper bounds
for the cost of fast boundary controls for a class of linear equations of parabolic or dispersive
type that partially improve the existing results proved in [P. Lissy, On the Cost of Fast Con-
trols for Some Families of Dispersive or Parabolic Equations in One Space Dimension SIAM
J. Control Optim., 52(4), 2651-2676]. However this construction fails to improve the results
of [G. Tenenbaum and M. Tucsnak, New blow-up rates of fast controls for the Schrödinger
and heat equations, Journal of Differential Equations, 243 (2007), 70-100] in the precise case
of the usual heat and Schrödinger equation.

1 Introduction

1.1 Presentation
The main motivation of this paper is to continue the study of [11] concerning the estimation

for the cost of fast “boundary” controls for a class of linear equations of parabolic or dispersive
type. The precise scope of the paper will be made more precise later.

Let us introduce some usual notations. Let H be some Hilbert space and U be another Hilbert
space. Let A : D(A) → H be a self-adjoint operator with compact resolvent. The eigenvalues of
A (which are here supposed to be different from 0 without loss of generality) are called (λk)k>1

and supposed to be with multiplicity 1 in all what follows. To each eigenvalue we associate a
normalized eigenvector corresponding to the eigenvalue λk, which is called ek. We assume that
−A generates on H a strongly continuous semigroup S : t 7→ S(t) = e−tA. The Hilbert space
D(A∗)′(= D(A)′) will be equipped with the norm

||x||2D(A)′ =
∑ < x, ek >

2
H

λ2k
.

We call B ∈ Lc(U,D(A)′) an admissible control operator for this semigroup, i.e. such that for
every time T > 0, there exists some constant C(T ) > 0 such that for every z ∈ D(A), one has∫ T

0

||B∗S(t)∗z||2U 6 C(T )||z||2H .
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We consider the following class of controlled semigroups:

yt +Ay = Bu (parabolic case) (1)

and

yt + iAy = Bu (dispersive case). (2)

In the case of Equation (1), A will moreover be supposed to be a positive operator to ensure
the existence of solutions. Then, it is well-known (see for example [2, Chapter 2, Section 2.3],
the operators −A or −iA generates a strongly continuous semigroup under the hypothesis given
before thanks to the Lummer-Phillips or Stone theorems) that if u ∈ L2((0, T ), U), System (1) or
(2) with initial condition y0 ∈ H has a unique solution satisfying y ∈ C0([0, T ], H).

From now on and until the end of the paper, we will assume that B is a scalar control, that
is to say of the form Bu = bu, where b ∈ D(A)′ and u ∈ L2((0, T ),K) where here U = K with
K = R or C. From now on, we will call

bk =< b, ek >(D(A)′,D(A)),

where <,>(D(A)′,D(A)) is here the duality product between D(A)′ and D(A) with pivot space H.
It is well-known (see [6]) that if ||(bk)k∈N∗ ||∞ < +∞ and if (λk)k>1 is regular in the sense that

inf
m 6=n
|λm − λn| > 0,

then B is an admissible control operator.
Let us now introduce the notion of cost of the control. Assume that that system (1) or

(2) is null controllable at some time T0 > 0 (i.e. for every y0 ∈ H, there exists some control
u ∈ L2((0, T0), U) such that y(T0, ·) ≡ 0). One can then verify easily that there exists a unique
control uopt ∈ L2((0, T0), U) with minimal L2((0, T0), U)-norm. Moreover, the map y0 7→ uopt is
linear continuous (see for example [2, Chapter 2, Section 2.3]). The norm of this operator will be
from now on called the cost of the control at time T0 and denoted CT0

in this section. Thanks to
the definition of CT0 , this constant is also exactly the smallest constant C > 0 such that for every
y0 ∈ H, there exists some control u driving y0 to 0 at time T0 with

||u||L2((0,T0),U) 6 C||y0||H .

Here we attend to give some precise upper bounds on CT when T → 0 for some families of
operators A for which equations (1) and (2) are null controllable in arbitrary small time. Some
applications to fractional heat and Schrödinger equations will be provided later.

Let us explain now precisely the scope of the paper:

1. We give a new family of possible multipliers for the moment method that depend on the
asymptotic growth of (λk)k>1 and seem well-adapted (this is the main result of the paper).
The author believes that it would be quite difficult to improve the construction given here,
notably because the construction approximates quite well some optimal problem (see Section
3.2), but there is still some small possibility of doing better (see Remark 4) that the author
did not manage to exploit suitably.

2. We manage to extend the results of [11] to the wider possible range of exponents for the
asymptotic polynomial behavior of the eigenvalues (λk)k∈N∗ . In section 2.3, we will explain
into more details why the multiplier used in [11] was not really adapted to the case of
eigenvalues λk behaving roughly like kα with α 6= 2 and how we managed to improve it.

3. As we will see later (see notably Figures 1 and 3), we will not improve the upper bounds in
the case of the classical heat equation and Schrödinger equation given in [22]. However, we
will also see that there are a wide range of families of eigenvalues for which our estimates
are better than in [11], and notably when α → ∞ we dramatically improve the results of
[11] and we are quite close to the lower bounds of [12].
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2 State of the art
As far as the author know, the study of the behavior of fast control for partial differential

equations started with the paper [21], where an upper bound for the cost of fast boundary control
for the one-dimensional heat equation was given. A lower bound were then given in [4], proving
that the cost of fast controls had to be necessarily roughly (up to fractional terms in T ) of the
form exp(K/T ) for some K > 0 as T → 0. The same result for the boundary control of one-
dimensional Schrödinger equations was proved later in [15]. The next natural question is then
to try to estimate precisely K and notably its dependence with respect to the geometry of the
problem (i.e. to the behavior on the eigenvalues λk). In the case of the heat equation, if we call
L the length of the interval on which we control our one-dimensional equation, we know that

L2/2 6 K 6 3L2/4.

The best upper bound was obtained in [22] whereas the lower bound was obtained in [12]. For
the Schrödinger equation, we have

L2/4 6 K 6 3L2/2.

The upper bound was obtained in [22] and the lower bound in [15].
Let us now explain with more details what was precisely done [11]. In this article, the author

proved precise upper bounds concerning the cost of the control for some large classes of linear
parabolic or dispersive equations when the time T goes to 0, where the underlying “elliptic”
operator was chosen to be self-adjoint or skew-adjoint with eigenvalues roughly as Rkα or ±Rkα
(only for (2)) for some R > 0 and α > 2 when k → +∞. The cost of the control is proved to be
bounded from above by exp

(
K/(RT )1/(α−1)

)
where K is some explicit constant depending on α.

This does not cover all possible cases, because it is well-known that equations like (1) and (2) are
controllable in arbitrary small time if and only if α > 1.

Explicit lower bounds have later been derived in [12] for all controllable in small time fractional
heat or Schrödinger equations. Let us mention that in the case of the Schrödinger equation (which
corresponds to λk = k2 and equation (2)), the lower bound proved in [12] is exactly the same as
the one given by Miller in [15], whereas the lower bound for the heat equation controlled on the
boundary (which corresponds to the case λk = k2 and equation (1)) is twice the one obtained by
Miller in [16] and was conjectured to be to exact behavior for the cost of the control until now.

To finish, let us mention that the study of the behavior of fast controls may also be applied in
some cases to study the uniform controllability of convection-diffusion equations in the vanishing
viscosity limit as explained in [9] and [10], however the results given in the present article does
not enable us to deduce directly new results for this problem.

2.1 Main results and comments
In this section, we are going to give the main results of this paper and some additional com-

ments. Let us first set some notations. In all what follows, f . g (with f and g some complex
valued functions depending on some variable x in some set S) means that there exists some con-
stant C > 0 such that for all x ∈ S, one has |f(x)| 6 C|g(x)|, (such a C is called an implicit
constant in the inequality f . g), and f ' g means that we have both f . g and g . f . Some-
times, when it is needed, we might detail the dependence of the implicit constant with respect to
some parameters.

Theorem 2.1 Assume that (λn)n>1 is a regular increasing sequence of positive numbers verifying
moreover that there exist some α > 1 and some R > 0 such that

λn = Rnα + O
n→∞

(nα−1) (3)
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holds (as n → ∞), and assume that bn ' 1 (in the sense that the sequence (|bn|)n∈N is bounded
from below and above by positive constants). Then system (2) is null controllable and the cost of
the control CT verifies for T small enough:

1. If α > 2, then

CT . e
K

(RT )1/(α−1) , for every K > CS(α) :=
2

1
α−1π

α
α−1

(α− 1)
1

α−1 sin(πα )
α
α−1

.

2. If α ∈ (1, 2), then

CT . e
K

(RT )1/(α−1) , for every K > CS(α) :=
4

1
α−1π

α
α−1

(α− 1)
1

α−1 sin(πα )
α
α−1

.

(the implicit constant in the previous inequalities might depend on α or R but not on T )

We also have a theorem in the dispersive case when the eigenvalues are not supposed anymore
to be positive.

Theorem 2.2 Assume that the sequence of increasing eigenvalues (λn)n∈Z∗ of A is a regular
sequence of non-zero numbers verifying moreover that there exist some α > 1 and some constant
R > 0 such that 

λn = Rnα + O
n→∞

(nα−1), n > 0,

λ−n = −Rnα + O
n→∞

(nα−1), n < 0,

sgn(λn) = sgn(n),

(4)

and assume that bn ' 1. Then system (2) is null controllable and the cost of the control CT
verifies for T small enough:

1. If α > 2, then

CT . e
K

(RT )1/(α−1) , for every K > CS+−(α) :=
2
α+1
α−1π

α
α−1

(α− 1)
1

α−1 sin(πα )
α
α−1

.

2. If α ∈ (1, 2), then

CT . e
K

(RT )1/(α−1) , for every K > CS+−(α) :=
2

1
α−1 (2

1
α + 1)

α
α−1π

α
α−1

(α− 1)
1

α−1 sin(πα )
α
α−1

.

(the implicit constant in the previous inequalities might depend on α or R but not on T )

Concerning the parabolic case, we obtain the following result:

Theorem 2.3 Assume that (λn)n>1 is a regular increasing sequence of positive numbers verifying
moreover that there exists some α > 1 and some constant R > 0 such that (3) holds. Assume that
bn ' 1. Then system (1) is null controllable. Moreover, the control can be chosen in the space
C0([0, T ], U) and the cost of the control CT (in norm L∞(0, T ), so this is also true in L2(0, T ))
verifies for T small enough

CT . e
K

(RT )1/(α−1) , for every K >
π

α
α−1

2(α− 1)
1

α−1 sin( π2α )
α
α−1

.

(the implicit constant in the previous inequalities might depend on α or R but not on T )
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Remark 1 1. Concerning the asymptotic behavior of CS(α), we obtain by easy Taylor expan-
sions that

CS(α) ' exp(1)

(
4

(α− 1)α+1

) 1
α−1

as α→ 1+,

CS(α) ' α as α→ +∞.

2. We observe that for α = 2, the cost of the control is bounded by e
Kπ2

RT for every K > CS(2) =
2π2, which is worse than [22] which stated that we have the same result for every K > 3π2/2.
However, we see on figure 1 (which compares the upper bound CS(α) and the one found in
[11] in the case α > 2) that our new bound becomes better for α > 2.76 and is linearly better
as α→∞.

Figure 1: Difference between CS(α) and the upper bound of [11] with respect to α.

3. Another interesting comparison can be done between the upper bound CS(α) and the lower
bound given in [12]. This is what is done in figure 2. We can see that our upper bound
becomes close to the lower bound given in [12] when α → ∞, more precisely the difference
between the two quantities converges to 1 + ln(2). However, the upper bound is very far from
the lower bound for α→ 1+.

Figure 2: Difference between CS(α) and the lower bound of [12] with respect to α.

Remark 2 1. Concerning the asymptotic behavior of CH(α), we obtain by easy Taylor expan-
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sions that

CH(α) ' π
α
α−1

2(α− 1)
1

α−1

as α→ 1+,

CH(α) ' α as α→ +∞.

2. We observe that for α = 2, the cost of the control is bounded by e
Kπ2

RT for every K > CH(2) =
π2, which is worse than [22] which stated that we have the same result for every K > 3π2/4.
However, we see on figure 3 (which compares the upper bound CH(α) and the one found in
[11] in the case α > 2) that our new bound becomes better for α > 2.221 and is linearly better
as α→∞.

Figure 3: Difference between CH(α) and the upper bound of [11] with respect to α.

3. To finish, let us compare this upper bound and the lower bound given in [12]. This is what
is done in figure 4. We can see that our upper bound becomes close to the lower bound given
in [12] when α → ∞, more precisely the difference between the two quantities tends to 1.
However, the upper bound is very far from the lower bound for α→ 1+.

Figure 4: Difference between CH(α) and the lower bound of [12] with respect to α.
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2.2 Application to fractional heat or Schrödinger equations with “bound-
ary control”

Let us give the two main applications of this result, which have already been mentioned widely.
Let us consider the 1-D Laplace operator ∆ with domain D(∆) := H1

0 (0, L) and state space
H := H−1(0, L). It is well-known that −∆ : D(∆) → H−1(0, L) is a positive definite operator
with compact resolvent, the k-th eigenvalue is

λk =
k2π2

L2
,

with associated eigenvector

ek(x) := sin

(
kπx

L

)
/|| sin

(
kπx

L

)
||H−1(0,L).

Thanks to the continuous functional calculus for positive self-adjoint operators, one can define any
positive power of −∆. Let us define our “boundary” control (for more explanations, see notably
[11, Sections 3.3 & 3.4] b ∈ (D(−(−∆)α/2))′ as follows:

b := (∂xδ0) ◦∆−1.

We set K := R (for (5)) or C (for (6)). Let us consider here some γ > 1 and two different equations,
one particular case of (1), which are the fractional heat equations{

yt = −(−∆)γ/2y + bu in (0, T )× (0, L),

y(0, ·) = y0 in (0, L),
(5)

and one particular case of (2), which are the fractional Schrödinger equations{
yt = −i(−∆)γ/2y + bu in (0, T )× (0, L),

y(0, ·) = y0 in (0, L).
(6)

Equation (5) is often used to model anomaly fast or slow diffusion (see for example [14]),
whereas (6) was introduced to study the energy spectrum of a 1-D fractional oscillator or for some
fractional Bohr atoms (see for example [7]).

As explained in details in [11], the above equations exactly fit our abstract setting and we
directly deduce from our main Theorems the following results:

Theorem 2.4 System (6) is null controllable and the cost of the control CT verifies for T small
enough:

1. If γ > 2, then

CT . e
KL2γ/(2γ−1)

T1/(2γ−1) , for every K >
2

1
2γ−1

(2γ − 1)
1

2γ−1 sin( π2γ )
2γ

2γ−1

.

2. If γ ∈ (1, 2), then

CT . e
KL2γ/(2γ−1)

T1/(2γ−1) , for every K >
4

1
2γ−1

(2γ − 1)
1

2γ−1 sin( π2γ )
2γ

2γ−1

.

System (5) is null controllable. Moreover, the control can be chosen in the space C0([0, T ], U)
and the cost of the control CT verifies for T small enough

CT . e
KL2γ/(2γ−1)

T1/(2γ−1) , for every K >
1

2(2γ − 1)
1

2γ−1 sin( π4γ )
2γ

2γ−1

.

(the implicit constant in the previous inequalities might depend on α but not on T ).
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2.3 Gevrey functions, the moment method and the Bray-Mandelbrojt
construction

In this “heuristic” Section, our goal is to give some informal explanations on the strong link
between Gevrey functions and the moment method of Fattorini and Russell [3] that will be used
here to prove our theorems. Let us consider here the parabolic case (1), the dispersive case being
quite similar. Let us decompose our initial condition on our Hilbert basis of eigenfunctions:

y0(x) =

∞∑
k=1

akek(x),

with (ak)k∈N∗ ∈ l2(N∗). Then, using the notations of the previous section, it is well-known that
we have for all k ∈ N∗ and t ∈ (0, T ] that

〈y(t), ek〉H = ake
−λkt + bk

∫ t

0

e−λk(t−s)u(s)ds.

Imposing that y(T, ·) 6= 0 is then equivalent to imposing that for every k ∈ N∗, one has

ake
−λkT + bk

∫ T

0

e−λk(T−s)u(s)dt = 0,

i.e. ∫ T

0

e−λk(T−s)u(s)dt =
−ake−λkT

bk
,

the right-hand side being in l2(N∗) as soon as bk ' 1.
Hence, if we assume that we are able to exhibit a bi-orthogonal family to {t 7→ e−λn(T−t)} in

L2(0, T ), i.e. a family of functions {ψm}m∈N∗ such that for every (k, l) ∈ (N∗)2 one has

〈eλkt, ψl〉L2(0,T ) = δkl, (7)

then one can use as a control function

u(t) := −
∑
k∈N∗

ake
−λkT

bk
ψk(t). (8)

A usual way (but not the only one, see notably [1]) to construct the family{ψk} is to use the
Paley-Wiener Theorem (see for example [20, Theorem 19.3, Page 370]), which says that ψk can
be constructed (after some adequate translation) as the inverse Fourier Transform of a L2(R)-
function Jk of exponential type T/2 verifying moreover Jk(iλl) = δkl. As we will see during the
proof, finding such a function Jk can be decomposed into two main steps:

• First exhibit some family of Weiertrass product Ψk involving the eigenvalues and verifying
Ψk(iλl) = δkl (see notably Lemma 3.1).

• Then multiply Ψk with some adequate function Mk (called multiplier) so that the product
Jk := ΨkMk will then be of exponential type T/2 and belongs to L2(R). Moreover Mk has
to verify the normalization condition

Mk(iλk) = 1. (9)

The crucial point is that the behavior for x → ∞ of the Weierstrass product is very bad and
can be proved to be exactly of the form exp(K|x|1/α) for some constant K > 0 if we assume that
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λk ' kα for some α > 1. Hence, we observe that if we want to obtain a function Jk which is
in L2(R), it is necessary that the multiplier Mk behaves at least as exp(−K|x|1/α) at infinity.
This exactly means that Mk has to be the Fourier transform of some function Gk which has to be
Gevrey of order α, i.e. verifying

||G(j)
k ||∞ 6 CGev(α, T,R)Rjj!α, (10)

for some constant R > 0 > 0 (see for example [19, Section 1.6, Page 30]). Moreover, as it
will be observed during the proof of our theorems, an important point is that the constant R
determines in an optimal way the exact behavior of the exponential decreasing of Mk (i.e. the
constant K). Hence, imposing here that Mk compensates quite “exactly” the growth of Ψn means
that this constant ν in (10) is totally imposed by the data of our problem. To finish, since we
want Mk to be of exponential type T/2, applying one more time the Paley-Wiener Theorem, it is
equivalent to saying that Gk has to be of compact support [−T/2, T/2]. Using some estimations
made more precise later, the function ψk will also be bounded by CGev(α, T,R) and then using (8)
we deduce that CH(α, T ) is also bounded by CGev(α, T,R). Hence, if we want to obtain a precise
bound on CH(α, T ), it is necessary to make all our possible to obtain some constant CGev(α, T,R)
which is as small as possible. Let us also mention that the normalization condition (9) can be
easily replaced by the condition

∫
|Gk| = 1 (and some suitable inequality on Gk(iλk) that we do

not detail here for the sake of clarity, see notably (60)).
Taking into account all these remarks, the rules of the game can be gathered as the following.

Optimizing the cost of the control is closely related to the following problem: given some T > 0,
construct a Gevrey function G of order α, with support equal to [−T/2, T/2], verifying

∫
|G| = 1,

with imposed coefficient R appearing in the growth of the derivative and minimizing the quantity
CGev(α, T,R) (which has of course to explode as T → 0) that is appearing in (10).

Let us now explain a possible way to construct Gevrey function (or more generally C∞ func-
tions) with compact support. This construction was first described by Szolem Mandelbrojt in [13,
Section 13], but in this book it is mentioned that the construction comes from previous unpub-
lished works of Hubert Bray, whence the name “Bray-Mandelbrojt construction” adopted here.
The idea is to use repeated mean-values of functions, i.e. to make an infinite convolution product
of rectangle functions on [−ak, ak], (ak)k>0 being supposed to be a convergent series of positive
numbers (whose sum will exactly be the support of the final function). This construction can also
be found in [5, Pages 19-20]. Let us mention that since the Fourier transform of a rectangle func-
tion is exactly some cardinal sine function, and that the Fourier transform changes convolution
into products, this construction is totally equivalent to the ones we can find notably in [16, Proof
of Lemma 4.4], which is also used in [15] and that goes back to the work of Ingham in [8] (we refer
to [18] for extra explanations on the usefulness of this construction).

To finish, let us mention that in [22], the authors used to following Gevrey function to construct
the multiplier:

G(x) := exp(−ν/(1− x2)),

where ν > 0 is some large parameter to be chosen. It can be proved that G is a Gevrey function of
order exactly 2. Notably, this function is not Gevrey of order α for α ∈ (1, 2) (but it is a Gevrey
function of order α for every α > 2), and this explains why in [11] (where the same multiplier was
used) we were not able to treat the case α ∈ (1, 2) and why our estimations were quite bad for
large α.

9



3 Proofs of Theorems 2.1, 2.2 and 2.3

3.1 Estimates on the Weierstrass product involving the eigenvalues
As usual when the moment method is concerned, we first study the asymptotic behavior for

large z ∈ C of the Weierstrass product constructed from the family of eigenvalues (λn)n∈N.

Lemma 3.1 Let (λn)n>1 be a regular increasing sequence of positive numbers verifying moreover
that there exists some α > 1 and some constant R > 0 such that (3) holds.

Let Φn be defined as follows:

Φn(z) :=
∏
k 6=n

(1− z

λk − λn
). (11)

Then,

1. If α ∈ (1, 2), then for every z ∈ C,

Φn(z) . e
21/απ

R1/(α−1) sin(π/α)
|z|

1
α

P (λn, |z|), (12)

where P is a polynomial.

2. If α > 2, then for every z ∈ C,

Φn(z) . e
π

R1/(α−1) sin(π/α)
|z|

1
α

P̃ (λn, |z|), (13)

where P̃ is a polynomial.

3. If x ∈ R,

Φn(−ix− λn) . e
π

2R1/(α−1) sin(π/2α)
|x|

1
α

P (λn, |x|), (14)

where P is a polynomial.
(In the previous inequalities, the implicit constant may depend on α and R but not on z, x
or n)

Remark 3 One can see numerically by taking the particular case λk = kα that inequalities (13)
and (14) are optimal. However, as explained in [11, Remark 3] we are unable to extend inequality
(13) to the case α ∈ (1, 2), where is seems numerically not to be true anymore. However, it is
likely that estimate (12) is far from being optimal (because notably of the gap when α → 2− with
what we have in (13) for α = 2).

Proof of Lemma 3.1. Without loss of generality, we can assume that R = 1 (one can go back
to the general case by an easy scaling argument).

Let us prove inequality (12) (inequality (13) was already proved in [11]). We go back to the
computations done in [11, Proof of Lemma 2.1]. One notably has

|Φn(z)| . (1 + |z|/γ)2Ce
∫ |z|
0

∫∞
γ

(λn+s)
1
α −((λn−s)+)

1
α

(t+s)2
dsdt

. (15)

We also have∫ |z|
0

∫ ∞
γ

(λn + s)
1
α − ((λn − s)+)

1
α

(t+ s)2
dsdt = |z|

∫ ∞
γ

(λn + s)
1
α − ((λn − s)+)

1
α

s(s+ |z|)
ds

6
|z|

λ
1− 1

α
n

(U(
|z|
λn

) + V (
|z|
λn

)),

(16)
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where

U(x) :=

∫ 1

0

(1 + v)
1
α − (1− v)

1
α

v(v + x)
dv

and

V (x) :=

∫ ∞
1

(v + 1)
1
α

v(v + x)
dv.

Using the change of variables t = x/v, we easily obtain

x1−1/αV (x) =

∫ x

0

(1/t+ 1/x)
1
α

1 + t
dt (17)

and

x1−1/αU(x) =

∫ ∞
x

(1/t+ 1/x)
1
α − (1/x− 1/t)

1
α

1 + t
dt. (18)

Using expression (17), one has

x1−1/αV (x) 6 2
1
α

∫ x

0

1

t
1
α (1 + t)

dt.

Using expression (18), we also have

x1−1/αU(x) 6 2
1
α

∫ ∞
x

1

t
1
α (1 + t)

dt.

Hence we deduce (12) taking into account that (see for example [11, Lemma 2.2])∫ ∞
0

dt

t
1
α (1 + t)

= sin(
π

α
). (19)

Concerning (14), one verifies that the proof provided in [11, Page 2661] for α > 2 is also valid
for α ∈ (1, 2) because we can use (19), replacing α by 2α (> 1).

In the dispersive case, we also need some estimate in the case where the eigenvalues are not
supposed to be positive anymore.

Lemma 3.2 Let (λn)n>1 be a regular increasing sequence of positive numbers verifying moreover
that there exists some α > 1 and some constant R > 0 such that (4) holds.

Let Φn be defined as follows:

Φn(z) :=
∏
k 6=n

(1− z

λk − λn
). (20)

Then,

1. If α ∈ (1, 2), then for every z ∈ C,

Φn(−z − λn) . e
(21/α+1)π

R1/(α−1) sin(π/α)
|z|

1
α

P (λn, |z|), (21)

where P is a polynomial.
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2. If α > 2, then for every z ∈ C,

Φn(−z − λn) . e
2π

R1/(α−1) sin(π/α)
|z|

1
α

P̃ (λn, |z|), (22)

(In the previous inequalities, the implicit constant may depend on α and R but not on z, x
or n)

This Proposition was already proved in [11] for the case α > 2. For α ∈ (1, 2), the proof is
exactly the same as the corresponding case in Lemma 3.1 that we combine with the computations
made in the proof of [11, Lemma 2.4 ] (see Pages 2666−2668 in this reference) and will be omitted.

3.2 Construction of adequate multipliers
As explained before, we now have to construct an adequate multiplier, which has to be the

Fourier transform of a Gevrey function with compact support. Let us emphasize that the main
contribution of this paper is the construction given in (43).

To begin, let us give some useful estimates concerning the Bray-Mendelbrojt construction of
functions with compact support (see [13, Section 13]).

Proposition 3.1 Let (ak)k>0 be a decreasing sequence of positive numbers such that

a :=
∑
k

ak <∞.

Then, there exists a nonnegative function u with compact support included in [−a, a] verifying∫ a

−a
u = 1, (23)

u(0) 6
1

2a0
, (24)

u is even, (25)
u is increasing on [−a, 0], (26)

such that for every j ∈ N, one has

||u(j)||∞ 6
1∏j
i=0 ai

, (27)

Proof of Proposition 3.1 We follow step by step the proof given in [5, Pages 19-20]. For every
b > 0 we call

Hb :=
1[−b,b]

2b
. (28)

Let us remark that ∫
R
Hb =

∫ b

−b
Hb = 1 (29)

and
Hb is even. (30)

We then consider
un := Ha0 ∗Ha1 ∗ · · · ∗Han ,

where ∗ represents the convolution product. un is of class Cn−1 and

Supp(un)[−
n∑
1

ai,

n∑
1

ai](⊂ [−a, a]). (31)

12



Moreover, one easily verifies that, for j 6 n− 1 we have

u(j)n (x) =

(
j−1∏
0

1

2ai
(τ−ai − τai)

)
Haj ∗ · · · ∗Han(x), (32)

where
τb : u 7→ (x 7→ u(x− b)).

Using (29), the fact that for u and v some regular enough functions one has
∫
u ∗ v =

∫
u
∫
v, and

|u ∗ v| 6 ||u||∞||v||1, we deduce, taking into account (32), that

||u(j)n ||∞ 6
1∏j
i=0 ai

.

Let us also remark that
un is even (33)

and verifies ∫ a

−a
un(x)dx =

∫
Ha1 · · ·

∫
Han = 1, (34)

moreover

un(0) =

∫ a

−a
Ha0(s)Ha1 ∗ · · · ∗Han(−s)ds =

1

2a0

∫ a0

−a0
Ha1 ∗ · · · ∗Han(−s)ds

6
1

2a0

∫ a

−a
Ha1 · · ·

∫ a

−a
Han =

1

2a0
.

(35)

Let us now prove that un is increasing on [−a, 0] for every n ∈ N. Let us prove this by induction.
it is true for n = 0 and n = 1. Let us assume that un is increasing on [−a, 0]. Then we compute
the derivative of un+1, we obtain

u′n+1(x) =
1

2an+1
(τ−an+1−τan+1)(Ha0 ∗· · ·∗Han(x)) =

1

2an+1
(un(x+an+1)−un(x−an+1)). (36)

Let x ∈ [−a, 0]. Then, we distinguish two cases:

1. If x 6 −an+1, then x− an+1 6 x+ an+1 6 0, hence, by using the fact that un is increasing
on [−a, 0], it is clear that

un(x− an+1) 6 un(x+ an+1),

and then by (36), u′n+1(x) > 0.

2. If x > −an+1, then we have −an+1 − x > 0. But we also have an+1 − x > −x − an+1 > 0.
Using the fact that un is even, we know by induction that un is decreasing on [0, a], hence
we deduce that

un(x+ an+1) = un(−x− an+1) > un(an+1 − x) = un(x− an+1),

and then by (36), u′n+1(x) > 0.

We conclude as in [5] by letting n→∞, u being the limit (that exists) of the un.
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According to Section 2.3 and to inequality (27) (that has to be verified for every n), we see
that the problem of minimizing what we called CGev(α, T,R) in the case of the Bray-Mandelbrojt
construction can be reformulated as maximizing the following quantity with respect to the sequence
(an)n∈N:

max
j∈N

j∏
i=0

(
(i+ 1)αai
να−1

)
,

for some large parameter ν > 0 to be chosen later. It is clear that this problem is equivalent to
maximizing

∞∏
i=0

(
(i+ 1)αai
να−1

)
.

Taking into account all these considerations, it is quite natural to investigate the following
optimization Problem.

Problem (1) Let ν > 0 and a > 0. Find the sequence (ak)k∈N that maximizes the quantity
∞∑
k=0

ln

(
(k + 1)αak
να−1

)
with the constraints:

1. ak > 0 for every k ∈ N.

2. (ak)k∈N is non-increasing.

3.
∞∑
k=0

ak = a. (37)

Unfortunately, we have the following proposition:

Proposition 3.2 There are no solutions to Problem (1).

Proof of Proposition 3.2. Let

f((ak)) :=

∞∑
k=0

ln

(
(k + 1)αak
vα−1

)
. (38)

One has
∂f

∂ai
((ak)) =

1

ak
. (39)

Let

g((ak)) :=

∞∑
k=0

ak. (40)

One has
∂g

∂ai
((ak)) = 1. (41)

We want to maximize f under the constraint g((ak)) for every j ∈ N (the constraint ak > 0
can be forgotten here). We do not need here to use that we want (ak)k∈N to be decreasing.

Let λ ∈ R and (µj)j∈N, we consider the Lagrangian

L((ak)) := f((ak))− λg((ak)). (42)

We remark that for every j ∈ N, we have ∂L
∂aj

= 0 if and only if aj = λ according to (39) and
(41), hence the sequence (aj) has to be constant. If we take into account the fact that we want
the constraint g((ak)) = a to be verified, we see that Problem (1) cannot have any solution.
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We observe thanks to the previous study that if we want to “mimic” in some sense an optimal
sequence, a good idea would be to consider some sequence (ak)k∈N which is constant at least for
small k and then decreases in some suitable way such that it becomes summable. Hence, taking
into account this remark, we set ν > 0 some parameter (that is destined to compensate the bad
growth of the Weierstrass product (11), see (59), and to be very large so we will always assume
ν > C > 0), and we consider the following sequence (ak)k∈N defined by{

ak = 1
ν if k 6 bνc − 1,

ak = να−1

(1+k)α if k > bνc ,
(43)

The main advantage of this construction is that for k > bνc, we have

(k + 1)αak
vα−1

= 1,

which will simplify a lot the forthcoming computations.

Remark 4 The second part of the construction of (43) may seem to be chosen quite arbitrarily,
however the author did not find a more suitable construction. It might be possible that another
appropriate decreasing that would enable to improve the bounds given in this article.

We consider the corresponding function σν constructed as in the proof of Lemma 3.1 from the
sequence (ak)k∈N. We call aν its support, that is to say

aν := 1 +

∞∑
k=bνc

να−1

(1 + k)α
. (44)

It may seem quite strange that we do not impose the support to be [−T/2, T/2] here, however for
the sake of clarity we prefer to adjust the support thanks to the parameter β to be introduced
later (see (58)).

Taking into account the definition of aν , we may observe that aν does not depend too much
on aν in the sense that

aν ∼
α

α− 1
as ν →∞. (45)

Let us remark that ∫ aν

aν

σν = 1, (46)

σν(0) 6
ν

2
, (47)

σν is even, (48)
σν is increasing on [−av, 0]. (49)

Then, using (27), we obtain

||u(j)||∞ 6
1∏j
i=0 ai

. (50)

We can then deduce the following crucial estimate :

Lemma 3.3 One has for every j ∈ N

||u(j)||∞ .
eαν(j!)α

(να−1)j
. (51)
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Proof of Lemma 3.3. Using the expression of ak given in (43) and (50), we deduce that for
j > bνc we have

||u(j)||∞ 6
1∏j
i=0 ai

(52)

.
j∏
i=0

να−1/(i+ 1)α

(i+ 1)αai/να−1
(53)

.
(j!)α

(να−1)j

j∏
i=0

να−1

(i+ 1)αai
(54)

.
(j!)α

(vα−1)j

bνc−1∏
i=0

να

(i+ 1)α
. (55)

Now, using an usual lower bound on the factorial, we obtain

bνc−1∏
i=0

να

(i+ 1)α
=

ννα

((bνc)!)α
.

ννα

νναe−αν
,

from which we deduce (51).
The same estimation is also clearly true for j 6 bνc since in this case we have

||u(j)||∞ 6 νj .

Let
Hβ(z) :=

∫ aν

−aν
σν(t)e−iβtzdt, (56)

which will be our multiplier (up to some homothety). We have the following properties:

Lemma 3.4 For every δ > 0 small enough, one has

Hβ(0) = 1, (57)

|Hβ(z)| 6 eaνβ|Im(z)|, (58)

|Hβ(x)| . eανe−α((βν
α−1)|x|)1/α+δ/(2 sin(π/(α)))|x|1/α , x ∈ R. (59)

|Hβ(ix)| & 1

ν
e
βx
4ν , x > 0. (60)

Proof of Lemma 3.4. Equality (57) comes from (46). Inequality (58) is an immediate conse-
quence of the definition of Hβ given in (56). Let us now prove (59). Since all derivatives of σν
vanish at t = −aν and t = aν , we have

|Hβ(x)| . ||σ
(j)
ν ||∞

(βx)j
, (61)

for every x > 0 and j ∈ N. Combining (61) and (51), we deduce that

|Hβ(x)| . eαν(j!)α

(βνα−1x)j
. j ∈ N. (62)
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We set

j := b(βνα−1x)1/αc. (63)

Then we have

βνα−1x > (aj)γ . (64)

Using (64) and (62) we obtain

|Hβ(x)| . eαν
(j!)α

jαj
. (65)

Combining (65), (63), and inequality

(j!)α . jα/2jαje−αj ,

we deduce
|Hβ(x)| . eανe−αjjα/2 . eανe−α(βν

α−1x)1/α+δ/(2 sin(π/(α)))x1/α

,

which proves the desired estimate.
Let us know prove (60). We have, since σν > 0 and using (49) together with (48),

|Hβ(ix)| =
∫ aν

−aν
σν(t)eβxtdt >

∫ 1/(2ν)

1/(4ν)

σν(t)eβxtdt >
1

4ν
σν(

1

2ν
)e

x
4ν . (66)

Using (46), (47), (48) and (49), we have

1 = 2

∫ aν

1/(2ν)

σν + 2

∫ 1/(2ν)

0

σν 6 2(av − 1/(2ν))σν(
1

2ν
) +

2σν(0)

2ν
6 2(av − 1/(2ν))σν(

1

2ν
) +

1

2
.

We deduce that for ν large enough (which is equivalent to T small enough, see (69))

σν(
1

2ν
) &

1

av − 1/(2ν)
& 1,

which gives the desired result thanks to (66).

Proof of Theorem 2.1. The proof follows the one of [22, Theorem 3.1 and 3.4]. We still
assume without loss of generality that R = 1. Let us first consider the dispersive case (Equation
(2)) and the case α > 2. Let δ > 0 a small enough parameter. We call

gn(z) := Φn(−z − λn)Hβ(z + λn), (67)

so that one has gn(−λk) = δkn by (57) and (11). We want to apply at the end the Paley-Wiener
Theorem (see estimate (58)) in an optimal way, so we want aνβ to be close to T/2. From now on
we will always consider ν large enough such that (see (45))

|aν −
α

α− 1
| 6 δ/4.

Assume that aνβ < T/2 and close to T/2, for example

β =
T (α− 1)(1− δ/2)

2α
. (68)
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Now we choose ν such that
αα(βνα−1) >

π

sin(πα )

and close to π/ sin(π/α) (see estimates (13) and (59)), for example

ν :=
(π + δ)α/(α−1)

(α sin(π/α))α/(α−1)β1/(α−1) . (69)

Then, using (67), (13), (68), (69) and (59), we obtain

|gn(x)| . eαν+π/ sin(π/α)|x+λn|
1
α−(π+δ/2)/ sin(π/α)|x+λn|

1
α P̃ (|x+ λn|).

It is clear that

eπ/ sin(π/α)|x+λn|
1
α−(π+δ/2)/ sin(π/α)|x+λn|

1
α P̃ (|x+ λn|) .

1

1 + (x+ λn)2
,

hence we deduce using (69) and (68) that

|gn(x)| . eαν

1 + (x+ λn)2

.
e

α(2α)1/(α−1)(π+δ)α/(α−1)

(α sin(π/α))α/(α−1)(T (α−1)(1−δ/2))1/(α−1)

1 + (x+ λn)2

.
e

21/(α−1)(π+δ)α/(α−1)

(sin(π/α))α/(α−1)(T (α−1)(1−δ/2))1/(α−1)

1 + (x+ λn)2
.

Let us fix some

K >
21/(α−1)πα/(α−1)

(α− 1)1/(α−1) sin(π/α)α/(α−1)T 1/(α−1) .

Considering δ as close as 0 as needed, we deduce that

|gn(x)| . e
K

T1/(α−1)

1 + (x+ λn)2
(70)

This notably proves that gn ∈ L2(R). Moreover, using (13), (67), (68) and (58), we obtain

|gn(z)| . eT |z|/2.

Hence, using the Paley-Wiener Theorem, gn is the Fourier transform of a function fn ∈ L2(R)
with compact support [−T/2, T/2]. Moreover, by construction {fn} is biorthogonal to the family
{eiλnt}. Then, one can create the control thanks to the family {fn}. Let us consider y0 =

∑
akek

the initial condition, we call

u(t) := −
∑
k∈N

(ak/bk)e−iTλk/2fk(t− T/2). (71)

This expression is meaningful since bk ' 1, moreover the corresponding solution y of (2) verifies
y(T, ·) ≡ 0. We obtain by proceeding as in [22, Page 87-88] that

||u(t)||L2(0,T ) . e
K

T1/(α−1)

∑
|ak|2

. e
K

T1/(α−1) ||y0||H .

The case α ∈ (1, 2) follows by doing exactly the same proof, the only difference being that we
use (12) instead of (13).
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Proof of Theorem 2.2. The proof is exactly the same as the one of Theorem 2.1, using (21)
instead of (12) for α ∈ (1, 2) and (22) instead of (13) for α > 2, and will hence be omitted.

Proof of Theorem 2.3. We now consider the parabolic case (Equation (1)). Let δ > 0 a
small enough parameter. We call

hn(z) := Φn(−iz − λn)
Hβ(z)

Hβ(iλn)
. (72)

One has, using (11), that hn(iλk) = δkn. We want to apply at the end the Paley-Wiener Theorem
(see estimate (58)) in an optimal way, so we want aνβ to be close to T/2. Let us consider ν large
enough such that (see (45))

|aν −
α

α− 1
| 6 δ/4.

Assume that aνβ < T/2 and close to T/2, for example

β =
T (α− 1)(1− δ/2)

2α
. (73)

Now we choose ν such that
αα(βνα−1) > π/(2 sin(π/2α))

and close to π/(2 sin(π/(2α))) (see estimates (13) and (59)), for example

ν :=
(π + δ)α/(α−1)

(2α sin(π/2α))α/(α−1)β1/(α−1) . (74)

Moreover, thanks to (72), (14), (59), (60), (74) and (73), one has

|hn(x)| .νeαν+π/(2 sin(π/2α))|x|
1
α−((π+δ/2)/(2 sin(π/2α)))|x|

1
α− βλn4ν P (|x|, |λn|)

. νeαν−δ/(2 sin(π/2α))|x|
1
α− βλn4ν P (|x|, λn|)

. ν
e
α

(π+δ)α/(α−1)

(2α sin(π/2α))α/(α−1)β1/(α−1)

(1 + (x+ λn)2)

. ν
e
α

(2α)1/(α−1)(π+δ)α/(α−1)

(2α sin(π/2α))α/(α−1)(T (α−1)(1−δ/2))1/(α−1)

(1 + (x+ λn)2)

. ν
e

21/(α−1)(π+δ)α/(α−1)

(2 sin(π/2α))α/(α−1)(T (α−1)(1−δ/2))1/(α−1)

(1 + (x+ λn)2)
.

Let us fix some

K >
πα/(α−1)

2(sin(π/2α))α/(α−1)(α− 1)1/(α−1)
.

Considering δ as close as 0 as needed, we deduce that

|hn(x)| . e
K

T1/(α−1)

(1 + (x+ λn)2)
, (75)

This notably implies that hn(x) ∈ L1(R) ∩ L2(R) and

||hn||L1(R) . e
K

T1/(α−1) . (76)
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Moreover, using (13), (72), (58) and (73)

|hn(z)| . eT |z|/2,

so using the Paley-Wiener Theorem, hn is the Fourier transform of a function wn ∈ L2(R) with
compact support [−T/2, T/2]. Moreover, by construction {wn} is biorthogonal to the family
{eλnt}. Then, one can create the control thanks to the family {hn}. Let us consider y0 =

∑
akek

the initial condition, we call

u(t) := −
∑

(ak/bk)e−Tλk/2wk(t− T/2), (77)

This expression is meaningful since bk ' 1, moreover the corresponding solution y of (1) verifies
y(T, ·) ≡ 0. One easily verifies that u ∈ C0([0, T ],R). Using (77), |bk| ' 1 and inequality (76), we
obtain

||u(t)||L∞(0,T ) . e
K

T1/(α−1)

∑
|ak|e−Tλk/2.

Using the Cauchy-Schwarz inequality, one deduces

||u(t)||L∞(0,T ) . e
K

T1/(α−1) ||y0||H .
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