Limiting motion for the parabolic Ginzburg-Landau equation with infinite energy data - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2017

Limiting motion for the parabolic Ginzburg-Landau equation with infinite energy data

Résumé

We study a class of solutions to the parabolic Ginzburg-Landau equation in dimension 2 or higher, with ill-prepared infinite energy initial data. We show that, asymptotically, vorticity evolves according to motion by mean curvature in Brakke's weak formulation. Then, we prove that in the plane, point vortices do not move in the original time scale. These results extend the work of Bethuel, Orlandi and Smets [8, 9] for infinite energy data; they allow to consider the point vortices on a lattice (in dimension 2), or filament vortices of infinite length (in dimension 3).
Fichier principal
Vignette du fichier
GL_flow_v2.pdf (363.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01235904 , version 1 (30-11-2015)
hal-01235904 , version 2 (25-02-2019)

Identifiants

Citer

Delphine Côte, Raphaël Côte. Limiting motion for the parabolic Ginzburg-Landau equation with infinite energy data. Communications in Mathematical Physics, 2017, 350 (2), pp.507-568. ⟨10.1007/s00220-016-2736-2⟩. ⟨hal-01235904v2⟩
382 Consultations
144 Téléchargements

Altmetric

Partager

More