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ABSTRACT

This paper presents a nonlinear mixing model for hyperspec-

tral image unmixing. The proposed model assumes that the

pixel reflectances are post-nonlinear functions of unknown

pure spectral components contaminated by an additive white

Gaussian noise. The nonlinear effects are approximated by

a polynomial leading to a polynomial post-nonlinear mixing

model. A Bayesian algorithm is proposed to estimate the

parameters involved in the model yielding an unsupervised

nonlinear unmixing algorithm. Due to the large number of

parameters to be estimated, an efficient constrained Hamilto-

nian Monte Carlo algorithm is investigated. The performance

of the unmixing strategy is finally evaluated on synthetic data.

Index Terms— Hyperspectral imagery, unsupervised

spectral unmixing, Hamiltonian Monte Carlo, post-nonlinear

model.

1. INTRODUCTION

Identifying macroscopic materials and quantifying the pro-

portions of these materials are major issues when analyzing

hyperspectral images. This spectral unmixing (SU) problem

has been widely studied for the applications where the pixel

reflectances are linear combinations of pure component spec-

tra. However, as explained in [1], the linear mixing model

(LMM) can be inappropriate for some hyperspectral images.

Nonlinear mixing models provide an interesting alternative

for overcoming the inherent limitations of the LMM. Several

models have been studied in the literature to handle specific

kinds of nonlinearity. In particular, the bilinear models re-

cently studied in [2–5] address the problem of scattering ef-

fects, mainly observed in vegetation or urban areas. Other

more flexible unmixing techniques have been also proposed

to handle wider class of nonlinearity, including radial basis

function networks and kernel-based models. In this paper, we

study a polynomial post-nonlinear mixing model (PPNMM)
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that has recently shown interesting properties for the SU of

hyperspectral images [6].

More precisely, this paper presents a fully unsupervised

unmixing algorithm based on the PPNMM, i.e., assumes that

the endmembers are unknown. In the Bayesian framework,

appropriate prior distributions are chosen for the unknown

PPNMM parameters. However, the classical Bayesian esti-

mators cannot be easily computed from the resulting joint

posterior. To alleviate this problem, a Markov chain Monte

Carlo (MCMC) method is used to generate samples accord-

ing to the posterior of interest. Due to the large number of

parameters to be estimated we propose to use a Hamiltonian

Monte Carlo (HMC) method to sample according to the pos-

terior. HMCs are powerful simulation strategies based on

Hamiltonian dynamics which can improve the convergence

and mixing properties of classical MCMC methods [7]. More

recently, new HMCs methods have been proposed to handle

constrained variables [7, Chap. 5] which allows HMCs to be

applied to our Bayesian model.

The paper is organized as follows. Section 2 introduces

the PPNMM for hyperspectral image analysis. Section 3

presents the hierarchical Bayesian model associated with the

proposed PPNMM and its posterior distribution. Constrained

HMC (CHMC) methods are coupled with a standard Gibbs

sampler presented in Section 4. Simulation results conducted

on synthetic data are shown and discussed in Section 5. Con-

clusions are finally reported in Section 6.

2. PROBLEM FORMULATION

2.1. Polynomial Post-Nonlinear Mixing Model

This section recalls the nonlinear mixing model used in [6]

for hyperspectral image SU. We consider a set of N observed

spectra yn = [yn,1, . . . , yn,L]
T , n ∈ {1, . . . , N} where L is

the number of spectral bands. Each of these spectra is de-

fined as a nonlinear transformation gn of a linear mixture of

R spectra mr contaminated by additive noise

yn = gn

(
R∑

r=1

ar,nmr

)
+ en = gn (Man) + en (1)



where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the

rth material present in the scene, ar,n is its corresponding

proportion in the nth pixel, R is the number of endmem-

bers contained in the image and gn is a nonlinear func-

tion associated with the nth pixel. Moreover, en is an ad-

ditive independent and identically distributed (i.i.d) zero-

mean Gaussian noise sequence with variance σ2, denoted as

en ∼ N
(
0L, σ

2IL
)
. Note that the usual matrix and vector

notations M = [m1, . . . ,mR] and an = [a1,n, . . . , aR,n]
T

have been used in the right hand side of (1). As in [6], the

N nonlinear functions gn are defined as second order poly-

nomial nonlinearities defined by gn (s) = s + bn(s ⊙ s),
with s ∈ R

L, bn a real parameter, and where ⊙ denotes

the Hadamard (termwise) product. An interesting property

of the resulting PPNMM is that it reduces to the classical

LMM for bn = 0. Motivations for considering polynomial

nonlinearities have been discussed in [6]. Straightforward

computations allow the PPNMM observation matrix to be

expressed as follows

Y = MA+ [(MA)⊙ (MA)] diag (b) +E (2)

where A = [a1, . . . ,aN ] is an R × N matrix, Y =
[y1, . . . ,yN ] and E = [e1, . . . , eN ] are L × N matrices,

and b = [b1, . . . , bN ]T is an N × 1 vector containing the

nonlinearity parameters. Moreover, diag (b) is an N × N
diagonal matrix containing the elements of the vector b.

2.2. Abundance reparametrization

Due to physical considerations, the abundance vectors an sat-

isfy the following positivity and sum-to-one constraints

R∑

r=1

ar,n = 1, ar,n > 0, ∀r ∈ {1, . . . , R} . (3)

To handle these constraints, we propose to reparameterize the

abundance vectors belonging to the set

S =

{
a = [a1, . . . , aR]

T

∣∣∣∣∣ar > 0,
R∑

r=1

ar = 1

}

using the following transformation

ar,n =

(
r−1∏

k=1

zk,n

)
×

{
1− zr,n if r < R
1 if r = R

. (4)

This transformation has been recently suggested in [8]. The

main motivation for using the latent variables zr,n instead of

ar,n is the fact that the constraints (3) for the nth abundance

vector an express as

0 < zr,n < 1, ∀r ∈ {1, . . . , R− 1} (5)

for the nth coefficient vector zn = [z1,n, . . . , zR−1,n]
T . As a

consequence, the constraints (5) are much easier to handle for

the sampling procedure than (3). The next section presents

the Bayesian model associated with the PPNMM for SU.

3. BAYESIAN MODEL

This section generalizes the hierarchical Bayesian model in-

troduced in [6] in order to jointly estimate the abundances

and endmembers. The unknown parameter vector associated

with the PPNMM contains the reparameterized abundances

Z = [z1, . . . , zN ], the endmember matrix M, the nonlinear-

ity parameter vector b and the additive noise variance σ2. This

section summarizes the likelihood and the parameters priors

introduced to perform unsupervised hyperspectral unmixing.

3.1. Likelihood

Assuming prior independence between the observed pixels

and using (2), the joint likelihood of the observation matrix

Y can be expressed as

f(Y|M,Z, b, σ2) ∝ σ−NLetr

[
−
(Y −X)T (Y −X)

2σ2

]

(6)

where ∝ means “proportional to”, etr(·) denotes the expo-

nential trace and X = MA + [(MA)⊙ (MA)] diag (b) is

an L×N matrix.

3.2. Parameter priors

To reflect the lack of prior knowledge about the abundances,

we propose to assign prior distributions for the coefficient

vector zn that correspond to noninformative prior distribu-

tions for an. More precisely, assigning the beta priors zn,r ∼
Be(R − r, 1) r ∈ {1, . . . , R− 1} and assuming prior in-

dependence between the elements of zn yield an abundance

vector an uniformly distributed in set S (see [8] for details).

Assuming prior independence between the coefficient vectors

{zn}n=1,...,N leads to

f(Z) =

R−1∏

r=1

{
1

B(R− r, 1)N

N∏

n=1

zR−r−1
n,r

}
(7)

where B(·, ·) is the Beta function.

Each endmember mr = [mr,1, . . . ,mr,L]
T is a re-

flectance vector satisfying the following constraints

0 ≤ mr,ℓ ≤ 1, ∀r ∈ {1, . . . , R} , ∀ℓ ∈ {1, . . . , L} . (8)

For each endmember mr, we propose to use a Gaussian prior

mr ∼ N[0,1]L(m̄r, s
2IL), (9)

truncated on [0, 1]L to satisfy the constraints (8). In this paper,

we propose to select the mean vectors m̄r as the pure com-

ponents previously identified by the nonlinear EEA studied in

[9] and referred to as “Heylen”. The variance s2 reflects the

degree of confidence given to this prior information. When

no additional knowledge is available, this variance is fixed to

a large value (s2 = 50 in our simulations).



The PPNMM reduces to the LMM for bn = 0. Since the

LMM is probably relevant for most observed pixels it makes

sense to assign prior distributions to the nonlinearity parame-

ters that enforce sparsity for the vector b. Consequently, the

following conjugate Bernoulli-Gaussian prior is assigned to

each parameter bn

f(bn|w, σ
2
b ) = (1− w)δ(bn) + w

1√
2πσ2

b

exp

(
−

b2n
2σ2

b

)
(10)

where δ(·) denotes the Dirac delta function. Note that the

prior distributions for {bn}n=1,...,N share the same hyperpa-

rameters w ∈ [0, 1] and σ2
b ∈]0,+∞[. Moreover, the weight

w is the prior probability of having a nonlinearly mixed pixel

in the image. Assuming prior independence between the non-

linearity parameters {bn}n=1,...,N , the joint prior distribution

of the nonlinearity parameter vector b is given by

f(b|w, σ2
b ) =

N∏

n=1

f(bn|w, σ
2
b ). (11)

A Jeffreys’ prior is chosen for the noise variance σ2

f(σ2) ∝
1

σ2
IR+(σ2) (12)

which reflects the absence of knowledge for this parameter.

3.3. Hyperparameter priors

The performance of the proposed Bayesian model for spectral

unmixing depends on the values of the hyperparameters σ2
b

and w. When the hyperparameters are difficult to adjust, it is

classical to include them in the unknown parameter vector, re-

sulting in a hierarchical Bayesian model [6, 10]. A conjugate

inverse-Gamma prior is assigned to σ2
b , i.e., σ2

b ∼ IG (γ, ν)
where (γ, ν) are real parameters fixed to obtain a flat prior,

reflecting the absence of knowledge about the variance σ2
b

((γ, ν) will be set to (10−1, 10−1) in the simulation section).

A uniform prior distribution is assigned to the hyperparameter

w, i.e., w ∼ U[0,1](w) since there is no a priori information

regarding the proportions of linearly and nonlinearly mixed

pixels in the image.

3.4. Joint Posterior distribution

The joint posterior distribution of the unknown parameters

θ =
{
Z,M, b, σ2, σ2

b , w
}

can be computed using the follow-

ing hierarchical structure

f(θ|Y) ∝ f(Y|θ)f(θ) (13)

where f(Y|θ) has been defined in (6). By assuming a priori

independence between the parameters Z, M, b and σ2 and

between the hyperparameters σb and w, the joint prior distri-

bution of the θ can be expressed as

f(θ) = f(Z)f(M)f(σ2)f(b|σ2
b , w)f(σ

2
b )f(w).(14)

Unfortunately, it is difficult to obtain closed form expressions

for the standard Bayesian estimators associated with (13).

In this paper, we propose to use efficient MCMC methods

to generate samples asymptotically distributed according to

(13). Due to the large number of parameters to be sampled,

we use an HMC algorithm which allows the number of sam-

pling steps to be reduced and which improves the mixing

properties of the sampler. The basic principles of the HMC

methods that will be used to sample asymptotically from (13)

can be found in [11]. The generated samples are then used to

compute the MMSE estimator of θ. The next section summa-

rizes the Gibbs sampler including constrained HMC methods

used to sample from (13).

4. GIBBS SAMPLER

The principle of the Gibbs sampler is to sample according to

the conditional distributions of the posterior of interest [12,

Chap. 10]. Due to the large number of parameters to be es-

timated, it makes sense to use a block Gibbs sampler to im-

prove the convergence of the sampling procedure. More pre-

cisely, we propose to sample sequentially M,Z, b, σ2, σ2
b and

w using six moves that are detailed in the next sections.

4.1. Sampling the coefficient matrix Z

Sampling from f(Z|Y,M, b, σ2, σ2
b , w) is difficult due to the

complexity of this distribution. In this case, it is classical to

use an accept/reject procedure to update the coefficient matrix

Z (leading to a hybrid Metropolis-Within-Gibbs sampler). It

can be shown that

f(Z|Y,M, b, σ2, σb, w) =
N∏

n=1

f(zn|yn,M, bn, σ
2), (15)

i.e., the N coefficients vectors {zn}n=1,...,N are a posteriori

independent and can be sampled independently in a parallel

manner. Straightforward computations lead to

f(zn|yn,M, bn, σ
2) ∝ exp

(
−
‖yn − xn‖

2

2σ2

)

× 1(0,1)R−1 (zn)

R−1∏

r

zR−r−1
n,r (16)

where xn = gn (Man), 1(0,1)R−1 (·) denotes the indicator

function over (0, 1)R−1. The distribution (16) can be related

to a potential energy that is then used within the CHMC

method presented in [11] to update the vector zn (see [11] for

details).

4.2. Sampling the endmember matrix M

From (13) and (14), it can be seen that

f(M|Y,Z, b, σ2, s2, M̃) =
L∏

ℓ=1

f(mℓ,:|yℓ,:,Z, b, σ
2, s2, m̄ℓ,:)



where mℓ,: (resp. m̄ℓ,: and yℓ,:) is the ℓth row of M (resp. of

M̃ and Y) and

f(mℓ,:|yℓ,:,Z, b, σ
2, s2, m̄ℓ,:) ∝ exp

(
−
‖yℓ,: − tℓ‖

2

2σ2

)

× exp

(
−
‖mℓ,: − m̄ℓ,:‖

2

2s2

)
1(0,1)R (mℓ,:) (17)

with tℓ = ATmℓ,: + diag (b)
[(
ATmℓ,:

)
⊙
(
ATmℓ,:

)]
.

Consequently, the rows of the endmember matrix M can be

sampled independently similarly to the CHMC procedure

described in the previous section to sample Z by introducing

the L potential energies associated with each mℓ,: (see [11]

for details).

4.3. Sampling the nonlinearity parameter vector b

Using (13) and (14), it can be easily shown that the condi-

tional distribution of bn|yn,M, zn, σ
2, w, σ2

b is the following

Bernoulli-Gaussian distribution

bn|yn,M, zn, σ
2, w, σ2

b ∼ (1− w∗
n)δ(bn) + w∗

nN
(
µn, s

2
n

)

(18)

where

µn =
σ2
b (yn −Man)

T
hn

σ2
bh

T
nhn + σ2

, s2n =
σ2
bσ

2

σ2
bh

T
nhn + σ2

and hn = (Man)⊙ (Man). Moreover,

w∗
n =

w

βn + w(1− βn)
, βn =

σb

sn
exp

(
−

µ2
n

2s2n

)
. (19)

For each bn, the conditional distribution (18) does not de-

pend on {bk}k 6=n. Consequently, the nonlinearity parame-

ters {bn}n=1,...,N can be sampled independently in a parallel

manner.

4.4. Sampling the noise variance σ2

By considering the posterior distribution (13), it can be shown

that σ2|Y,M,Z, b is distributed according to the following

inverse-gamma distribution

σ2|Y,M,Z, b ∼ IG

(
NL

2
,
tr
(
(Y −X)T (Y −X)

)

2

)
(20)

with tr(·) the matrix trace, from which it is easy to sample.

4.5. Sampling the hyperparameters σ2
b and w

Looking carefully at the posterior distribution (13), it can be

seen that σ2
b |b, γ, ν is distributed according to the following

inverse-gamma distribution

σ2
b |b, γ, ν ∼ IG

(
n1

2
+ γ,

∑

n∈I1

b2n
2

+ ν

)
(21)

with I1 = {n|bn 6= 0}, n0 = ‖b‖0 (where ‖·‖0 is the ℓ0 norm,

i.e., the number of elements of b that are different from zero)

and n1 = N −n0, from which it is easy to sample. Similarly,

we obtain

w|b ∼ Be(n1 + 1, n0 + 1). (22)

The small number of sampling steps is due to the high par-

allelization properties of the proposed sampling procedure,

i.e., the generation of the N coefficient vectors {zn}n=1,...,N ,

the N nonlinearity parameters {bn}n=1,...,N and the L re-

flectance vectors {mℓ,:}ℓ=1,...,L. After generating NMC sam-

ples using the procedures detailed above, the MMSE estima-

tor of the unknown parameters can be approximated by com-

puting the empirical averages of these samples, after an ap-

propriate burn-in period1. The next section studies the perfor-

mance of the proposed algorithm for synthetic hyperspectral

images.

5. SIMULATIONS

The performance of the proposed nonlinear SU algorithm is

first evaluated by unmixing 3 synthetic images I1 to I3 of size

N = 2500 pixels. The R = 3 endmembers observed at L =
207 different spectral bands and contained in these images

have been extracted from the spectral libraries provided with

the ENVI software. The first image I1 has been generated

using the LMM. The image I2 has been generated according

to the PPNMM and I3 has been generated according to the

generalized bilinear mixing model (GBM) presented in [5].

For each image, the abundance vectors have been randomly

generated according to a uniform distribution in the admissi-

ble set defined by St =
{
a

∣∣∣0 < ar < 0.9,
∑R

r=1 ar = 1
}

to

ensure that there is no pure pixel in the images. All images

have been corrupted by an i.i.d Gaussian noise of variance

σ2 = 10−4, corresponding to an average signal-to-noise ratio

SNR ≃ 21dB for the three images. The nonlinearity coef-

ficients are uniformly drawn in the set [0, 1] for the GBM.

The parameters bn have been generated uniformly in the set

[−0.3, 0.3] for the PPNMM.

Different estimation procedures have been considered for

the three mixing models. For the LMM, two unmixing al-

gorithms have been considered for the LMM. The first strat-

egy extracts the endmembers using the N-FINDR algorithm

[14] and estimates the abundances using the FCLS algorithm

[15] (it is referred to as “SLMM” for supervised LMM). The

second strategy is a Bayesian algorithm which jointly esti-

mates the endmembers and the abundance matrix [10] (it is

referred to as “ULMM” for unsupervised LMM). Two ap-

proaches have also been considered for the PPNMM. The

first strategy uses the nonlinear EEA studied in [9] and the

gradient-based approach based on the PPNMM studied in [6]

1The length of the burn-in period has been determined using appropriate

convergence diagnoses [13].



for estimating the abundances and the nonlinearity parameter.

This strategy is referred to as “SPPNMM” (supervised PP-

NMM). The second strategy is the proposed unmixing pro-

cedure referred to as “UPPNMM” (unsupervised PPNMM).

The unmixing strategy used for the GBM is the EEA studied

in [9] and the Bayesian algorithm presented in [5] for abun-

dance estimation.

The quality of the unmixing procedures can be measured

by the root normalized mean square error (RNMSE) defined

by RNMSE =
√∑N

n=1 ‖ân − an‖
2
/(NR), where an and

ân are the actual and estimated abundance vectors for the nth

pixel of the image. Table 1 shows the RNMSEs associated

with the images I1 to I3 for the different estimation methods.

These results show that the UPPNMM performs better (in

term of RNMSE) than the other considered unmixing meth-

ods for the three images. Moreover, the proposed method

provides similar results when compared with the ULMM for

the linearly mixed image I1. The quality of endmember esti-

mation is evaluated by the spectral angle mapper (SAM) de-

fined as SAM = arccos

(
〈m̂r,mr〉

‖m̂r‖ ‖mr‖

)
, where mr is the

rth actual endmember and m̂r its estimate. Table 2 compares

the performance of the different endmember estimation algo-

rithms using the SAM (averaged over the R = 3 endmembers

(ASAM)). This table shows that the proposed UPPNMM pro-

vides more accurate endmembers estimates than the others

methods. Moreover, these results illustrates the robustness of

the PPNMM regarding model mis-specification. Note that the

ULMM and the UPPNMM provide similar results (in term of

ASAMs) for the image I1 generated according to the LMM.

Additional simulation results including reconstruction perfor-

mance and simulations with different number of endmembers

can be found in [11].

Table 1. Abundance RNMSEs (×10−2): synthetic images.
I1 I2 I3

(LMM) (PPNMM) (GBM)

LMM
SLMM 3.78 13.21 6.83

ULMM 0.66 10.87 4.21

PPNMM
SPPNMM 4.18 6.04 4.13

UPPNMM 0.37 0.81 1.38

GBM 4.18 11.15 5.02

Table 2. SAMs (×10−2): synthetic images.
N-Findr ULMM Heylen UPPNMM

I1 4.95 0.52 6.38 0.42

I2 7.44 8.23 7.92 0.39

I3 7.46 4.66 7.19 1.63

6. CONCLUSIONS AND FUTURE WORK

We proposed a new hierarchical Bayesian algorithm for un-

supervised nonlinear spectral unmixing of hyperspectral im-

ages. This algorithm assumed that each pixel of the image

is a post-nonlinear mixture of the endmembers contaminated

by additive Gaussian noise. The physical constraints for the

abundances and endmembers was included in the Bayesian

framework through appropriate prior distributions. Due to the

complexity of the resulting joint posterior distribution and the

number of parameters to be estimated, a constrained Hamil-

tonian Monte Carlo method was used to approximate the

MMSE estimator of the unknown model parameters. Simula-

tions conducted on synthetic data illustrated the flexibility of

the proposed model for linear and nonlinear spectral unmix-

ing and provided promising results. An important advantage

of the proposed algorithm is its flexibility regarding the ab-

sence of pure pixels in the image. Future work includes the

estimation of number of endmembers, which was assumed to

be known in this paper.
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