Bayesian algorithm for unsupervised unmixing of hyperspectral images using a post-nonlinear model - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Bayesian algorithm for unsupervised unmixing of hyperspectral images using a post-nonlinear model

Résumé

This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are post-nonlinear functions of unknown pure spectral components contaminated by an additive white Gaussian noise. The nonlinear effects are approximated by a polynomial leading to a polynomial post-nonlinear mixing model. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding an unsupervised nonlinear unmixing algorithm. Due to the large number of parameters to be estimated, an efficient constrained Hamiltonian Monte Carlo algorithm is investigated. The performance of the unmixing strategy is finally evaluated on synthetic data.
Fichier principal
Vignette du fichier
altmann_12547.pdf (127.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01239743 , version 1 (08-12-2015)

Identifiants

  • HAL Id : hal-01239743 , version 1
  • OATAO : 12547

Citer

Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret. Bayesian algorithm for unsupervised unmixing of hyperspectral images using a post-nonlinear model. 21st European Signal and Image Processing Conference (EUSIPCO 2013), Sep 2013, Marrakech, Morocco. pp. 1-5. ⟨hal-01239743⟩
202 Consultations
56 Téléchargements

Partager

More