Geometric optics expansions for hyperbolic corner problems II : from weak stability to violent instability - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Geometric optics expansions for hyperbolic corner problems II : from weak stability to violent instability

Résumé

In this article we are interested in the rigorous construction of geometric optics expansions for weakly well-posed hyperbolic corner problems. More precisely we focus on the case where selfinteracting phases occur and are exactly the phases where the uniform Kreiss-Lopatinskii condition fails. We then show that the associated WKB expansion suffers arbitrarily many amplifications in a fixed finite time. As a consequence, we show that this corner problem can not be well-posed even at the price of a huge loss of derivatives. The new result, in that framework, is that the violent instability does not come from the failure of the weak Kreiss-Lopatinskii condition, but of the accumulation of arbitrarily many weak instabilities.
Fichier principal
Vignette du fichier
BKW_corner_WR_fin2.pdf (662.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01242899 , version 1 (14-12-2015)
hal-01242899 , version 2 (30-12-2015)
hal-01242899 , version 3 (13-10-2016)
hal-01242899 , version 4 (09-03-2017)

Identifiants

  • HAL Id : hal-01242899 , version 3

Citer

Antoine Benoit. Geometric optics expansions for hyperbolic corner problems II : from weak stability to violent instability. 2016. ⟨hal-01242899v3⟩
423 Consultations
283 Téléchargements

Partager

More