The weak Pleijel theorem with geometric control
Résumé
Let $\Omega\subset \mathbb R^d\,, d\geq 2$, be a bounded open set, and denote by $\lambda_j(\Omega), j\geq 1$, the eigenvalues of the Dirichlet Laplacian arranged in nondecreasing order, with multiplicities. The weak form of Pleijel's theorem states that the number of eigenvalues $\lambda_j(\Omega)$, for which there exists an associated eigenfunction with precisely $j$ nodal domains (Courant-sharp eigenvalues), is finite. The purpose of this note is to determine an upper bound for Courant-sharp eigenvalues, expressed in terms of simple geometric invariants of $\Omega$. We will see that this is connected with one of the favorite problems considered by Y. Safarov.
Fichier principal
berard-helffer-geometric-pleijel-weak-151214.pdf (166.36 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|