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Abstract

Let Ω ⊂ R
d , d ≥ 2, be a bounded open set, and denote by λj(Ω), j ≥ 1,

the eigenvalues of the Dirichlet Laplacian arranged in nondecreasing or-
der, with multiplicities. The weak form of Pleijel’s theorem states that
the number of eigenvalues λj(Ω), for which there exists an associated
eigenfunction with precisely j nodal domains (Courant-sharp eigenval-
ues), is finite. The purpose of this note is to determine an upper bound
for Courant-sharp eigenvalues, expressed in terms of simple geometric in-
variants of Ω. We will see that this is connected with one of the favorite
problems considered by Y. Safarov.

Keywords: Dirichlet Laplacian, Nodal domains, Courant theorem,
Pleijel theorem.

MSC 2010: 35P15, 49R50.

1 Introduction and main result

We consider the Dirichlet Laplacian H(Ω) in a bounded open set Ω in R
d. We

denote by λj(Ω) (j ∈ N
∗) the sequence of eigenvalues arranged in nondecreasing

order, with multiplicities. The ground state energy λ1(Ω) is simply denoted by
λ(Ω). We denote by N(φj) = φ−1

j (0) the nodal set of an eigenfunction φj

associated with λj(Ω), and by µ(φj) the number of connected components of
Ω \N(φj) (nodal domains).

Courant’s nodal domain theorem [8, 1923] says that for any j ≥ 1, the number
µ(φj) is not greater than j.
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Call Courant-sharp an eigenvalue λj(Ω) for which there exists an eigenfunc-
tion φj with µ(φj) = j. In contrast with Sturm’s theorem in dimension 1, the
weak form of Pleijel’s theorem [16, 1956] says:

Theorem 1.1 In dimension 2, the number of Courant-sharp eigenvalues of
H(Ω) is finite.

This theorem is the consequence of a more precise theorem (strong Pleijel’s
theorem):

Theorem 1.2 In dimension 2, for any sequence of spectral pairs (φn, λn) of
H(Ω),

lim sup
n→+∞

µ(φn)

n
≤ 4π

λ(D1)
=

(
2

j

)2

< 1 , (1)

where D1 is the disk of unit area, and j the least positive zero of the Bessel
function J0.

Remark. Pleijel’s theorem extends to bounded domains in R
d, and more gener-

ally to compact d-dimensional manifolds with boundary, see Peetre [15], Bérard
and Meyer [6]. More precisely for d ≥ 2, there exists a constant γ(d) < 1 such
that

lim sup
n→+∞

µ(φn)

n
≤ γ(d) . (2)

It is interesting to note that the constant γ(d) only depends on the dimension
and is otherwise independent of the geometry.

In view of Pleijel’s theorem, it is a natural question to look for geometric
upper bounds for Courant-sharp eigenvalues. The purpose of this note is to give
a geometrically controlled version of Theorem 1.1. In dimension 2, we prove the
following result.

Theorem 1.3 Let Ω ⊂ R
2 be a bounded regular domain. Then, there exists

a positive constant β(Ω) depending only on the geometry of Ω, such that any
Courant-sharp eigenvalue λk(Ω) of H(Ω) satisfies

k
λ(D1)

|Ω| ≤ λk(Ω) ≤ β(Ω).

More precisely, the constant β(Ω) can be computed in terms of the area |Ω|
and the perimeter ℓ(∂Ω) of Ω, bounds on the curvature of ∂Ω and on the cut-
distance1 ε0(Ω) to ∂Ω.

Inspection of one of the two proofs gives for example the non optimal but more
explicit corollary:

Corollary 1.4 Let Ω ⊂ R
2 be a bounded regular domain. Any Courant-sharp

eigenvalue λk(Ω) satisfies,

λ(D1) k ≤ |Ω|λk(Ω) ≤ 2

(
24 π λ(D1)

λ(D1)− 4π

)4
(D(Ω))

4

|Ω|2 .

1This will be defined in Section 3.1, Equation (25).
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Here, the geometric quantity D(Ω) is defined by

D(Ω) = sup
ε>0

|{x ∈ Ω : d(x) < ε}|
ε

,

where d(x) is the distance from x to the boundary of Ω.

Observe that the lower and upper bounds are dilation invariant. When Ω is
regular, D(Ω) can be bounded from above by

D(Ω) ≤ max

{ |Ω|
ε0(Ω)

, 2ℓ(∂Ω)

}
.

Remark. As a matter of fact, Corollary 1.4 holds as soon as the boundary of
Ω has Minkowski dimension 1, see Section 3.2.

In all the paper, we only consider the Dirichlet problem. It would also be
interesting to analyze the Neumann problem in the same spirit. Looking at
the proof of Polterovich in [17], the main point would be to obtain a geometric
estimate of the number of nodal domains touching the boundary.

Organization of the paper.
The paper is organized as follows. In Section 2, we sketch the proofs of Plei-
jel’s theorem, and we explain the idea to obtain geometric upper bounds for
Courant-sharp eigenvalues. In Section 3 we describe lower bounds on the count-
ing function, using [19] or [7], and we derive upper bounds for the Courant-sharp
eigenvalues. In Section 4, we compare the bounds obtained in Section 3 for three
very simple examples (the disk, the annulus and the square), and the bounds one
can derive for other explicit examples (rectangles, equilateral triangles, etc.).

2 Proofs of Pleijel’s theorem

In this section, we sketch the proof of Theorem 1.2 for a domain Ω in R
d. We

first introduce some notation.
Let NΩ(λ) denote the counting function for H(Ω),

NΩ(λ) = # {j | λj(Ω) < λ} . (3)

The counting function can be written as

NΩ(λ) = Cd |Ω|λ
d
2 −R(λ) , (4)

where Cd is the Weyl constant, |Ω| denotes the d-dimensional volume of Ω, and

the remainder term R(λ) satisfies R(λ) = o(λ
d
2 ) according to Weyl’s theorem.

The Weyl constant is given by

Cd := (2π)−dωd , (5)

where ωd is the volume of the unit ball in R
d,

ωd = π
d
2 /Γ(

d

2
+ 1) . (6)
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We also denote by B
d
1 the ball of volume 1 in R

d.

To prove Theorem 1.2, we start from the identity

µ(φn)

n

n

λn(Ω)
d
2

λn(Ω)
d
2

µ(φn)
= 1 . (7)

Applying the Faber-Krahn inequality to each nodal domain of φn and summing
up, we have

λn(Ω)
d
2

µ(φn)
≥ λ(Bd

1)
d
2

|Ω| . (8)

Note for later reference that

if µ(φn) = n , then
λn(Ω)

d
2

n
≥ λ(Bd

1)
d
2

|Ω| . (9)

This gives a necessary condition for λn(Ω) to be Courant-sharp, which is (up to
the renormalization by the volume) independent of the geometry of Ω.

Taking a subsequence φni
such that

lim
i→+∞

µ(φni
)

ni
= lim sup

n→+∞

µ(φn)

n
,

and implementing in (7), we deduce:

λ(Bd
1)

d
2

|Ω| lim sup
n→+∞

µ(φn)

n
lim

n→+∞

n

NΩ(λn)
lim

λ→+∞

NΩ(λ)

λ
d
2

≤ 1 . (10)

Having in mind Weyl’s formula, we obtain

lim sup
n→+∞

µ(φn)

n
≤ γ(d) :=

1

Cd λ(Bd
1)

d
2

. (11)

When d = 2, one has C2 = 1
4π , λ(B2

1) = πj2, so that γ(2) = 4
j2

< 1 since
j ≈ 2.40 . More generally, for d ≥ 2 , one has

γ(d) :=
2d−2d2Γ(d/2)2

(j d−2

2
,1)

d
,

where jν,1 denotes the first positive zero of the Bessel function Jν (in particular
j0,1 = j), and it can be shown, see [6], that

γ(d) < 1 . (12)

This proves Theorem 1.2, and Theorem 1.1 follows as well. �

Remark. In the case of general Riemannian manifolds, one needs to use an
adapted isoperimetric inequality which is valid for domains with small enough
volume.

We now give an alternative proof of Theorem 1.1 which provides a hint on
how to bound the Courant-sharp eigenvalues from above.

4



If λn is Courant-sharp, then λn−1 < λn and hence, n = NΩ(λn) + 1. Using (9),
we obtain

λn Courant-sharp ⇒ NΩ(λn) + 1 = n ≤ |Ω|
(
λn(Ω)

λ(Bd
1)

) d
2

. (13)

Writing the counting function as,

NΩ(λ) = Cd |Ω|λ
d
2 −R(λ) . (14)

and plugging this relation into (13), we obtain that

λn(Ω) Courant-sharp ⇒ FΩ (λn(Ω)) ≤ 0 , (15)

where the function FΩ is defined for λ > 0 by

FΩ(λ) = Cd (1− γ(d)) |Ω|λ d
2 −R(λ) + 1 . (16)

ByWeyl’s theorem, the remainder term satisfiesR(λ) = o(λ). Since 1−γ(d) > 0,
see (12), the function FΩ tends to infinity when λ tends to infinity and hence
the number of Courant-sharp eigenvalues must be finite. �

As a matter of fact, the preceding proof tells us that Courant-sharp eigen-
values must be less than or equal to

inf{µ > 0 | FΩ(λ) > 0 for λ ≥ µ} . (17)

Although this quantity is a geometric invariant associated with Ω, it is not clear
how to estimate it in terms of simple geometric invariants, even if we used Ivrii’s
sharp estimate R(λ) = O(λ

1
2 ), [12]. In order to proceed, it is sufficient to have

an explicit geometric upper bound R(λ) of R(λ). Indeed, define the function

FΩ(λ) = Cd (1− γ(d)) |Ω|λ d
2 −R(λ) + 1 . (18)

Then, any Courant-sharp eigenvalue λk(Ω) must satisfy FΩ (λk(Ω)) ≤ 0, and
hence the inequality

λk(Ω) ≤ inf{µ > 0 | FΩ(λ) > 0 for λ ≥ µ} . (19)

In the next section, we use the explicit upper bounds R(λ) provided by
the papers of Safarov [19] and van den Berg and Lianantonakis [7] to obtain
upper bounds on the Courant-sharp eigenvalues in terms of simple geometric
invariants.

3 Lower bounds on the counting function and

applications to Courant-sharp eigenvalues

In this section, we describe lower bounds on the counting functions derived from
[19] or [7], and apply them to bounding the Courant-sharp eigenvalues.
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3.1 The approach via Y. Safarov

Here, we implement a result by Y. Safarov [19, 2001] which provides a lower
bound for the spectral function on the diagonal, with an explicit control on the
remainder term. This estimate is obtained by making use of finite propagation
speed for the wave equation, and precise Tauberian theorems.
If Ω ⊂ R

d is an open set, then the spectral function of the Dirichlet Laplacian

e(x, x, λ) :=
1

2




∑

λj<λ

φj(x)
2 +

∑

λj≤λ

φj(x)
2



 ,

satisfies [19, Cor. 3.1]

e(x, x, λ) ≥ Cdλ
d
2 − 2dCdπ

−1 ν2md

d(x)

(
λ

1
2 +

νmd

d(x)

)d−1

, (20)

for all x ∈ Ω and λ > 0 .
Here d(x) is the Euclidean distance to ∂Ω, and νmd

is a universal constant
depending only on the dimension.
More precisely, let

md =

{
d+1
2 , if d is odd,

(d+2)
2 , if d is even.

Then,
νm = (ν̃m)

1
2m ,

where ν̃m is the ground state energy of the Dirichlet realization of (−1)m d2m

dt2m

on ]− 1
2 ,

1
2 [.

Define

ÑΩ(λ) :=

∫

Ω

e(x, x, λ) dx ,

and let ǫ0(Ω) be the largest number with the property that

Ωb
ǫ := {x ∈ Ω , d(x) < ǫ}

is diffeomorphic to ∂Ω×]0, ǫ[.
Then, for 0 < ǫ < ǫ0(Ω),

ÑΩ(λ) ≥ Cd |Ω|λ
d
2 − Cd |Ωb

ǫ|λ
d
2

−2dCd π
−1ν2md

(
λ

1
2 +

νmd

ǫ

)d−1 (∫
d(x)>ǫ

1
d(x)dx

)
.

This inequality is also true by semi-continuity for NΩ(λ).

Writing NΩ(λ) = Cd |Ω|λ
d
2 −R(λ) as in (14), we have

R(λ) ≤ Cd |Ωb
ǫ|λ

d
2 + 2dCd π

−1ν2md

(
λ

1
2 +

νmd

ǫ

)d−1
(∫

d(x)>ǫ

1

d(x)
dx

)
. (21)

We now use our freedom for choosing ǫ. A natural choice is to take

ǫ := α(Ω)λ− 1
2 . (22)
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Because we need this estimate for any λ in the spectrum of the Laplacian,
and actually for λ > λ2(Ω) (because the Courant-sharp property is already
established for the two first eigenvalues), we choose

α(Ω) = ǫ0(Ω)λ2(Ω)
1
2 . (23)

To have more explicit bounds, we could also choose

α(Ω) = ǫ0(Ω)λ2(Ω)
1
2

where λ2(Ω) is a geometric lower bound of λ2(Ω) (using Faber-Krahn inequality
or a consequence of Li-Yau inequality, see below (37) and (38)).

For regular domains, the right-hand side of (21) can be estimated in terms of
the geometry of Ω.

For the sake of simplicity, we give the details in the case d = 2.

In dimension 2, the above lower bound for ÑΩ(λ) (and NΩ(λ)) reads

NΩ(λ) ≥ C2|Ω|λ− C2

∣∣∣Ωb

αλ−

1
2

∣∣∣λ

−4C2π
−1ν22

(
1 + ν2

α

)
λ

1
2

(∫
{

d(x)>αλ−

1
2

}

1
d(x)dx

)
.

(24)

When d = 2, we have m2 = 2, and we can verify (using the quasimode (14 −x2)2

of [19]) that
ν̃2 ≤ 7× 8× 9 ≤ 29 ,

which implies the rough estimate

ν2 ≤ 4 · 2 1
4 ≤ 5 .

We now assume that ∂Ω is a smooth submanifold, so that ∂Ω is the union
of p smooth simple closed curves. We write the proof in the case p = 1, the
general case is similar. Let c : [0, L] → R

2 be a parametrization of ∂Ω by arc-
length, with L := ℓ(∂Ω), the length of the boundary. The associated Frenet
frame is {τ(s), ν(s)}. We can assume that the orientation is chosen such that
ν(s) points towards the interior of Ω. The curvature κ(s) of the curve is given
by the equation τ̇ (s) = κ(s)ν(s). Let κ−(Ω) denote the infimum of κ over [0, L].
Define the map {

F : [0, L]×]−∞,∞[ ,
F (s, t) = c(s) + tν(s) .

We have
∂sF (s, t) ∧ ∂tF (s, t) = (1− tκ(s)) τ(s) ∧ ν(s) .

The map F is a local diffeomorphism for |t| < t+ with

t+ :=

(
sup
[0,L]

|κ(s)|
)−1

.

The injectivity of F is determined by the infimum δ+ of the cut-distance δ+(s)
to the submanifold ∂Ω, where

δ+(s) := sup{t > 0 : t = dist(F (s, t), ∂Ω)}. (25)
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From now on, we assume that

ǫ0(Ω) := inf{t+, δ+} (26)

so that F is a diffeomorphism from [0, L]×]0, ǫ0(Ω)[ onto its image (i.e. so that
F is both a local diffeomorphism and injective). For ǫ < ǫ0(Ω), we have

|Ωb
ǫ| =

∫ L

0

∫ ǫ

0

(1− tκ(s)) ds dt .

It follows that

{
C2

∣∣∣Ωb

αλ
1
2

∣∣∣ λ ≤ β1(Ω)λ
1
2 ,where

β1(Ω) =
1
4π (1 + ǫ0(Ω)|κ−(Ω)|) ǫ0(Ω)λ2(Ω)

1
2 ℓ(∂Ω) .

(27)

The third term in the right-hand side of (24) can be written as





β2(Ω)λ
1
2

∫
{

d(x)>αλ−

1
2

}

1
d(x)dx ,where

β2(Ω) := π−2ν22

(
1 + ν2ǫ0(Ω)

−1λ2(Ω)
− 1

2

)
.

(28)

Write ∫
{

d(x)>αλ−

1
2

}

1
d(x)dx =

∫
{d(x)>ǫ0(Ω)}

1
d(x)dx

+
∫ L

0

∫ ǫ0(Ω)

αλ−

1
2

(1−tκ(s))
t ds dt

We can estimate the second integral in the right-hand side as we did above.
The first integral can be estimated from above by |Ω|/ε0(Ω). It follows that
there exist positive constants β3(Ω) and β4(Ω) such that, for all λ > λ2(Ω),

NΩ(λ) =
|Ω|
4π λ−R(λ), with

R(λ) ≤ R(λ) = β3(Ω)λ
1
2 ln

(
λ

λ2(Ω)

)
+ β4(Ω)λ

1
2 . (29)

Note that the constants only depend on the geometry of the domain Ω. More
precisely, the constants can be computed in terms of |Ω|, ℓ(∂Ω), κ−(Ω), ǫ0(Ω),
and λ2(Ω).

Remarks. (i) The preceding proof shows that one can alternatively estimate
the constants in terms of |Ω|, ℓ(∂Ω), ǫ0(Ω), λ2(Ω), and the number of holes of
the domain (through the integral

∫
∂Ω

κ).
(ii) In higher dimension, one can state a similar result in which the curvature κ
of the curve is replaced by the mean curvature h of the hypersurface ∂Ω. For
this purpose, one uses the Heintze-Karcher comparison theorem [9].

Applying (18) and (19), we obtain that any Courant-sharp eigenvalue λk(Ω)
satisfies

fΩ(λk) ≤ 0 , (30)

where the function fΩ is defined for µ > λ2(Ω) by

fΩ(µ) :=
λ(D1)− 4π

4πλ(D1)
|Ω|µ− β3(Ω)µ

1
2 ln

(
µ

λ2

)
− β4(Ω)µ

1
2 + 1 . (31)
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Since λ(D1) > 4π, see (12), the coefficient of the term µ in the expression
of fΩ is positive, so that the function tends to infinity when µ tends to infinity.
Hence IΩ := f−1

Ω (]−∞, 0]) is either empty or bounded from above.
Define

βS(Ω) = max{λ2(Ω), β0(Ω)} ,
where β0(Ω) is the supremum of IΩ if IΩ is non empty and 0 otherwise. From
Equation (30) we conclude that

λk(Ω) Courant-sharp ⇒ λk(Ω) ≤ βS(Ω) . (32)

We have proved Theorem 1.3. �

Starting from the inequality fΩ(λk) ≤ 0 in the above proof, we conclude
that any Courant-sharp eigenvalue λk satisfies

A2 |Ω|λ
1
2

k ≤ β3(Ω) ln
λk

λ2
+ β4(Ω) ,

where A2 = 1
4π − 1

λ(D1)
. Using the inequality ln µ

λ2
≤ 4

(
µ
λ2

) 1
4

which holds for

any µ ≥ λ2, we obtain the following more explicit bound.

Corollary 3.1 In dimension 2, any Courant-sharp eigenvalue λk(Ω) of H(Ω)
satisfies

λk(Ω) ≤ max

{
λ2(Ω),

(
16πλ(D1)

λ(D1)− 4π

)4
(β3(Ω) + β4(Ω))

4

|Ω|4λ2(Ω)

}
. (33)

Remark. Pólya’s conjecture for Dirichlet eigenvalues (see [18]) does not go in
the right direction. Indeed lower bounds on the Dirichlet eigenvalues correspond
to upper bounds on N(λ). This would be good for Neumann eigenvalues, but
in this case, there are other problems, see [16] and more recently [17].

3.2 Approach via van den Berg–Lianantonakis

Prior to Y. Safarov, van den Berg and Lianantonakis have given lower bounds
for the counting function NΩ(λ) depending on the Minkowski dimension of ∂Ω.
When this dimension is (d− 1), their estimate reads [7, Theorem 2.1]

for λ ≥ 4|Ω|− 2
d , (34)

N(λ) ≥ Cd|Ω|λ
d
2 − 3D(Ω)λ(d−1)/2 log

(
(2|Ω|) 2

d λ
)
, (35)

where the geometric constant D(Ω) is defined by

D(Ω) := sup
ǫ

|Ωb
ǫ|
ǫ

. (36)

To apply (35) to Pleijel’s theorem, one needs to compare condition (34) with
the condition λ > λ2(Ω). One can for example observe that the Faber-Krahn
inequality applied to the second eigenvalue gives (see [1] or (9) for d = 2)

λ2(Ω) ≥ (2ωd)
2
d |Ω|− 2

d j2d
2
−1,1

. (37)
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For d = 2, since 2πj20,1 > 4, the condition λ > λ2(Ω) implies (34). For d ≥ 2, we
can use the following lower bound for λ2(Ω) which is a consequence of Li-Yau
inequality (see [1, Formula (11.5)]),

λ2(Ω) >
d

d+ 2

4π22
2
d

(ωd|Ω|)
2
d

. (38)

Hence it is enough to verify that:

d

d+ 2

4π22
2
d

(ωd)
2
d

≥ 4 ,

which is easy to establish. Indeed, using (6), we obtain

d

d+ 2
π 2

2
d Γ(

d

2
+ 1)

2
d ≥ 1 ,

which follows from the inequality d
d+2 π ≥ 1 for d ≥ 1.

Assuming d = 2 for the sake of simplicity, and using (15) together with
(35), we obtain that any Courant-sharp eigenvalue λk(Ω), with λk > λ2, satisfies
gΩ(λk) ≤ 0, where gΩ is defined by

gΩ(µ) =

(
1

4π
− 1

λ(D1)

)
|Ω|λ− 3D(Ω)µ

1
2 ln(2|Ω|µ) + 1 ,

for µ ≥ λ2(Ω). Define β1(Ω) to be 0 if gΩ(µ) ≥ 0, and sup{µ > λ2 : gΩ(µ) ≤ 0}
otherwise, and define

βB(Ω) := max{λ2(Ω), β1(Ω)} .
Then,

λk(Ω) Courant-sharp ⇒ λk(Ω) ≤ βB(Ω) . (39)

This proves Theorem 1.3 using the lower bound for the counting function pro-
vided by [7]. �

From the inequality gΩ(λk) ≤ 0 in the preceding proof, we have that any
Courant-sharp eigenvalue λk(Ω) satisfies the inequality

(
1

4π
− 1

λ(D1)

)
|Ω|λ

1
2

k − 3D(Ω) ln(2|Ω|λk) ≤ 0 ,

for λk ≥ λ2. Using the inequality

lnµ ≤ 2µ
1
4 for µ ≥ 16 ,

and the fact that 2|Ω|λk > 16 (Faber-Krahn), we obtain the more explicit bound
given in Corollary 1.4.
As kindly communicated by M. van den Berg, in dimension 2, when Ω is suffi-
ciently regular, the geometric invariant D(Ω) can be bounded from above by

D(Ω) ≤ max

( |Ω|
ǫ0(Ω)

, ℓ(∂Ω) + π ε0(Ω)h(Ω)

)
,

where h(Ω) is the number of holes of Ω, or by

D(Ω) ≤ max

( |Ω|
ǫ0(Ω)

, 2ℓ(∂Ω)

)
.
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4 Examples and particular cases

4.1 Examples

In some 2-dimensional cases, it is possible to compute the upper bounds for
Courant-sharp eigenvalues arising from the preceding sections explicitly. Con-
sider the following domains,

Ω1 = B(0, 1), the unit disc in R
2 ,

Ω2 = B(0, 1) \B(0, a), 0 < a < 1, the annulus A(0, a, 1) ⊂ R
2 ,

Ω3 =]0, π[×]0, π[ , the square in R
2 with side π .

For the unit disc, one finds that βS(Ω1) ≈ 7.1 · 106 and βB(Ω1) ≈ 2.1 · 107.
For the annulus, one finds that βB(Ω2) ≈ 4.2 · 108 when a = 0.75 ,
and βB(Ω2) ≈ 4 · 107 when a = 0.25 .

For the square with side π, one finds that βB(Ω3) ≈ 5.9 · 106. It turns out
that this bound is much bigger than the bound which is deduced in the next
sub-section, namely 51.
This is not surprising. The general lower bounds for the counting functions
used in the preceding sections, Equations (29) and (35), are worse than the

sharp 2-dimensional estimate R(λ) = O(λ
1
2 ), see [12], by a ln(λ) factor. On the

other-hand, the estimate (42) has the right powers, and almost the right second
constant.
Generally speaking one should therefore expect that the bounds βS(Ω) and
βB(Ω) are not sharp.

4.2 Particular cases

As already mentioned, improved Weyl’s formulas with control of the remainder
which are only asymptotic are not sufficient for an explicit version of Pleijel’s
theorem. We nevertheless mention for comparison a formula due to V. Ivrii in
1980 (cf [11, Chapter XXIX, Theorem 29.3.3 and Corollary 29.3.4]) which reads:

N(λ) =
ωd

(2π)d
|Ω|λ d

2 − 1

4

ωd−1

(2π)d−1
|∂Ω|λ d−1

2 + r(λ), (40)

where r(λ) = O(λ
d−1

2 ) in general, but can also be shown to be o(λ
d−1

2 ) under
some rather generic conditions about the geodesic billiards (the measure of pe-
riodic trajectories should be zero) and C∞ boundary. This is only in this case
that the second term is meaningful.

Formula (40) can also be established in the case of irrational rectangles as
a very special case in [12], but more explicitly in [13] without any assumption
of irrationality. See also [3] for some 2-dimensional domains with negative cur-
vature. We do not discuss here the case of “rough” boundaries which was in
particular analyzed by Netrusov et Safarov in [14] (and references therein).

Note that when d = 2, the second term in (40) is

W2(λ) := − 1

4π
|∂Ω|λ 1

2 . (41)
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The Dirichlet (and Neumann) eigenvalues are explicitly given for few do-
mains. In dimension 2 these domains include the rectangles, the isosceles right
triangle, the equilateral triangle and the hemiequilateral triangle. In these cases,
estimating the counting function amounts to estimating the number of points
with integer coordinates inside some ellipse (these domains are obtained as quo-
tient of a torus). The estimates which are obtained in this manner are compat-
ible with Weyl’s two terms asymptotic formula (40)), involving the area of the
domain and the length of it boundary. Similarly, in higher dimensions, one can
explicitly describe the Dirichlet (and Neumann) eigenvalues of the fundamental
domains of crystallographic affine Weyl groups, [2]. As far as the asymptotic
estimate is concerned, this is possible because the remainder term in Weyl’s

estimate has order λ
d−2

2
+ 1

d+1 for a d-dimensional torus.

Rectangle.
Following (and improving) a remark in a course of R. Laugesen [4], one has a
lower bound of N(λ) in the case of the rectangle R = R(a, b) := (0, aπ)×(0, bπ),
which can be expressed in terms of area and perimeter. One can indeed observe

that the area of the intersection of the ellipse { (x+1)2

a2 + (y+1)2

b2 < λ} with R
+×R

+

is a lower bound for N(λ).
The formula reads:

NR(λ) >
1

4π
|R|λ− 1

2π
|∂R|

√
λ+ 1 , for λ ≥ 1

a2
+

1

b2
. (42)

Here we can observe that the second term is 2W2(λ) (see (41)).

Equilateral triangle, see [5].
We consider the equilateral triangle with side 1.

NT (λ) ≥
√
3

4

λ

4π
− 3

2π

√
λ+ 1 . (43)

Again we observe that the second term is 2W2(λ) (see (41)).

Isosceles right triangle, see [5].
Call Bπ the isosceles right triangle,

Bπ =
{
(x, y) ∈]0, π[2 | y < x

}
. (44)

NB(λ) ≥
πλ

8
− (4 +

√
2)
√
λ

4
− 1

2
. (45)

The cube, see [10].
For the cube (0, π)3, we have, for λ ≥ 3 :

N(λ) >
π

6
λ

3
2 − 3π

4
λ+ 3

√
λ− 2− 1 . (46)
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