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LIMITING MOTION FOR THE PARABOLIC GINZBURG-LANDAU EQUATION WITH INFINITE
ENERGY DATA

DELPHINE CÔTE AND RAPHAËL CÔTE

ABSTRACT. We study a class of solutions to the parabolic Ginzburg-Landau equation in dimension 2 or
higher, with ill-prepared infinite energy initial data. We show that, asymptotically, the vorticity evolves
according to motion by mean curvature in Brakke’s weak formulation. Then, we prove that in the plane,
point vortices do not move in the original time scale. These results extend the works of Bethuel, Orlandi
and Smets [8, 9] to infinite energy data; they allow to consider point vortices on a lattice (in dimension
2), or filament vortices of infinite length (in dimension 3).

1. INTRODUCTION

1.1. Setting and motivation of the problem. We consider the parabolic Ginzburg-Landau equation
for complex functions uε : Rd × [0,+∞)→ C

(PGLε)

(

∂tuε −∆uε =
1
ε2

uε(1− |uε|2) on Rd × (0,+∞),

uε(x , 0) = u0
ε(x) for x ∈ Rd ,

in dimension d ¾ 2, and its associated energy

Eε(w) =
ˆ
Rd

eε(w)(x)d x =
ˆ
Rd

�

|∇w(x)|2

2
+ Vε(w(x))

�

d x for w : Rd → C,

where Vε denotes the non-convex double well potential and eε is the energy density:

Vε(w) =
(1− |w|2)2

4ε2
, and eε(w) =

|∇w|2

2
+ Vε(w).(1.1)

It is a classical result that an initial data u0 ∈ L∞ ∩ Ḣ1 yields a global in time solution u(t) ∈
C ([0,∞), L∞ ∩ Ḣ1).
The Ginzburg-Landau equation (PGL1) in the plane (d = 2) admits, for ` ∈ Z∗, vortex solutions of
the form

Ψ(x , t) = Ψ(x) = U`(r)exp(i`θ ), with U`(0) = 0 and U`(+∞) = 1,

where (r,θ ) corresponds to the polar coordinates in R2 (by scaling, (PGLε) admits stationary vortex
solutions as well). Such functions Ψ define complex planar vector fields whose zeros are called
vortices (of order `, also called `-vortices). Vortices solutions arise naturally in Physics applications,
and it is an important question to study the asymptotic analysis, as the parameter ε goes to zero, of
solutions to (PGLε).
We must stress out the fact that a single vortex does not belong to Ḣ1(Rd) (for d = 2, |∇Ψ|(r,θ ) ∼
d/r). To overcome this problem, an easy way out is to consider configurations of multiple vortices
where the sum of degrees of the vortices is equal to zero. In that case, the initial data belongs to the
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2 DELPHINE CÔTE AND RAPHAËL CÔTE

space L∞∩ Ḣ1, and one talks about well-prepared data, see for example Jerrard and Soner [21], Lin
[24], Sandier and Serfaty [30], and Spirn [34].
One way to relax this condition was done in the seminal works by Bethuel, Orlandi and Smets [8, 9,
10, 11]: they consider (PGLε) with uε : Rd × [0,+∞)→ C and assume that the initial data u0

ε is in
the energy space and verifies the bound

Eε(u
0
ε)¶ M0| lnε|(1.2)

where M0 is a fixed positive constant. Observe that this condition encompasses large data, and
almost gets rid of any well preparedness assumption. The only limitation can be seen as follows
in dimension d = 2 (where vortices are points): (1.2) allows general sum of vortices, which are
balanced by adding “vortices at infinity” (where the center of the vortices goes to spatial infinity as
ε→ 0): in that case, for each ε > 0, the initial data is of finite energy, but the limiting configuration
can be any configuration of finitely many vortices.

The main emphasis of [8], valid in any dimension d ¾ 2, is placed on the asymptotic limits of the
Radon measures µε defined on Rd × [0,+∞), and their time slices µt

ε defined on Rd × {t}, by

µε(x , t) =
eε(uε)(x , t)
| lnε|

d xd t, and µt
ε(x) =

eε(uε)(x , t)
| lnε|

d x ,(1.3)

so that µε = µt
εd t.

The bound on the energy gives that, up to a subsequence εm → 0, there exists a Radon measure
µ∗ = µt

∗d t defined on Rd × [0,+∞) such that

µε *µ∗, and µt
ε *µ

t
∗

as measures onRd×[0,+∞) andRd×{t} for all t ¾ 0, respectively (see [8, Lemma 1] and [20]). The
purpose of [8] is to describe the properties of the measures µt

∗: the main result is that asymptotically,
the vorticity (concentrated) part of µt

∗ evolves according to motion by mean curvature in Brakke’s
weak formulation.
In dimension d = 2, though, the vorticity part of µt

∗ is supported on a finite set of points (the vortices).
One can actually compute that the energy of a `-vortex is roughly π`2| lnε|: the above bound (1.2)
implies that only a finite number of vortices can be created (at most M0/π). However the mean
curvature flow for discrete points is trivial, they do not move. Therefore, in order to see the vortices
evolve, one needs to consider a different regime, where time is adequately rescaled by a factor | lnε|.
This is done by Bethuel, Orlandi and Smets in [9, 10, 11]: they describe completely the asymptotics,
and analyze precisely the dissipation times where collision or splitting of vortices occur. Again, the
only assumption is the bound (1.2) on the initial data u0

ε (and thus u0
ε is in the energy space).

Our goal in this paper is to extend the results in [8], by relaxing the global energy bound (1.2) to
a local one. More precisely, we say that a function f : [0,+∞)→ [0,+∞) has mild growth if f is
non-decreasing and that for all R> 0, there exists a constant C(R) such that

∀x , y ¾ 0, f (x + y)¶ C(R) f (2x)e y2/R2
.(1.4)

Observe that if 0¶ γ < 2 and C > 0, then f (x) = eC xγ has mild growth.
We study families of solutions to (PGLε) whose initial data u0

ε satisfy the following assumptions, for
some function f with mild growth, independent of ε:

(H1( f ))







u0
ε ∈ L∞(Rd),

∀x ∈ Rd ,
ˆ

B(x ,1)
eε(u

0
ε)(y)d y ¶ f (|x |)| lnε|.

Observe that [15, Theorem 2] shows the existence of a unique solution uε ∈ Cb((0,+∞), L∞(Rd))
to (PGLε) (globally well defined for positive times), with initial data u0

ε in the sense that it satisfies
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the integral equation:

∀t > 0, uε(t) = G(t) ∗ u0
ε +
ˆ t

0
G(t − s) ∗

�

1
ε2

uε(s)(1− |uε(s)|2)
�

ds,

where G(x , t) =
1

(4π)d/2
e−x2/4t is the heat kernel. The crucial point is that (H1( f )) is a property

which propagates along time, if one allows f to depend on time. We also refer to [2] where the
Ginzburg-Landau functional is studied under a local energy bound in | lnε| (and a Γ -convergence
result is obtained).

1.2. Statements of the main results. Let us emphasize that the analysis here is done in the original
time scale and not in the accelerated time scale (which is relevant for dimension d = 2 only).
Our main results are the following. We define the limiting energy µt

∗ and construct the vorticity set
Σt
µ (and prove some regularity properties). Then we consider the concentrated energy νt

∗ on Σt
µ and

show that it evolves under the mean curvature flow in a weak formulation. Finally we show that in
dimension d = 2, Σt

µ is made of a discrete set of points which do not move.

In all the following, we consider a family of solutions of (PGLε) (uε)ε∈(0,1/2) such that their initial
conditions u0

ε satisfy (H1( f )) for some function f with mild growth.
We start with the description of the vorticity set and the decomposition of the asymptotic energy
density.

Theorem 1.1. There exist a sequence εn→ 0, a subset Σµ of Rd × (0,+∞), and a smooth real-valued
function Φ∗ defined on Rd × (0,+∞) such that the following properties hold.

(1) Σµ is closed in Rd × (0,+∞) and for any compact subset K ⊂ Rd × (0,+∞) \Σµ,

|uεn
(x , t)| → 1 uniformly on K as n→ +∞.

(2) For any t > 0 and x ∈ Rd , Σt
µ = Σµ ∩R

d × {t} verifies

H d−2(Σt
µ ∩ B(x , 1))< +∞,

(and the bound is uniform in (x , t) on compact sets of Rd × (0,+∞)).
(3) The function Φ∗ verifies the heat equation on Rd × (0,+∞).
(4) For each t > 0, the measure µt

∗ = limn→+∞µ
t
εn

can be decomposed as

(1.5) µt
∗ = |∇Φ∗|

2(t)H d + Θ∗(t)H d−2øΣt
µ

where x 7→ Θ∗(x , t) := lim
r→0

µt
∗(B(x , r))

ωd−2rd−2
is bounded on bounded sets of Rd × (0,+∞).

(5) For almost every t > 0, the set Σt
µ is (d−2)-rectifiable and Θ∗(x , t)> 0 forH d−2 a.e. x ∈ Σt

µ.

In view of the decomposition (1.5), µt
∗ can be split into two parts: a diffuse part |∇Φ∗|2H d , and a

concentrated part

νt
∗ := Θ∗(x , t)H d−2øΣt

µ.(1.6)

Observe that both measures µt
∗ and νt

∗ are σ-finite (due to (2)). By (3), the diffuse part is governed
by the heat equation. Our next theorem focuses on the evolution of the concentrated part νt

∗.

Theorem 1.2. The family (νt
∗)t>0 is a mean curvature flow in the sense of Brakke (see Section 4.1 for

definitions).

For our last result, we focus on dimension d = 2, where vortices are points. We show that these
vortex points do not move in the original time scale.
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Theorem 1.3. Let d = 2. There exist a discrete set of R2, which we can enumerate {bi : i ∈ N} and that

contains all the Σt
µ for t > 0: Σt

µ ⊂ {bi : i ∈ N}. Also, ν∗(t) =
+∞
∑

i=1

σi(t)δbi
, where the functions σi(t)

are non-increasing.

Local bounds on the energy, i.e. assumption (H1( f )), make the set of admissible initial data more
natural. We can consider general vortex configurations in dimension 2, without adding a vortex at
infinity to balance it (so as to make the total sum of the vortices’ degrees equal to 0 for each ε > 0);
important physically relevant examples encompass point vortices on a infinite lattice (dimension 2)
or general vortex filament families (with possibly infinite length) in dimension 3.
Another striking difference between the global bound (1.2) and (H1( f )) is the following. In dimen-
sion d ¾ 3, (1.2) implies that after some finite time, the vorticity vanishes, that is Σt

µ ⊂ R
d × [0, T]

for some T depending on M0 (see [8, Proposition 3]). This is now longer the case under (H1( f )),
which we believe is a more physically accurate phenomenon.

The assumption that u0
ε ∈ L∞(Rd) seems technical (because it comes without bounds in term of ε),

but uneasy to get rid of: the main reason being the lack of a suitable local well posedness in the
space of functions with locally finite energy (in particular, lack of uniqueness of the solution): we
refer to the works by Ginibre and Velo [17] and [18] (besides [15], on which we rely, in the L∞

setting). In the same spirit, the growth condition on f seems almost optimal, as it is required for the
monotonicity formula – which we use heavily – to make sense.

These results are an extension of the works of Bethuel, Orlandi and Smets [8, 9], and the proofs are
strongly inspired by these: Theorems 1.1 and 1.2 by Theorems A and B in [8] and Theorem 1.3 by
Theorem 3.1 in [9]. Our main contribution will be to systematically improve their estimates, in order
to solve the new problems raised by our dealing with infinite energy solutions of (PGLε); especially
to make sense of a monotonicity property, which is at the heart of the proofs in [8, 9]. We will also
need to derive pointwise estimates on uε and L2 space time estimates on ∂tuε: in the finite energy
setting, it appears as the flux of the energy, but this is no longer the case in our context. A leitmotiv
of this paper is that, although many of the bounds in [8, 9] are global in time and/or space, their
arguments are in fact local in nature, and so can be adapted under the hypothesis (H1( f )).
In the proofs, we will focus on the differences brought by our change of context, and only sketch the
arguments when they are similar to that of [8, 9].

A natural question is now to concentrate on dimension d = 2 and to study the dynamics of vortices in
the accelerated time frame, as it is done in [9, 10, 11]. We believe that the arguments in these works
could be extended under the hypothesis (H1( f )). However one has to make a meaningful sense of
the limiting equation, (a pseudo gradient flow of the Kirchoff-Onsager functional involved), as it is
not obviously well posed for a countable infinite number of points. We leave these perspectives to
subsequent research.

1.3. Organization of the proofs and notations. This paper is organized as follows. In Section 2,
we study (PGLε) and prove our main PDE tool, namely the clearing-out (stated in Theorem 2.1). In
Section 3, we define the limiting measure and the vorticity set Σµ: we prove in particular regularity
properties of Σt

µ and complete the proof of Theorem 1.1. In Section 4, we show Theorem 1.2, that
is, the singular part νt

∗ follows the mean curvature flow in Brakke’s weak formulation. Finally, in
Section 5, we consider the dimension d = 2 and prove Theorem 1.3.

In the inequalities, the implicit constants C can change from line to line and, unless stated other-
wise, can depend on the space dimension d and on the function f (given in (1.4)), while the other
dependencies will be specified: for example C(R) (where R> 0 is a real number) can stand short for
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a bound of the type (1+ R)d f (2R). The functions C will always be continuous, and non decreasing
in their arguments valued in [0,+∞).

1.4. Acknowledgements. D.C. would like to thank Fabrice Bethuel for introducing her to this prob-
lem, and his constant support and encouragement. The authors are thankful to the anonymous
referee for his remarks and comments, which led to an improvement of the results.

2. PDE ANALYSIS OF (PGLε)

2.1. Statement of the main results on (PGLε). In this section, we work on (PGLε), that is with
smooth solutions uε, where the parameter ε, although small, is strictly positive. We derive a number
of properties on uε, which enter directly in the proof of the clearing-out Theorem 3.14 at the limit
ε → 0. Heuristically, the clearing-out means that if there is not enough energy in some region of
space, then at a later time, vortices can not be created in that region.
Let us first state the main results which will be proved in this section.

2.1.1. Clearing-out and annihilation for vorticity. The two main ingredients in the proof of Theorem
3.14 are a clearing-out theorem for vorticity (at ε > 0), as well as some precise pointwise energy
bounds. Throughout this section, we suppose that 0< ε < 1. We define the vorticity set Vε as

Vε =
§

(x , t) ∈ Rd × (0,+∞) : |uε(x , t)|¶
1
2

ª

.

Here is the precise statement.

Theorem 2.1. Let 0 < ε < 1/2, u0
ε ∈ L∞(Rd) and uε be the associated solution of (PGLε). Let σ > 0

be given. There exists η1 = η1(σ)> 0 depending only on the dimension d and on σ such that ifˆ
Rd

eε(u
0
ε)(x)exp

�

−
|x |2

4

�

d x ¶ η1| lnε|,(2.1)

then
|uε(0, 1)|¾ 1−σ.

Notice that we only assume that u0
ε ∈ L∞(Rd), whereas in [8, Theorem 1] the assumption was

Eε(uε) < +∞; of course this latter bound will not be available for Theorem 1.1. Observe that L∞

prevents us to use a density argument, and even more so as we are interested in non zero degree
initial data. Also, the assumption (2.1) is not enough by itself to ensure existence and uniqueness of
the solution to (PGLε), but L∞ is suitable (see [15]).
Nonetheless the proof follows closely that of [8, Part I], and we will only emphasize the differences.

The proof of Theorem 2.1 requires a number of tools, in particular

• the monotonicity formula, first derived by Struwe [36] in the case of the heat-flow for har-
monic maps

• a localizing property for the energy inspired by Lin and Rivière [27]
• refined Jacobian estimates due to Jerrard and Soner [23]
• techniques first developed for the stationary equation (for example [4, 5, 6]).

Equation (PGLε) has standard scaling properties. If uε is a solution to (PGLε), then for R > 0 the
function (x , t) 7→ uε(Rx , R2 t) is a solution to (PGL)R−1ε, to which we may then apply Theorem 2.1.
As an immediate consequence of Theorem 2.1 and scaling, we have the following result.

Proposition 2.2. Let T > 0, xT ∈ Rd , and set zT = (xT , T ). Let u0
ε ∈ L∞(Rd) and uε be the associated

solution of (PGLε). Let R>
p

2ε. Assume moreover

1
Rd−2

ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − xT |2

4R2

�

d x ¶ η1(σ)| lnε|,
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then
|uε(xT , T + R2)|¾ 1−σ.

The condition in Proposition 2.2 involves an integral on the whole space Rd . In some situations,
it will be convenient to integrate on finite domains. Here is how one should localize in space the
conditions.

Proposition 2.3. Let uε be a solution of (PGLε) satisfying the initial data (H1( f )). Let σ > 0 be
given. Let T > 0, xT ∈ Rd , and R ∈ [

p
2ε, 1]. There exists a positive continuous function λ defined on

Rd × (0,+∞) such that if

η̃(xT , T, R) :=
1

Rd−2| lnε|

ˆ
B(xT ,λ(xT ,T )R)

eε(uε)(x , T )d x ¶
η1(σ)

2
,

then

|uε(x , t)|¾ 1−σ for t ∈ [T + T0, T + T1] and x ∈ B
�

xT ,
R
2

�

,

where T0 =max
�

2ε, ( 2η̃
η1(σ)

)
2

d−2 R2
�

(T0 = 2ε in dimension d = 2), and T1 = R2.

Furthermore, λ ¾ 1 and for all x ∈ Rd , t 7→ λ(x , t) is non increasing on (0,1], non decreasing on
[1,+∞), and there exist a constant C = C(σ) such that

∀T ∈ (0,1/2],
1
C

Æ

| ln T |+ ln f (2|x0|)¶ λ(x0, T )¶ C
Æ

| ln T |+ ln f (2|x0|).(2.2)

Remark 2.4. Recall that in dimension d ¾ 3, a bound on the initial energy on the whole space (1.2)
implies that in finite time, the vorticity vanishes (i.e Σt

µ ⊂ R
d × [0, T]). It is an easy consequence

of the monotonicity formula combined with Theorem 2.1 (Ew,ε(x , 2t,
p

t) → 0 uniformly in x , see
(2.17) for definition).
In the case of a local bound on the energy (H1( f )), this result does not persist, because the monotonity
formula does not imply the vanishing of Ew,ε for large times. This is one striking difference with the
finite energy case.

2.1.2. Improved pointwise energy bounds. The following result reminds of a result of Chen and Struwe
[14] developped in the context of the heat flow for harmonic maps.

Theorem 2.5. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )). Let B(x0, R) be a ball
in Rd and T > 0,∆T > 0 be given. Consider the cylinder

Λ= B(x0, R)× [T, T +∆T].

There exist two constants 0 < σ ¶ 1
2 and β > 0 depending only on d such that the following holds.

Assume that
|uε|¾ 1−σ on Λ.

Then

(2.3) eε(uε)(x , t)¶ C(Λ)
ˆ
Λ

eε(uε),

for any (x , t) ∈ Λ 1
2

:= B
�

x0,
R
2

�

× [T +
∆T
4

, T +∆T]. Moreover,

eε(uε) = |∇Φε|2 + κε in Λ 1
2
,

where the functions Φε and κε are defined on Λ 1
2
, and verify

∂Φε
∂ t
−∆Φε = 0 in Λ 1

2
,

‖κε‖L∞(Λ 1
2
) ¶ C(Λ)εβ , ‖∇Φε‖L∞(Λ 1

2
) ¶ C(Λ)| lnε|.(2.4)
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On Λ one can write uε = ρεeiϕε where ϕε is smooth (and ρε = |uε|), and we have the bound

‖∇ϕε −∇Φε‖L∞(Λ 1
2
) ¶ C(Λ)εβ .(2.5)

Combining Proposition 2.3 and Theorem 2.5, we obtain the following immediate consequence.

Proposition 2.6. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )). There exist an
absolute constant η2 > 0 and a positive function λ defined onRd×(0,+∞) such that, if for x ∈ Rd , t >
0 and r ∈ [

p
2ε, 1], we have ˆ

B(x ,λ(x ,t)r)
eε(uε)¶ η2rd−2| lnε|,

then
eε(uε) = |∇Φε|2 + κε

in Λ 1
4
(x , t, r) := B(x , r

4 )× [t +
15
16 r2, t + r2], where Φε and κε are as in Theorem 2.5.

In particular,

µε =
eε(uε)
| lnε|

¶ C(t, r) on Λ 1
4
(x , t, r).

(The constant η2 is actually defined as η2 = η1(σ) where σ is the constant in Theorem 2.5 and η1
is the function defined in Proposition 2.3).

2.1.3. Identifying the sources of non compactness. We identified in the previous arguments a possible
source of non compactness, due to oscillations in the phase. But this analysis was carried out on the
complement of the vorticity set. Now uε is likely to vanish on Vε, which leads to a new contribution
to the energy: however, this new contribution does not correspond to a source of non compactness,
as it is stated in the following theorem.

Theorem 2.7. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )). Let K ⊂ Rd×(0,+∞)
be any compact set. There exist a real-valued function Φε and a complex-valued function wε, both defined
on a neighborhood of K, such that

(1) uε = wε exp(iΦε) on K,
(2) Φε verifies the heat equation on K,
(3) |∇Φε(x , t)|¶ C(K)

p

lnε| for all (x , t) ∈ K,

(4) ‖∇wε‖Lp(K) ¶ C(p, K), for any 1¶ p <
d + 1

d
.

Here, C(K) and C(p, K) are constants depending only on K, and p, K respectively.

The proof relies on the refined Jacobian estimates of [21].
We stress out the fact that Theorem 2.7 provides an exact splitting of the energy in two different
modes, that is the topological mode (the energy related to wε), and the linear mode (the energy of
Φε): in some sense, the lack of compactness is completely locked in Φε.

The remainder of this section is to provide proofs for the results described above, which will be done
in section 2.4; we need some preliminary considerations before.

2.2. Pointwise estimates. In this section, we provide pointwise parabolic estimates for uε solution
of (PGLε), which rely ultimately on a supersolution argument, i.e a variant of the maximum principle.

Proposition 2.8. Let u0
ε ∈ L∞(Rd) and uε be the associated solution of (PGLε). Then for all t > 0,

uε(t), ∇uε(t) and ∂tuε(t) belong to L∞(Rd). More precisely, there exists a (universal) constant K0 > 0
such that for all t > ε2 and x ∈ Rd ,

|uε(x , t)|¶ 2, |∇uε(x , t)|¶
K0

ε
, |∂tuε(x , t)|¶

K0

ε2
.(2.6)
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Also, for all t > 0 and x ∈ Rd ,

|uε(x , t)|¶max(1,‖u0
ε‖L∞), |∇uε(x , t)|¶ C

�p
t +

1
p

t

�

max(1,‖u0
ε‖L∞)

3.(2.7)

Remark 2.9. We emphasize that, past the time layer t ¾ ε2, ‖uε(t)‖L∞ is bounded independently of
u0
ε .

Proof. We make a change of variable, setting

v(x , t) = uε(εx ,ε2 t),

so that the function v satisfies

(2.8) ∂t v −∆v = v(1− |v|2) on Rd × [0,+∞).

We have to prove that, for t ¾ 1 and x ∈ Rd ,

|v(x , t)|¶ 2, |∇v(x , t)|¶ K0, |∂t v(x , t)|¶ K0,

and that for t > 0 and x ∈ Rd , |v(x , t)¶max(‖u0
ε‖L∞ , 1).

Recall that v ∈ Cb((0,+∞), L∞(Rd)), and that lim supt→0+ ‖v(t)‖L∞ ¶ ‖u0
ε‖L∞ (see [15]). We begin

with the L∞ estimates for v. Set
σ(x , t) = |v(x , t)|2 − 1.

Multiplying equation (2.8) by U , we are led to the equation for σ,

(2.9) ∂tσ−∆σ+ 2|∇v|2 + 2σ(1+σ) = 0.

Consider next the EDO

(2.10) y ′(t) + 2y(t)(y(t) + 1) = 0,

and notice that (2.10) admits the explicit solution defined for t > 0 by

(2.11) yt0
(t) =

exp(−(t − t0)/2)
1− exp(−(t − t0)/2)

, with t0 = 2 ln

�

1−
1

max(1,‖u0
ε‖L∞)2

�

,

so that yt0
(0) =max(1,‖u0

ε‖L∞)2 − 1 and as consequence

sup
x∈Rd

σ(x , 0)¶ yt0
(0).

We claim that

(2.12) ∀t > 0, ∀x ∈ Rd , σ(x , t)¶ yt0
(t).

Indeed, set σ̃(x , t) = y0(t). Then

(2.13) ∂tσ̃−∆σ̃+ 2σ̃(1+ σ̃) = 0,

and therefore by (2.9),

(2.14) ∂t(σ̃−σ)−∆(σ̃−σ) + 2(σ̃−σ)(1+ σ̃+σ)¾ 0.

Note that 1+ σ̃+σ = |v|2 + σ̃ ¾ 0 and σ̃(0)−σ(0)> 0. The maximum principle implies that

∀t > 0, ∀x ∈ Rd , σ̃(x , t)−σ(x , t)¾ 0,

which proves the claim (2.12). Then observe that t0 < 0 and that y0 is decreasing on (0,+∞), so
that

∀t > 0, ∀x ∈ Rd , σ(t, x)¶ yt0
(t)¶ y0(t).

Observe that the first bound give |v(x , t)|¶max(1,‖u0
ε‖L∞) for all t > 0 and x ∈ Rd , i.e the first part

of (2.7). Also for t ¾ 1 and x ∈ Rd , |v(x , t)|¶
p

1+ y0(1)¶ 2.
We next turn to the space and time derivatives. The Duhamel formula yields

∇x v(x , t) = (∇G(t) ∗ u0
ε(ε·))(x) +

ˆ t

0

�

(∇x G)(t − s) ∗ (v(s)(1− |v(s)|2))
�

(x)ds.
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Recall that ‖∇x G(t)‖L1 ¶ C/
p

t. Also, due to (2.7), for some C > 0 independent of x , t and ε, there
hold

∀t ¾ 0, ‖v(t)(1− |v(t)|2))‖L∞ ¶ C max(1,‖u0
ε‖L∞)

3.

Hence

‖∇x v(t)‖L∞ ¶ ‖∇G(t)‖L1‖u0
ε‖L∞ +

ˆ t

0
‖∇G(t − s)‖L1‖v(s)(1− |v(s)|2))‖L∞ds

¶
C
p

t
‖u0
ε‖L∞ + C max(1,‖u0

ε‖L∞)
3
ˆ t

0

ds
p

t − s

¶ C
�p

t +
1
p

t

�

max(1,‖u0
ε‖L∞)

3,

which is the second part of (2.7). We now focus on (2.6). Since |v(x , t)|¶
p

1+ y0(1/2) for t ¾ 1/2,
there exists K1 ¾ 1 (independent of ε) such that

∀t ¾
1
2

, ∀x ∈ Rd , |v(x , t)|3 + |v(x , t)|¶ K1.(2.15)

Let t ¾ 1. Now, differentiating in space the Duhamel formula between times t − 1/2 ¾ 1/2 and t
gives

∇v(t) = (∇G)(1/2) ∗ v(t − 1/2) +
ˆ t

t−1/2
(∇G)(t − s) ∗ (v(s)(1− |v(s)|2)ds,

where G(x , t) =
1

(4π)d/2
e−x2/4t is the heat kernel. . Also, as t − 1/2 ¾ 1/2, there holds ‖v(t −

1/2)‖L∞ ¶ 2 and (2.15) for all s ∈ [t − 1/2, t]: hence

‖∇v(t)‖L∞ ¶ ‖∇G(1/2)‖L1‖v(t − 1/2)‖L∞

+
ˆ t

0
‖∇G(t − s)‖L1‖v(s)(1− |v(s)|2)ds‖L∞ds

¶
C
p

2
2+ CK1

ˆ t

t−1/2

ds
p

t − s
¶ CK1.

Similarly, we can differentiate the Duhamel formula twice:

∇2v(t) = (∇2G)(1/2) ∗ v(t − 1/2) +
ˆ t

t−1/2
(∇G)(t − s) ∗∇((v(s)(1− |v(s)|2))ds,

Using that |∇(v(s, x)(1−|v(s, x)|2)|¶ CK1|∇v(s, x)| and ‖∇2G(t)‖¶ C/t, we can differentiate once

‖∇2v(t)‖L∞ ¶ ‖∇2G(1/2)‖L1‖v(t − 1/2)‖L∞

+
ˆ t

t−1/2
‖∇G(t − s)‖L1‖∇(v(s)(1− |v(s)|2))ds‖L∞ds

¶ C
p

2+
ˆ t

t−1/2

CK1p
t − s

ds ¶ CK1.

Finally,
|∂t v|= |∆v + v(1− |v|2)|¶ |∇2v|+ K1 ¶ CK1. �

We have the following variant of Proposition 2.8.

Proposition 2.10. Let u0
ε ∈ L∞(Rd) and uε be the associated solution of (PGLε). Assume that for some

constants C0 ¾ 1, C1 ¾ 0 and C2 ¾ 0,

∀x ∈ Rd , |u0
ε(x)|¶ C0, |∇u0

ε(x)|¶
C1

ε
, |∇2u0

ε(x)|¶
C2

ε2
.
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Then for any t > 0 and x ∈ Rd , we have

|uε(x , t)|¶ C0, |∇uε(x , t)|¶
C
ε

, |∂tuε(x , t)|¶
C
ε2

,

where C depends only on C0, C1 and C2.

Proposition 2.10 provides an upper bound for |uε|. The next lemma provides a local lower bound
on |uε|, when we know it is away from zero on some region. Since we have to deal with parabolic
problems, it is natural to consider parabolic cylinders of the type

Λα(x0, T, R,∆T ) = B(x0,αR)× [T + (1−α2)∆T, T +∆T].(2.16)

Sometimes, it will be convenient to choose ∆T = R and write Λα(x0, T, R). Finally if there is no
ambiguity, we will simply write Λα, and even Λ if α= 1.

Lemma 2.11 ([8]). Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )). Let x0 ∈ Rd , R>
0, T ¾ 0 and ∆T > 0 be given. Assume that

|uε|¾
1
2

on Λ(x0, T, R,∆T ),

then
1− |uε|¶ C(α,Λ)ε2 (‖∇φε‖L∞(Λ) + | lnε|) on Λα,

where φε is defined on Λ, up to a multiple of 2π, by uε = |uε|exp(iφε).

Proof. We refer to [8, Lemma 1.1, p. 52]. �

2.3. The monotonicity formula and some consequences. In this section, we provide various tools
which will be required in the proof of Theorem 2.1.

2.3.1. The monotonicity formula. For (x∗, t∗) ∈ Rd × [0,+∞) we set

z∗ = (x∗, t∗).

For t∗ > 0 and 0< R¶
p

t∗ we defined the weighted energy, scaled and time shifted, by

Ew,ε(uε, z∗, R) = Ew(z∗, R) :=
1

Rd−2

ˆ
Rd

eε(uε)(x , t∗ − R2)exp

�

−
|x − x∗|2

4R2

�

d x .(2.17)

(We may drop the ε or the uε when there is no ambiguity). We stress out that in the integral defining
Ew, we introduced a time shift δt = −R2. Also it will be convenient to use the multiplier

Ξ(uε, z∗)(x , t) =
1

4|t − t∗|
[(x − x∗).∇uε(x , t) + 2(t − t∗)∂tuε(x , t)]2 .(2.18)

The following monotonicity formula was first derived and used by Struwe [36] in his study of the
heat flow for harmonic maps.

Proposition 2.12. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )). We have, for
0< r <

p
t∗,

dEw

dR
(z∗, r) =

1
rd−1

ˆ
Rd

1
2r2

((x − x∗) · ∇uε(x , t∗ − r2)− 2r2∂tuε(x , t∗ − r2))2 exp

�

−
|x − x∗|2

4r2

�

d x

+
1

rd−1

ˆ
Rd

2Vε(uε)(x , t∗ − r2)exp

�

−
|x − x∗|2

4r2

�

d x(2.19)

=
(4π)d/2

r

ˆ
Rd+1

2|t − t∗|Ξ(z∗)(x , t)G(x − x∗, t − t∗)d xδt∗−r2(t)

+ (4π)d/2r
ˆ
Rd+1

2Vε(uε)(x , t)G(x − x∗, t − t∗)d xδt∗−r2(t),
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where G(x , t) denotes the heat kernel

(2.20) G(t, x) =







1

(4πt)
d
2

exp

�

−
|x |2

4t

�

for t > 0,

0 for t ¶ 0.

In particular,

(2.21)
dEw

dR
(z∗, r)¾ 0.

As a consequence, R 7→ Ew(z∗, R) can be extended to a non-decreasing, continuous function of R on
[0,
p

t∗], with Ew(z∗, 0) = 0.

Proof. For 0< R<
p

t∗, the map (R, x) 7→ eε(uε)(x , t∗−R2)exp

�

−
|x − x∗|2

4R2

�

is smooth (due to par-

abolic regularization), and satisfies domination bounds due to (2.6)-(2.7) and the gaussian weight.
Therefore R 7→ Ew(z∗, R) is smooth on (0,

p
t∗) and we can perform the same computations as in

Proposition 2.1 in [8]; integrations by parts are allowed for the same reasons. This proves formula
(2.19), and the monotonicity property follows immediately. It remains to study the continuity at the
endpoints.
For the limit R→ 0, the bounds (2.7) show that |eε(uε)(x , t∗−R2)|¶ C(t∗,‖u0

ε‖L∞)/ε2 uniformly for
R¶ t∗/2, so that in that range

Ew(z∗, R) = R2
ˆ

eε(uε)(x , t∗ − R2)
1
Rd

exp

�

−
|x − x∗|2

4R2

�

d x

¶ R2(4π)d/2C(t∗,‖u0
ε‖L∞)/ε

2→ 0 as R→ 0.

For the limit R→pt∗, let us recall that for any p < +∞, uε(·, t)→ u0
ε strongly in Lp

loc(R
d) (see [15,

Theorem 2]), and as |uε(x , t)|¶max(‖u0
ε‖L∞ , 1), we infer thatˆ

V (uε)(x , t∗ − R2)exp

�

−
|x − x∗|2

4R2

�

d x →
ˆ

V (u0
ε)(x)exp

�

−
|x − x∗|2

4t∗

�

d x .

For the derivative term, we use the Duhamel formula:

∇uε(t) = G(t) ∗∇u0
ε +
ˆ t

0
∇G(t − s) ∗ (uε(1− |uε|2))(s)ds = G(t) ∗∇u0

ε + D(x , t).

The Duhamel term D(x , t) is harmless, indeed

|D(x , t)|¶
ˆ t

0
‖∇G(t − s)‖L1‖uε(1− |uε|2)‖L∞ds

¶ C max(1,‖u0
ε‖L∞)

3
ˆ t

0

ds
p

t − s
¶ C max(1,‖u0

ε‖L∞)
3pt.

Therefore ˆ
|D(x , t∗ − R2)|2 exp

�

−
|x − x∗|

4R2

�

d x ¶ C(t∗ − R2)→ 0 as R→
p

t∗.

The linear term requires to recall Claim 13 of [15]. Due to assumption (H1( f )), for any α > 0,
∇u0

ε ∈ L2(e−α|x |
2
d x). Indeed, As f has mild growth, using (1.4) with R =

p

2/α, we see that,
f (x) ¶ C(

p

2/α)eαx2/2; denoting Qk the cube of size 1 centered at k ∈ Zd , it can be covered by at
most C(d) balls of radius and center in Qk, so thatˆ

|∇u0
ε(x)|

2e−α|x |
2
d x =

∑

k∈Zd

ˆ
Qk

|∇u0
ε |

2e−α|x |
2
d x ¶

∑

k∈Zd

e−α(|k|−1)2
ˆ

Qk

|∇u0
ε(x)|

2d x

¶
∑

k∈Zd

e−α|k|
2+2α|k|C(d) f (|k|+ 1)| lnε|¶ C(α, d)| lnε|.
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Invoking [15, Claim 13], we infer from ∇u0
ε ∈ L2(e−α|x |

2
d x) that for β > 2α,

‖τh∇u0
ε −∇u0

ε‖L2(e−β |x |2 d x)→ 0 as h→ 0

(where τhφ(x) = φ(x − h)), and satisfies

‖τh∇u0
ε −∇u0

ε‖L2(e−β |x |2 d x) ¶ CeC(β)|h|2 .

As a consequence, we can apply Lebesgue’s dominated convergence theorem and conclude that

‖G(t) ∗∇u0
ε −∇u0

ε‖L2(e−β |x |2 d x)→ 0 as t → 0.

Choose β = 1/(8t∗) and α= 1/(17t∗). Then it follows, using Cauchy-Schwarz inequality, that
�

�

�

�

ˆ
(G(t∗ − R2) ∗∇u0

ε)(x)|
2 exp

�

−
|x − x∗|2

4R2

�

−
ˆ
|∇u0

ε(x)|
2 exp

�

−
|x − x∗|2

4t∗

�

d x

�

�

�

�

¶
ˆ
|G(t∗ − R2) ∗∇u0

ε)(x)−∇u0
ε(x)|

× (|G(t∗ − R2) ∗∇u0
ε)(x) +∇u0

ε(x)|)exp

�

−
|x − x∗|2

4R2

�

d x

+
ˆ
|∇u0

ε(x)|
2

�

exp

�

−
|x − x∗|2

4R2

�

− exp

�

−
|x − x∗|2

4t∗

��

d x

¶ ‖G(t∗ − R2) ∗∇u0
ε)(x)−∇u0

ε(x)‖L2(e−β |x |2 d x)

× ‖G(t∗ − R2) ∗∇u0
ε)(x) +∇u0

ε(x)‖L2(e−β |x |2 d x) + o(1)

→ 0 as R→
p

t∗.

(The o(1) on the second last line comes from∇u0
ε ∈ L2(e−β |x |

2
d x) and Lebesgue’s dominated conver-

gence theorem.) Hence, summing up, we proved that R 7→ Ew(z∗, R) is (left-)continuous at R= t∗. �

We will often use the monotonicity formula for t∗ = t +R2/4, and between R0 = R2 and R1 = t +R2,
which yield the following inequality

ˆ
eε(uε)(y, t)exp

�

−
|x − y|2

4R2

�

d y ¶
Rd−2

(t + R2)
d−2

2

ˆ
eε(u

0
ε)(y)exp

�

−
|x − y|2

4(t + R2)

�

d y.(2.22)

2.3.2. Bounds on the energy.

Lemma 2.13. Let (vε)ε∈(0,1/2) be a family of functions satisfying (H1( f )), then for any R> 0,

∀ε ∈ (0,1/2), ∀x ∈ Rd ,
ˆ

eε(vε)(y)exp

�

−
|x − y|2

R2

�

d y ¶ C(R) f (2|x |)| lnε|.

Reciprocally, if (wε)ε∈(0,1/2) is a family of functions such that there exist R > 0 and a function f with
mild growth such that

∀ε ∈ (0, 1/2), ∀x ∈ Rd ,
ˆ

eε(wε)(y)exp

�

−
|x − y|2

R2

�

d y ¶ f (|x |)| lnε|,

then (wε)ε>0 satisfies H1(g) where g(x) = C(1/R) f (x + 1) has mild growth.

Proof. We consider the case R ¾ 1 (the case R ¶ 1 is dealt with R = 1). For k in Zd , denote Qk the
cube in Rd , of length R and centered at x + Rk ∈ Rd . Then

∀y ∈Qk, |x − y|¾ R|k| − R
p

d and |y|¶ |x |+ R|k|+ 1.
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Also there exists a constant C(d) such that any cube Qk is covered by C(d)Rd balls of radius 1.
Therefore, ˆ

eε(vε)(y)e
− |x−y|2

R2 d y ¶
∑

k∈Zd

exp

�

−
(R|k| − R

p
d)2

R2

�ˆ
Qk

eε(vε)(y)d y

¶ C(d)Rd | lnε|
∑

k∈Zd

e−(|k|−
p

d)2 f (|x |+ R|k|+ 1)

¶ C(d, R)C(2R)| lnε| f (2|x |)
∑

k∈Zd

e−(|k|−
p

d)2 e
1
2 (|k|+1)2

¶ C(R)| lnε| f (2|x |).

(We used (1.4) with parameter 2R on the 3rd line). This is the first result claimed. For the second,
we clearly have ˆ

eε(wε)(y)exp

�

−
|x − y|2

R2

�

d y ¾
1
e

ˆ
B(x ,R)

eε(wε)(y)d y.

This means that the energy on B(x , R) is at most e f (|x |)| lnε|. If R ¾ 1, then this is enough and we
get the result with g(x) = e f (x). If R ¶ 1, then B(y, 1) can be covered by at most C(d)/Rd balls of
radius R and with center at distance at most |y|+ 1 from 0, so that for all y ∈ Rd ,ˆ

B(x ,1)
eε(wε)(y)d y ¶

C(d)
Rd

e f (|x |+ 1)| lnε|. �

The first consequence of the monotonicity formula is that (H1) is a condition which propagates in
time in the following way.

Proposition 2.14. Let uε be a solution of (PGLε) whose the initial data satisfies (H1( f )). Then for any
T > 0, (x , t)→ uε(x , T + t) is still a solution of (PGLε), whose initial condition satisfies H1(gT ) where
gT (x) = C(T ) f (2x). More precisely there holds

∀ε, t, R> 0, ∀x ∈ Rd ,
ˆ

B(x ,R)
eε(uε)(y, t)d y ¶ C(t, R) f (2|x |)| lnε|.(2.23)

Proof. We apply the monotonicity formula at the point

�

x , t +
R2

4

�

between
R
2

and

√

√

t +
R2

4
, we get

�

2
R

�d−2 ˆ
Rd

eε(uε)(y, t)exp

�

−
|x − y|2

R2

�

d y ¶
2d−2

(4t + R2)
d−2

2

ˆ
Rd

eε(u
0
ε)exp

�

−
|x − y|2

t + R2/4

�

d y.

Hence, due to Lemma 2.13,ˆ
B(x ,R)

eε(uε)(y, t)d y ¶ e
ˆ
Rd

eε(uε)(y, t)exp

�

−
|x − y|2

R2

�

d y

¶
�

R2

4t + R2

�
d−2

2

C(d, t + R2/4) f (2|x |)| lnε|¶ C(t, R) f (2|x |)| lnε|. �

As an immediate consequence, we infer an upper bound on the energy on compact sets. The bound
(2.24) below will be very useful in order to prove Theorem 2.7 in the same way as in [8].

Corollary 2.15. Let uε be a solution of (PGLε) satisfying the initial data (H1( f )). Then for any compact
K ⊂ Rd × [0,+∞), we have

(2.24)
ˆ

K
eε(uε)(x , t)d xd t ¶ C(K)| lnε|.
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Proof. Being compact, K is bounded and we can assume that for some large T > 0, K ⊂ B(0,
p

T )×
[0, T]. Therefore, ˆ

K
eε(uε)(x , t)d xd t ¶

ˆ
B(0,
p

T )×[0,T]
eε(uε)(x , t)d xd t

¶
ˆ T

0
C(d,

p
T )| lnε|d t ¶ C(T )| lnε|.

Whence (2.24). �

2.3.3. Space-time estimates. One crucial lack in relaxing (1.2) to (H1( f )) is that the energy no longer
provides a bound on ‖∂tuε‖L2

x ,t
¶ Eε(uε). To remedy this, we make use of the Ξ multiplier.

Lemma 2.16. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )).
For any z∗ = (x∗, t∗) ∈ Rd × [0,+∞), the following equality holds, for R∗ =

p
t∗.

(2.25)
ˆ
Rd×[0,t∗]

(Vε(uε) +Ξ(uε, z∗))(x , t) G(x − x∗, t − t∗) d xd t

=
1

(4π)d/2 t
d−2

2
∗

ˆ
Rd×{0}

eε(u)(x , 0)exp

�

−
|x − x∗|2

4t∗

�

d x = Ew(z∗, R∗),

where Ξ is defined in (2.18).

Proof. Integrating equality (2.19) from 0 to R∗ (recall that Ew(z∗, 0) = 0), we obtain

(4π)d/2Ew(z∗, R∗) =
ˆ R∗

0
2rdr

ˆ
Rd×{t∗−r2}

Vε(u(x , t))G(x − x∗, t − t∗) d x(2.26)

+
ˆ R∗

0
2rdr

ˆ
Rd×{t∗−r2}

1
4r2

�

(x − x∗) · ∇uε − 2r2∂tu
�2

G(x − x∗, t − t∗) d x .

Expressing the integral on the right-hand side of (2.26) in the variable t = t∗ − r2 (so that d t =
−2rdr) yields

(4π)d/2Ew(z∗, R∗) = −
ˆ 0

t∗
d t
ˆ
Rd×{t}

Vε(u(x , t))G(x − x∗, t − t∗) d x

−
ˆ 0

t∗
2rdr

ˆ
Rd×{t}

1
4|t − t∗|

((x − x∗).∇u− 2r2∂tu)
2G(x − x∗, t − t∗) d x . �

Proposition 2.17. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )).
For any compact K ⊂ Rd × [0,+∞), there exist a constant C(K) such thatˆ

K
|∂tuε(x , t)|2d xd t ¶ C(K)| lnε|.(2.27)

Proof. It suffices to prove the bound on the compacts KT = B(0,
p

T ) × [0, T] for all T ¾ 1. Let
t∗ = 2T and x∗ = 0, then for (x , t) ∈ B(0,

p
T )× [0, T], we have t − t∗ ¾ T ¾ |x − x∗|2 so that

G(x − x∗, t − t∗)¾
1

(4π(t − t∗))d/2
exp

�

−
|x − x∗|2

4(t − t∗)2

�

¾
e−1/4

(4πT )d/2

and

|∂tuε(x , t)|2 ¶
1

2T
1

4|t − t∗|
(2(t − t∗)∂tuε(x , t))2

¶
1
T
Ξ(uε, z∗)(x , t) +

2
t − t∗

((x − x∗).∇uε(x , t))2

¶
1
T
Ξ(uε, z∗)(x , t) + |∇uε(x , t)|2.



LIMITING MOTION FOR THE PARABOLIC GINZBURG-LANDAU EQUATION WITH INFINITE ENERGY DATA 15

Therefore, using Vε(uε)¾ 0, (2.25) and (2.24), we get
ˆ T

0

ˆ
B(0,
p

T )
|∂tuε(x , t)|2d xd t ¶ C(T )

ˆ
Rd×[0,t∗]

Ξ(uε, z∗)(x , t)G(x − x∗, t − t∗)d xd t

+
ˆ

B(0,
p

t∗)×[0,t∗]
|∇uε(x , t)|2d xd t

¶ C(T )
ˆ
Rd×[0,t∗]

(Vε(uε) +Ξ(uε, z∗))(x , t)G(x − x∗, t − t∗)d xd t

+
ˆ

B(0,
p

t∗)×[0,t∗]
eε(uε)(x , t)d xd t

¶ C(T )Ew(z∗,
p

t∗) + C(t∗)| lnε|¶ C(T )| lnε|. �

2.3.4. Localizing the energy. In some of the proofs of the main results, it will be convenient to work
on bounded domains for fixed time slices. But since the integral in the definition of Ew is computed
on the whole space, we will have to use two kinds of localization methods.
The first one results from the monotonicity formula.

Proposition 2.18. Let uε be a solution of (PGLε) whose initial data satisfies (H1( f )).
Let T > 0 xT ∈ Rd and r,λ > 0. There holds

(2.28)
1

rd−2

ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − xT |2

4r2

�

d x ¶
1

rd−2

ˆ
B(xT ,λr)

eε(uε)(x , T )d x

+
C(T + r2)

(T + r2)
d−2

2

exp

�

−
λ2

8

�

f (2|xT |)| lnε|.

Proof. We split the integral between B(xT ,λr) and its complement. Now for x such that |x−xT |¾ λr,
we have

exp

�

−
|x − xT |2

8r2

�

¶ exp

�

−
λ2

8

�

exp

�

−
|x − xT |2

8r2

�

.

Therefore ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − xT |2

4r2

�

d x

¶
ˆ

B(xT ,λr)
eε(uε)(x , T )d x + e−λ

2/8
ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − xT |2

8r2

�

d x .

Now, we apply the monotonicity formula to the second integral term of the right hand side, at the
point (xT , T + 2r2), and between

p
2r and

p
T + 2r2. We get

1
rd−2

ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − xT |2

8r2

�

d x

¶
1

(T + 2r2)
d−2

2

ˆ
Rd

eε(u
0
ε)(x)exp

�

−
|x − xT |2

4(T + 2r2)

�

d x

¶
C(T + 2r2)

(T + r2)
d−2

2

f (2|xT |)| lnε|,

and the conclusion follows. �

The second localization method, inspired by Lin and Rivière [27] is based on a Pohozaev type in-
equality.
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Proposition 2.19 ([8, Proposition 2.4]). Let uε be a solution of (PGLε) whose initial data satisfies
(H1( f )), and Ξ as in (2.18).
Let 0< t < T. The following inequality holds, for any xT ∈ Rd :

ˆ
Rd

eε(uε)(x , t)
|x − xT |2

4(T − t)
exp

�

−
|x − xT |2

4(T − t)

�

d x

¶
d
2

ˆ
Rd

eε(uε)(x , t)exp

�

−
|x − xT |2

4(t − t)

�

d x

+
ˆ
Rd
(Vε(uε) + 3Ξ(uε, zT )) exp

�

−
|x − xT |2

4(T − t)

�

d x .

As a consequence,

ˆ
Rd×{t}

eε(uε)exp

�

−
|x − xT |2

4(T − t)

�

d x ¶
ˆ

B(xT ,rT )×{T}
eε(uε)exp

�

−
|x − xT |2

4(T − t)

�

d x

+
2
d

ˆ
Rd×{t}

(Vε(u) + 3Ξ(u, zT )) exp

�

−
|x − xT |2

4(T − t)

�

d x

where rT = 2
p

d(T − t).

2.4. End of the proof of clearing-out. In this paragraph, we complete the proofs of Theorems 2.1,
2.5 and 2.7.

Outline of the proof of Theorem 2.1. The proof follows word for word that of Theorem 1 in [8, Sec-
tions 3, p. 67-99]. Indeed, either calculations are made on bounded domains K × [T0, T1] (where K
is a compact of Rd and T1 > T0 > 0), on which we have the same kind of bounds

• for the energy: for any t ∈ [T0, T1]:
ˆ

K
|eε(uε)|(x , t)d x ¶ C(K , T1)| lnε| (obtained in (2.23)),

• for the kinetic energy, in L2(d xd t):
ˆ

K×[0,T1]
|∂tuε|(x , t)d x ¶ C(K , T )| lnε| (obtained in

(2.27))
• pointwise: |uε|+ ε|∇uε|+ ε2|∂tuε|(x , t) ¶ C for (x , t) ∈ K × [ε2, T1] (obtained in (2.6) and

useful as soon as ε is so small that T1 > ε
2),

or we multiply the energy by a weight of the form exp

�

−
|x |2

R2

�

, for which we have the monotonicity

formula and bounds (2.28).
For the convenience of the reader, we remind the main steps of the argument. We therefore consider
a family of solutions (uε)ε to (PGLε) such that for all ε ∈

�

0, 1
2

�

, u0
ε ∈ L∞(Rd) and

Ew,ε((0,1), 1)¶ η| lnε|,

where η > 0 is a small constant to be determined at the end of the proof.

Let rε = 1−
s

σ

2K
ε and tε = 1− r2

ε ¾ 0. As |∂tuε|¶ K/ε2 (in view of (2.6)),

|1− |uε(0,1)||¶ |1− |uε(0, tε)||+
K
ε2
(1− tε)¶ |1− |uε(0, tε)||+

σ

2
.(2.29)

Now, as |∇xuε|¶ K/ε (again (2.6)), one easily deduces (see [5, Lemma 3.3 p.458]) that

|1− |uε(0, tε)||¶ C

�

1
εd

ˆ
B(0,ε)

(1− |uε(x , tε)|)2d x

�
1

d+2

.(2.30)
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This bound can be related to the weighted energy as follows:

1
εd

ˆ

B(0,ε)

(1− |uε(x , tε)|)2d x ¶
C

rd−2
ε

ˆ

B(0,ε)

Vε(uε)(x , tε)exp

�

−
|x |2

r2
ε

�

d x ¶ Ew,ε((0,1), rε).(2.31)

Let δ ∈ (0, 1/2) to be fixed at the end of the proof. By considering the variations of the weighted
energy on time intervals of the form [1−δ2k, 1−δ2(k+1)] for 0¶ k ¶ | lnε|/4 (so that 1−δ2k ¶ 1− r2

ε

and Ew,ε((0,1), rε) ¶ Ew,ε((0,1),δk) by monotonicity), at least one of these intervals (say for k0)
shows a decay less than 8η| lnδ| (we gained a | lnε| factor). One can actually perform a time shift
and rescaling (as k ¶ | lnε|/4), so that we can furthermore assume k0 = 0:

Ew,ε((0,1), 1)− Ew,ε((0, 1),δ)¶ 8η| lnδ|, Ew,ε((0, 1), rε)¶ Ew,ε((0, 1), 1).(2.32)

Gathering (2.29), (2.30), and (2.31),

|1− |uε(0,1)||¶
σ

2
+ C Ew,ε((0, 1), 1)

1
d+2 .

The crux of the argument is therefore to bound Ew,ε((0, 1), 1) solely in terms of η and more precisely,

Ew,ε((0,1), 1)¶ C(δ)
p
η.(2.33)

To prove (2.33), the starting point is the observation that

|uε|2|∇uε|2 = |uε ∧∇uε|2 + |uε|2|∇|uε||2,

(which can be derived easily writing uε = |uε|eiϕε). As |∇uε|¶ C/ε from (2.6),

(1− |uε|2)|∇uε|2 ¶
1
2
|∇uε|2 + CVε(uε),

and we get the pointwise bound

eε(uε)¶ 2|uε|2|∇|uε||2 + CVε(uε) + |uε ∧∇uε|2.

It is not so hard to obtain improved bounds on |uε| and its derivative. Indeed, write the parabolic
equation for 1− |uε|2: using (2.25) (in particular to treat the ∂tuε terms) and an averaging in time
argument, one can infer that the set of times t such thatˆ

B(0,1)

�

|∇|uε||2 + Vε(uε)
�

(x , t)d x ¶ C(δ)
p
η(Ew((0, 1), 1) + 1)

is of large relative measure in [1− 4δ2, 1−δ2] (for some explicit C(δ)).
It follows that the crucial term to estimate is uε∧∇uε. For this term, one has the following Hodge-de
Rham decomposition

uε ∧∇uε = dφ(t) + d∗ψ(t) + ξ(t) on B(0, 3/2)× {t}

where d is the exterior derivative on Rd (d∗ is its adjoint).
It is constructed as follows: define the Jacobian Juε := d(uε ∧ duε), and let ψ(t) be such that

−∆ψ(t) = χJuε
where χ is a cut-off function on B(0, 2). Observe that d∗dψ(t) is closed on B(0,3/2)×{t}; invoking
the Poincaré lemma, there exists ξ(t) such that dξ(t) = d∗dψ(t), d∗ξ(t) = 0. Then φ(t) is obtained
by invoking once again the Poincaré lemma.
Direct elliptic estimates show that ‖ξ(t)‖L2(B(0,3/2)) ¶ C‖∇ψ(t)‖L2(B(0,2)).
Noticing that uε ∧ ∂tuε = −d∗(uε ∧ duε), we have the elliptic equation for φ(t): for any small δ > 0,

�

−∆+
x

2δ2

�

φ(t) = uε ∧
� x

2δ2
· ∇uε − ∂tuε

�

− (d∗ψ(t) + ξ(t)) ·
x

2δ2
.

One can obtain weighted elliptic estimates for the operator

−∆+
x

2δ2
= −exp

�

|x |2

4δ2

�

∇ ·
�

exp

�

−
|x |2

4δ2

�

∇
�
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and from there obtain the boundˆ
|∇φ(t)|2 exp

�

−
|x |2

4δ2

�

d x ¶ Cδd Ew((0,1),δ) + C(δ)
�

R(t) +
Æ

R(t)Ew((0, 1),δ)
�

,

where R(t) only involves ξ(t) (already bounded), Ξ(uε) and Vε(uε) (taken care of by (2.25)) and
ψ(t):

R(t) =
ˆ
Rd
(Ξ(uε, (0,1))(x , t) + Vε(uε))exp

�

−
|x |2

4δ2

�

d x

+
ˆ

B(0,3/2)
|∇ψ(x , t)|2 + |ξ(x , t)|2)exp

�

−
|x |2

4δ2

�

d x .

The remaining task is to estimate ψ(t), which is the most involved. A first ingredient is a refined
estimate on the Jacobian due to Jerrard and Soner [23]: there exist β , C > 0 such that for any smooth
w and test function ϕ,

�

�

�

�

ˆ
Rd
〈Jw,ϕ〉d x

�

�

�

�

¶
C
| lnε|

‖ϕ‖L∞

ˆ
Suppϕ

eε(w)d x

+ Cεβ‖ϕ‖W 1,∞

�

1+
ˆ

Suppϕ
eε(w)d x

�

(1+H d(Suppϕ)2).(2.34)

(Observe the | lnε| gain). A second ingredient is to compareψ with the solution ψ̃ to the analoguous
heat equation

∂tψ̃−∆ψ̃(t) = χJuε.

One can get bounds on ψ̃ by the use of the monotonicity formula on uε, and then relate to ψ by
treating ∂tψ̃ as a perturbation. After an averaging in time argument, one can choose a right time
slice t ∈ [1− 4δ2, 1−δ2] such that, using the bounds from (2.25) and (2.27),

1
(1− t)d/2

ˆ
Rd
(Ξ(uε, (0,1))(x , t) + Vε(uε))(x , t)exp

�

−
|x |2

4(1− t)

�

d x ¶ C
| ln(1− t)|

t2
η lnε,

(a bound suitable for ψ(t) and ξ(t)) andˆ
B(0,2)

|∇ψ(t)|2d x ¶ C(δ)ε1/6Ew((0, 1),δ)

+ C(δ)(Ew((0,1),δ) + 1)
ˆ
Rd

Vε(uε)(t)exp

�

−
|x |2

4δ2

�

d x .

Combining all the above (and the monotonicity formula), one can choose δ > 0 small enough (in-
dependent of η or uε) so that

Ew((0, 1),δ)¶
1
2

Ew((0,1), 1) + C
p
η.

Then using the first part of (2.32), this proves (2.33) and the proof is complete. �

From Theorem 2.1, Proposition 2.2 follows immediately. We now provide a proof of Proposition 2.3
which also is a consequence of Theorem 2.1.

Proof of Proposition 2.3: Let x0 be any given point in B
�

xT ,
R
2

�

. The crux of the argument is the

following claim.

Claim 2.20. We can find λ(T )> 0 such that, for every
p

T0 < r <
p

T1,

1
rd−2

ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − x0|2

4r2

�

d x ¶ η1| lnε|,
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provided that η̃¶
η1

2
(recall that λ enters in the definition of η̃).

To prove the claim, we use (2.28). Let λ > 0 and
p

T0 < r <
p

T1 = R, we have

1
rd−2

ˆ
Rd

eε(uε)(x , T )exp

�

−
|x − x0|2

4r2

�

d x ¶
1

rd−2

ˆ

B(x0,λr)

eε(uε)(x , T )d x

+

�

C(T + 2r2)

(T + 2r2)
d−2

2

�

exp

�

−
λ2

8

�

f (2|x0|)| lnε|.(2.35)

As r ¶ 1, it follows that
C(T + 2r2)

(T + 2r2)
d−2

2

¶
C(T )

T
d−2

2

.

We first choose a function λ0 continuous such that for T > 0, λ0(x0, T )¾ 1 is so large that

(2.36)
C(T )

T
d−2

2

exp

�

−
λ2

0(T )

8

�

f (2|x0|)¶
η1(σ)

2
.

Finally define

λ(x0, T ) =

¨

1+ supt∈[T,1], x∈B(x0,1) 2λ0(x , t) if T ¶ 1,

1+ supt∈[1,T], x∈B(x0,1) 2λ0(x , t) if T ¾ 1.

Recall that C(T ) is bounded (by C(1/2)) for T ∈ [0, 1/2], so that all this can be done under the
additional hypothesis that for some constant C = C(σ),

∀T ∈ (0,1/2],
1
C

Æ

| ln T |+ ln f (2|x0|)¶ λ(x0, T )¶ C
Æ

| ln T |+ ln f (2|x0|).

Then the function λ is positive, continuous and satisfies the conditions of Proposition 2.3.
Furthermore, since x0 belongs to B(xT , R/2) and r < R< 1, it follows that

B(x0,λ0(x0, T )r) ⊂ B(xT ,λ(xT , T )R).

Therefore,

1
rd−2

ˆ
B(x0,λ0(T )R)

eε(uε)(x , T )d x ¶
�

R
r

�d−2 1
Rd−2

ˆ
B(xT ,λ(T )R)

eε(uε)(x , T )d x

¶
�

R
r

�d−2

η̃| lnε|¶
�

R
p

T0

�d−2

η̃| lnε|.

Choosing T0 =
�

2
η1

�
2

d−2

η̃
2

d−2 R2, we obtain

(2.37)
1

rd−2

ˆ
B(x0,λ0(T )R)

eε(uε)(x , T )d x ¶
η1

2
| lnε|.

We finally combine (2.35), (2.36) and (2.37), and the claim is proved. The conclusion then follows
from Proposition 2.2. �

The proofs of both Theorems 2.5 and 2.7 are now exactly the same as in [8] (see sections 5.2 to 5.4)
since computations are made on compact domains Ω ⊂ Rd × (0,+∞), where the bounds (2.23),
(2.27) and (2.6) hold. As in the proof of Theorem 2.1 (and explained at its beginning), these are the
only bounds which are made use of, along with the monotonicity formula and the identity (2.25).
For the convenience of the reader, we remind a few elements of the proofs.
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Outline of the proof of Theorem 2.5. One writes uε = |uε|eiϕε , and starts with the equation for the
phase ϕε. As |uε| ¾ 1/2, it is a uniformly parabolic equation. After performing a spatial cut-off in
order to get rid of boundary conditions on Λ, one splits ϕε = ϕε,0 + ϕε,1, where ϕε,0 is a solution
to the linear heat equation (which turns out to be the desired phase Φε) and ϕε,1 is a solution to a
nonlinear equation with 0 initial data.
ϕε,0 admits improved bounds due to parabolic regularity

‖∇ϕε,0‖2
L2 L2∗ (Λ3/4)

+ ‖∇ϕε,0‖2
L∞(Λ3/4)

¶ C(Λ)
ˆ
Λ

eε(uε).

ϕε,1 is shown to be essentially a perturbation (via a fixed point argument), and so ϕε enjoys integra-
bility bounds in L2 Lq(Λ3/4) for some q > 2 (depending on d).
Plugging this information in the equation for |uε|, one infers that

eε(uε)¶
1
2
|∇ϕε,0|2 +κε, where

ˆ
Λ3/4

κε ¶ C(Λ)εα,(2.38)

for some α depending only on d.
A key ingredient is provided by a result by Chen and Struwe [14] where the bound (2.3) is proved
under an extra assumption of small energy (see also [8, Proposition 5.1]). Together with (2.38) and
a scaling argument, one can relax the small energy assumption, and prove (2.3).
Finally, inserting (2.3) in the equation for |uε|, Lemma 2.11 allows to improve the estimates to

|∇|uε||+ Vε(uε)¶ C(Λ)εα,

and from there, obtain L∞ bounds on ϕε,1: this yields the bounds (2.4) and (2.5), and completes
the proof of Theorem 2.5. �

Outline of the proof of Theorem 2.7. It suffices to prove the estimates on any cylinder of the form
Λ = B × [T0, T1] where B is a ball and T1 > T0 > 0. Up to increasing slightly the cylinder (and due
to (2.24)), one can assume thatˆ

Λ

eε(uε)d xd t +
ˆ
∂Λ

eε(uε)dσ(x , t)¶ C(Λ)| lnε|.(2.39)

Denote now δ and δ∗ the (space time) exterior derivatives on Rd+1. The main step is a Hodge-de
Rham type decomposition with estimates:

uε ∧δuε = δΦ+δ
∗Ψ + ζ,(2.40)

where a key feature is to prove that in addition to the expected bound

‖∇Φ‖L2(Λ) + ‖∇Ψ‖L2(Λ) ¶ C(Λ)| lnε|,

one also has that for any p ∈
�

1,1+
1
d

�

,

‖∇Ψ‖Lp(Λ) ¶ C(p,Λ), and ‖ζ‖Lp(Λ) ¶ C(p,Λ)
p
ε.(2.41)

In other words, Φ completely accounts for the lack of compactness.
The argument for (2.40) is as follows: one starts with the usual Hodge-de Rham decomposition on
∂Λ (which is simply connected: here we use that (d + 1)− 1¾ 2) so that

uε ∧δuε = d∂ΛΦ∂Λ + d∗∂ΛΨ∂Λ.

Then on ∂Λ, −∆∂ΛΨ∂Λ = 2J∂Λuε: the Jerrard and Soner estimate on the Jacobian (2.34) gives the
1/| lnε| gain

‖J∂Λuε‖C0,α(∂Λ)′ ¶ C(Λ),
from where a similar gain is derived on Ψ∂Λ.
Let Φ0 be the harmonic extension of Φ∂Λ on Λ: we gauge away by considering on Λ

vε := uεe
−iΦ0 .
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One now considers on Λ the Hodge-de Rham decomposition vε ∧δvε = δΦ1 +δ∗Ψ, so that

uε ∧δuε = δΦ1 +δ
∗Ψ +δΦ0 + (1− |uε|2)δΦ0.

Define ζ := (1−|uε|2)δΦ0: it satisfies (2.41) using the bound on the energy (2.39), and ζ|∂Λ as well.
For Ψ, one has again −∆Ψ = 2Jwε, now with boundary conditions involving Ψ∂Λ and ζ|∂Λ. A
Jacobian estimate similar to (2.34) (and proven in [7, Proposition II.1]) thus yields the bound (2.41)
on Ψ. Finally defining Φ := Φ0 +Φ1 completes the decomposition.

With (2.40) and (2.41) at hand, we now define Φε by writing Φ= Φε +Φ2, where

∂tΦ2 −∆Φ2 = ∂tΦ−∆Φ on Λ,

with the boundary condition Φ2 = 0 on B × {T0} ∪ ∂ B × (T0, T1). In particular, Φε solves the (homo-
geneous) heat equation on Λ.
From parabolic estimates,

‖∇Φε‖L∞(Λ) ¶ C‖∇x ,tΦ‖L2(B×{T0}∪∂ B×(T0,T1)) ¶ C(Λ)| lnε|,

which is the estimate (3). It remains to bound wε := uεe
−iΦε in Ẇ 1,p(Λ). First we separate between

AΛ = {(x , t) ∈ Λ : |1− |wε(x , t)|| ¶ ε1/4} and BΛ = Λ \ AΛ. On BΛ, the rough estimate |∇wε(x , t)| ¶
C/ε inherited from (2.6) yields

‖∇wε‖
p
Lp(BΛ)
¶ C(Λ)

1
εp

ˆ
Λ

(1− |wε(x , t)|2)2

ε1/2
d xd t

¶ C(Λ)ε2−p−1/2
ˆ
Λ

(1− |uε(x , t)|2)2

ε2
d xd t ¶ C(Λ)ε3/2−p| lnε| → 0

(observe that |uε|= |wε| and p <
d + 1

d
¶

3
2

). We now work on AΛ. Then (with the same computation

as in the proof of Theorem 2.1), we have

|∇wε|2 ¶ 2|wε|2|∇wε|2 = 2|wε|2|∇|wε||2 + 2|wε ∧∇wε|2 ¶ 2|∇(|uε|2)|2 + 2|wε ∧∇wε|2.

It follows from (2.41) (writing wε in terms of uε) that ‖wε ∧∇wε‖Lp(Λ) ¶ C(Λ). Then one actually
bounds ‖∇(|uε|2)‖Lp(Λ): for this, one writes the (uniformly) parabolic equation for ρ = |uε|2, from
which we get ˆ

|∇ρ|2χ ¶
ˆ
(1−ρ)|∇uε|2χ +

ˆ
(|∇ρ||∇χ|+ ∂tρ|χ) |1−ρ|,

(where χ is a suitable non negative cut-off function, χ = 1 on Λ). To bound the right-hand side,
we split again between AΛ and BΛ: BΛ has small measure (arguing as before) and on AΛ one uses
smallness of |1−ρ|. Gathering all the above yields a final bound

‖|∇(|uε|2)‖
p
Lp(Λ) ¶ C(Λ)ε1/4−p/8 lnε→ 0.

This gives estimate (4).
�

3. DESCRIPTION OF THE LIMITING MEASURE AND CONCENTRATION SET

Let uε be a solution of (PGLε) satisfying the initial data (H1( f )).
Our goal in this section is to study the asymptotic limit, as ε→ 0, of the Radon measures µε defined
on Rd × [0,+∞) by

µε(x , t) =
eε(uε)(x , t)
| lnε|

d xd t.

To that purpose, we will study their time slices µt
ε defined on Rd × {t} by

µt
ε(x) =

eε(uε)(x , t)
| lnε|

d x .
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When ε→ 0, these measures converge to µ∗ and µt
∗ respectively (up to a subsequence), as it is shown

in the next paragraph.
Then we will study the evolution of µt

∗, and show that it follows Brakke’s weak formulation of the
mean curvature flow. For this, we will of course heavily rely on the properties of µt

ε obtained in the
previous section.

3.1. Absolute continuity with respect to time of the limiting measure. According to inequality
(2.23) , we have for all R> 0 and T > 0,

(3.1)
ˆ

B(0,R)×[0,T]
dµε(x , t)¶ C(T, R).

The bound (3.1) yields a limiting measure via a diagonal extraction argument. This can also be done
simultaneously for the time sliced measures: more precisely, following the proof in Brakke [13]word
for word, we have the following.

Theorem 3.1. There exist a sequence εm→ 0, a Radon measure µ∗ defined on Rd × [0,+∞), bounded
on compact sets and, for each t ¾ 0, a Radon measure µt

∗ on Rd × {t} such that:

µεm
*µ∗ as m→∞, and for all t ¾ 0, µt

εm
*µt

∗ as m→∞.(3.2)

Moreover, the (µs
∗)s enjoy the bound

(3.3) ∀x ∈ Rd , ∀R> 0, ∀t > 0, µt
∗(B(x , R))¶ C(T, R) f (2|x |).

and
µ∗ = µ

t
∗d t.

For the proof of Theorem 3.1, we will need a few classical identites for the evolution of µt
ε.

Before we dive into the study of the singular measure µt
∗, let us state two useful following identities.

Lemma 3.2. Let u0
ε ∈ L∞(Rd) and uε be the associated solution of (PGLε). Then, for all χ ∈ D(Rd)

and for all t ¾ 0, we have

(3.4)
d
d t

ˆ
Rd
χ(x)dµt

ε = −
ˆ
Rd×{t}

χ(x)
|∂tuε|2

| lnε|
d x +

ˆ
Rd×{t}

∇χ(x)
−∂tuε.∇uε
| lnε|

d x .

We usually choose χ ¾ 0, and this choice makes the first term of the right-hand side non positive. To
handle the second term, we provide another identity which involves the stress-energy tensor.

Lemma 3.3. Let ~X ∈ D(Rd ,Rd). Then for all t ¾ 0,

(3.5)
1
| lnε|

ˆ
Rd×{t}

�

eε(uε)δi j − ∂iuε∂ juε
�

∂ jX i = −
ˆ
Rd×{t}

~X .
−∂tuε.∇uε
| lnε|

d x .

(Here we use Einstein’s convention of implicit sommation over repeated indices; δi j is the Kronecker
symbol which equals 1 if i = j and 0 otherwise.)

The proof of Lemma 3.3 is given in [9], and involves the stress-energy matrix Aε given by

Aε = Aε(uε) := eε(uε) Id−∇uε ⊗∇uε = T (uε) + Vε(uε) Id,(3.6)

where the matrix T (u) and the potential Vε are given by

(3.7) T (u) =
1
2
|∇u|2 Id−∇u⊗∇u, Vε(u) =

(1− |u|2)2

4ε2
.

Combining Lemma 3.2 and Lemma 3.3 with the choice ~X =∇χ, we get rid of the time derivative of
the right hand side of (3.4). More precisely

Lemma 3.4.
∂

∂ t

ˆ
Rd
χ(x)dµt

ε = −
ˆ
Rd×{t}

χ(x)
|∂tuε|2

| lnε|
d x +

ˆ
Rd×{t}

D2χ∇uε.∇uε −∆χeε(uε)
| lnε|

d x .
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Proof of Theorem 3.1. It boils down to the following claim.

Claim 3.5. Let T > 0. We consider a sequence εm → 0. Then there exists a subsequence εσ(m) such
that for every s ∈ [0, T],

µs
εσ(m)

*µs
∗ as m→∞, in the sense of measures.

Indeed let us proof Theorem 3.1 assuming this claim holds. With Tn = n, the claim let us dispose of
sequences εn,m→ 0 as m→ +∞ such that µs

εn,m
enjoys the desired convergence on s ∈ [0, Tn]. By an

argument of diagonal extraction, we deduce that there exist a sequence εm→ 0 and, for each s ¾ 0,
a measure µs

∗ on Rd ×{s} such that for every s ¾ 0, µs
εm
*µs

∗ as m→∞. (3.3) follows from (2.23),
and from there, the time variable absolute continuity µ∗ = µt

∗d t.
We now prove the claim. We use the following lemma, which is an easy variant of Helly’s selection
principle.

Lemma 3.6. Let I be an at most countable set, and let ( f m
i )m∈N,i∈I be a collection of real-valued functions

defined on some interval (a, b). Assume that for each i ∈ I , the family ( f m
i )m∈N is equibounded and

satisfies the following semi-decreasing property

For all δ > 0, there exist τ > 0 and mi ∈ N such that, if s1, s2 ∈ (a, b)

and s2 −τ¶ s1 ¶ s2, then for all m¶ mi , f i
m(s2)¶ f i

m(s1) +δ.(3.8)

Then there exist a subsequence σ(m) and a family ( f i)i∈I of real-valued functions on (a, b) such that
for all s ∈ (a, b) and i ∈ I ,

f i
σ(m)(s)→ f i(s).

Let (χi)i∈I be a countable family of compactly supported non-negative smooth functions on Rd ; as-
sume that for all i ∈ I , 0 ¶ χi ¶ 1, and that Span(χi)i∈I is dense in C 0

c (R
d). Let m0 be such that if

m¾ m0, then εm ¶
1
2

. We define for m ∈ N, i ∈ I the function f i
m defined on [0, T] by

f i
m(s) =

ˆ
Rd
χidµ

s
εm

.

Step 1. We first show that ( f m
i )m¾m0

satisfies (3.8).
Let i ∈ I . Recalling Lemma 3.4, we have

d
ds

ˆ
Rd
χidµ

s
εm

= −
ˆ
Rd×{s}

χi(x)
|∂tuεm

|2

| lnεm|
d x +

1
| lnεm|

ˆ
Rd×{s}

(D2χi∇uεm
.∇uεm

−∆χi eεm
(uεm
)) d x .

Therefore
d
ds

ˆ
Rd
χidµ

s
εm
¶

1
| lnε|

ˆ
Rd×{s}

(D2χi∇uεm
.∇uεm

−∆χi eεm
(uεm
)) d x .

Let R> 0 such that Supp(χi) ⊂ B(0, R). We have, for s ∈ [0, T]

d
ds

f i
m(s) =

d
ds

ˆ
Rd
χidµ

s
εm
¶ 3‖χi‖C 2

ˆ
B(0,R)×{s}

eεm
(uεm
)

| lnεm|
d x

¶ 3‖χi‖C 2 C(T, R),(3.9)

by Proposition 2.15.

Let δ > 0. We set τ=
δ

3‖χi‖C2 C(T, R)
.
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If s1, s2 ∈ [0, T] and s2 −τ¶ s1 ¶ s2, the inequality (3.9) leads to

f i
m(s2)− f i

m(s1)¶ 3‖χi‖C 2(s2 − s1)C(T, R)¶ (s2 − s1)
δ

τ
¶ δ.

Therefore
∀m¶ m0, f i

m(s2)¶ f i
m(s1) +δ.

Now, we prove that ∀i ∈ I , the family ( f i
m)m¾m0

is equibounded.
Let i ∈ I . Let R> 0 such that Supp(χi) ⊂ B(0, R) and t ∈ [0, T]. We haveˆ

Rd
χidµ

t
εm
¶
ˆ

B(0,R)
dµt

εm
¶ C(T, R).

Therefore,
∀m¾ m0, ‖ f i

m‖L∞ ¶ C(T, R),

i.e. the family ( f i
m)m¾m0

is equibounded. According to Lemma 3.6, there exist a subsequence σ(m)
and for all i ∈ I , a Radon measure f i such that for all i ∈ I , and s ∈ (a, b)

f i
σ(m)(s)→ f i(s).

Hence, for all s ∈ [0, T], µs
εσ(m)
(χi) converges as m→ +∞.

Step 2.
Let s0 ∈ [0, T] be arbitrary but fixed, and χ ∈ C0

c (R
d). Let us show that (µs0

εσ(m)
(χ))m∈N is a Cauchy

sequence in R.
Let α > 0. Since Span(χi) is dense in C0

c (R
d), there exist a finite subset J ⊂ I , and real numbers

(λ j) j∈J such that










∑

j∈J

λ jχ j −χ











L∞

¶
α

3C(T, R)
.

Let m¾ k be two integers, we have

|µs0
εσ(m)
(χ)−µs0

εσ(k)
(χ)|¶

�

�

�

�

�

µs0
εσ(k)
(χ)−

∑

j∈J

λ jµ
s0
εσ(k)
(χ j)

�

�

�

�

�

+

�

�

�

�

�

∑

j∈J

λ j(µ
s0
εσ(m)
(χ j)−µs0

εσ(k)
(χ j))

�

�

�

�

�

+

�

�

�

�

�

∑

j∈J

λ jµ
s0
εσ(m)
(χ j)−µs0

εσ(k)
(χ)

�

�

�

�

�

.

Recall that

µs0
εσ(k)
(χ)−

∑

j∈J

λ jµ
s0
εσ(k)
(χ j) =

ˆ
Rd
(χ −

∑

j∈J

λ jχ j)dµ
s0
εσ(k)

.

Let R> 0 such that Supp(χ) ⊂ B(0, R) and for all j ∈ J , Supp(χ j) ⊂ B(0, R). We can bound
�

�

�

�

�

µs0
εσ(k)
(χ)−

∑

j∈J

λ jµ
s0
εσ(k)
(χ j)

�

�

�

�

�

¶











χ −
∑

j∈J

λ jχ j











L∞

ˆ
B(0,R)

dµs0
εσ(k)

¶











χ −
∑

j∈J

λ jχ j











L∞

C(T, R).

Therefore we have
�

�

�

�

�

µs0
εσ(m)
(χ)−

∑

j∈J

λ j µ
s0
εσ(m)
(χ j)

�

�

�

�

�

¶
α

3
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and
�

�

�

�

�

µs0
εσ(k)
(χ)−

∑

j∈J

λ jµ
s0
εσ(k)
(χ j)

�

�

�

�

�

¶
α

3
.

Since the sequence µs0
εσ(m)
(χ j) converges for all j ∈ J , we have, for k large enough,

�

�

�

�

�

∑

j∈J

(µs0
εσ(m)
(χ j)−µs0

εσ(k)
(χ j))

�

�

�

�

�

¶
α

3
.

Therefore, for k large enough,
|µs0
εσ(m)
(χ)−µs0

εσ(k)
(χ)|¶ α.

This proves that the family (µs0
εσ(m)
(χ))n∈N is a Cauchy sequence in R, thus it converges. This de-

termines the measure µs0
∗ and establishes the convergence for s = s0. Since s0 was arbitrary, the

conclusion of Theorem 3.1 follows. �

In the following proofs, we will only work on the sequence (uεm
)m∈N selected by Theorem 3.1, but

for simplicity, we will use our notation for the whole family (uε)ε∈(0,1).

3.2. The monotonicity formula on µt
∗. The following result transfers the monotonicity formula on

µt
ε to its singular limit µt

∗. In the case where the initial energy on the whole space is bounded by
M0| lnε|, it is just an easy consequence of the monotonicity formula for uε ([8]). In our case, with
our initial condition (H1( f )), it requires some more elaborate computations.

Proposition 3.7. For each t > 0, x ∈ Rd and 0< r ¶
p

t, we haveˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt−r2

ε (y)→
ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt−r2

∗ (y) as ε→ 0.

Proof of Proposition 3.7 : Let t > 0, x ∈ Rd and 0< r ¶
p

t fixed.
Since µt−r2

ε *µt−r2

∗ as measures, we have for all φ ∈ C∞c (R
d)

ˆ
Rd
φ(y)exp

�

−
|y − x |2

8r2

�

dµt−r2

ε (y)→
ˆ
Rd
φ(y)exp

�

−
|y − x |2

8r2

�

dµt−r2

∗ (y).

For x ∈ Rd , t > 0, and 0 < r ¶
p

t fixed, the measures exp

�

−
|y − x |2

8r2

�

dµt−r2

ε (y) are bounded

independently of ε: indeed, we apply the monotonicity formula at the point (x , t+ r2) between
p

2r
and
p

t + r2.

ˆ
Rd

eε(uε)(y, t − r2)exp

�

−
|y − x |2

8r2

�

d y

¶
�

2r2

t + r2

�
d−2

2
ˆ
Rd

eε(u
0
ε)(y)exp

�

−
|y − x |2

4(t + r2)

�

d y ¶ C(t, r)| lnε|,

by Lemma 2.13. Therefore,

(3.10)
ˆ
Rd

exp

�

−
|y − x |2

8r2

�

dµt−r2

ε (y)¶ C(t, r).

Hence, the measures exp

�

−
|y − x |2

8r2

�

dµt−r2

ε (y) are bounded independently of ε. On the other

hand, they converge in measure to exp

�

−
|y − x |2

8r2

�

dµt−r2

∗ (y). As a consequence, the measure
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exp

�

−
|y − x |2

8r2

�

dµt−r2

∗ (y) is bounded on Rd and for all φ ∈ C∞b (R
d), there holds

ˆ
Rd
φ(y)exp

�

−
|y − x |2

8r2

�

dµt−r2

ε (y)→
ˆ
Rd
φ(y)exp

�

−
|y − x |2

8r2

�

dµt−r2

∗ (y).

In particular, for φ(y) = exp

�

−
|y − x |2

8r2

�

, we have

ˆ
Rd

exp

�

−
|y − x |2

4r2

�

dµt−r2

ε (y)→
ˆ
Rd

exp

�

−
|y − x |2

4r2

�

dµt−r2

∗ (y). �

Then, we can get an analogous of the monotonicity formula on µt
∗.

Proposition 3.8. For each t > 0 and x ∈ Rd , the function Eµ((x , t), ·) defined on (0,+∞) by

r 7→ Eµ((x , t), r) =
1

rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt−r2

∗ (y)

is non-decreasing for 0< r ¶
p

t.

Proof. It is a direct consequence of Proposition 3.7 and of the monotonicity formula for uε. �

Arguing as for (2.22), we thus getˆ
exp

�

−
|x − y|2

4R2

�

dµt
∗(y)¶

Rd−2

(t + R2)
d−2

2

ˆ
exp

�

−
|x − y|2

4(t + R2)

�

d yµ0
∗(y).(3.11)

From there, we can get the following energy bound.

Proposition 3.9. For all x ∈ Rd and T > 0, we have

(3.12) ∀t ∈ (0, T], s ∈ [0, T],
ˆ
Rd

exp

�

−
|x − y|2

4t

�

dµs
∗ ¶ C(T ).

Proof. Due to the monotonicity formula (2.21) and Lemma 2.13,ˆ
Rd

exp

�

−
|y − x |2

4t

�

eε(uε)(y, s)d y ¶
t

d−2
2

(t + s)
d−2

2

ˆ
Rd

exp

�

−
|y − x |2

4(s+ t)

�

eε(u
0
ε)(y)d y

¶ C(t)| lnε|.

Thus, ˆ
Rd

exp

�

−
|x − y|2

4t

�

dµs
ε ¶ C(T ).

Letting ε→ 0, the conclusion follows by Proposition 3.7. �

The remainder of this section is devoted to prove Theorem 1.1.

3.3. Densities and concentration set. In order to analyse geometric properties of the measures µ∗
and µt

∗, a key point is the concept of densities. For a given Radon measure ν on Rd , we have the
classical definition:

Definition 3.10. For m ∈ N, the m-dimensional lower density of ν at the point x is defined by

Θ∗,m(ν, x) = lim inf
r→0

ν(B(x , r))
ωmrm

,

where ωm denotes the volume of the unit ball Bm. Similarly, the m- dimensional upper density
Θ∗m(ν, x) is given by

Θ∗m(ν, x) = limsup
r→0

ν(B(x , r))
ωmrm

.
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When both quantities coincide, ν admits a m-dimensional density Θm(ν, x) at the point x , defined
as the common value.

Since the energy measure is expected to concentrate on (d − 2)-dimensional sets, our main efforts
will be devoted to the study of the density Θ∗,d−2(µt

∗, ·). Invoking the monotonicity formula once
more, we have

Lemma 3.11. For all x ∈ Rd and for all t > 0,

Θ∗,d−2(µ
t
∗, x)¶ Θ∗d−2(µ

t
∗, x)¶

C(|x |, t)

t
d−2

2

< +∞.

Proof. Only the middle inequality needs explanations. It is a consequence the bounds on µt
ε derived

from Lemma 2.13, and Proposition 2.2. Indeed fix t > 0 and x ∈ Rd ; for r > 0, there holds

µt
∗(B(x , r))

rd−2
=

1
rd−2

ˆ
B(x ,r)

dµt
∗ ¶

e1/4

rd−2

ˆ
exp

�

−
|x − y|2

4r2

�

dµt
∗

¶ lim
ε→0

e1/4

rd−2

ˆ
exp

�

−
|x − y|2

4r2

�

dµt
ε.

Now, for any ε > 0, the mononicity formula yields

e1/4

rd−2

ˆ
exp

�

−
|x − y|2

4r2

�

dµt
ε ¶

e1/4

(t + r2)
d−2

2

ˆ
exp

�

−
|x − y|2

4(t + r2)

�

eε(u0
ε)(y)

| lnε|
d y

¶
C(t + r2)

(t + r2)
d−2

2

f (2|x |).

As this does not depend on ε, we infer that

µt
∗(B(x , r))

rd−2
¶

C(t + r2)

(t + r2)
d−2

2

f (2|x |).

Taking the limsup in r → 0, we get

Θ∗d−2(µ
t
∗, x)¶

C(t)

t
d−2

2

f (2|x |). �

The previous lemma provides an upper bound. For regularity properties (of the concentration set) it is
well known that lower bounds play a key role. However, it seems difficult to work with Θ∗,d−2(µt

∗, ·)
directly (since the equation depends on time); instead, we will first consider parabolic densities
(which involve space-time measures), whose definition is recalled below, and which is more natural
in view of the monotonicity for µ∗ (Proposition 3.8).

Definition 3.12. Let ν be a Radon measure on Rd × [0,+∞) such that ν = νt d t. For t > 0 and
m ∈ N, the parabolic m-dimensional lower density of ν at the point (x , t) is defined by

ΘP
∗,m(ν, (x , t)) = lim inf

r→0

1
rm

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dνt−r2
(y).

The parabolic upper density and parabolic density are defined accordingly, and denoted respectively
ΘP,∗

m and ΘP
m.

It clearly follows from the monotonicity formula that for ν= µ∗ and m= d−2, the limit in definition
3.12 is decreasing, so that ΘP

d−2(µ
∗, (x , t)) exists everywhere in Rd×(0,+∞). Another consequence,

is that the parabolic measure dominates the (d−2)-dimensional density for µ∗ (see Proposition 3.18
for a precise statement). Motivated by this fact, we define

Σµ :=
�

(x , t) ∈ Rd × (0,+∞) such that ΘP
d−2(µ∗, (x , t))> 0

	

,(3.13)



28 DELPHINE CÔTE AND RAPHAËL CÔTE

and for t > 0,

Σt
µ := Σµ ∩ (Rd × {t}).(3.14)

We now state the properties we need on Σµ to conclude the proof of Theorem 1.1, and postpone
their proofs to the end of this subsection.

3.4. Properties and regularity of Σµ.

3.4.1. Diffuse part of µt
∗ outside of the vorticity. Let us first state an important consequence of the

analysis carried out above in Section 2.

Theorem 3.13. There exist an absolute constant η2 > 0 and a positive continuous function λ defined
on (0,+∞) such that, if for x ∈ Rd , t > 0 and r > 0 we have

(3.15) µt
∗(B(x ,λ(x , t)r))< η2rd−2,

then for every s ∈ [t+ 15
16 r2, t+ r2], µt

∗ is absolutely continuous with respect to the Lebesgue measure on
the ball B(x , 1

4 r). More precisely

µs
∗ = |∇Φ†|2 d x on B

�

x ,
1
4

r
�

,

where Φ† satisfies the heat equation in Λ 1
4
= B(x , 1

4 r)×
�

t + 15
16 r2, t + r2

�

.

Notice that the constant η2 and the function λ are the same as in Proposition 2.6 of the previous
section. Notice also that µ∗ = |∇Φ†|2d xd t on Λ 1

4
, and that |∇Φ†|2 is a smooth function.

Proof. We briefly sketch the proof of Theorem 3.13, which is a direct consequence of Theorems 2.1
and 2.5 of the previous section.
Let x ∈ Rd , t > 0 , r > 0 be fixed such that (3.15) is verified, then for ε small enough, we haveˆ

B(x ,λ(t)r)
eε(uε)< η2rd−2| lnε|,

so that we may invoke Proposition 2.6. This yields

eε(uε) = |∇Φε|2 + κε in Λ 1
4
,

where Φε verifies the heat equation in Λ 3
8

and we have the bounds

|∇Φε|2 ¶ C(Λ)| lnε|, and |κε|¶ C(Λ)εβ in Λ 1
4
.

Extracting possibly a further subsequence, we may assume that

Φε
p

| lnε|
→ Φ† uniformly on Λ 5

16
.

Since Φε verifies the heat equation, it follows that for every k ∈ N,

Φε
p

| lnε|
→ Φ† in C k(Λ 1

4
),

and Φ∗ verifies the heat equation on Λ 1
4
. On the other hand,

κε → 0 uniformly on Λ 1
4
,

so that
eε(uε)
| lnε|

→ |∇Φ†|2 uniformly on Λ 5
16

. �
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3.4.2. Clearing-out. Following Brakke [13] and Ilmanen [19], the main tool in the study of geometric
properties of Σµ is the following result.

Theorem 3.14 (Clearing-out). There exists a positive continuous function η3 defined on Rd×(0,+∞)
such that, for any (x , t) ∈ Rd × (0,+∞) and any 0< r <

p
t, if

Eµ((x , t), r) :=
1

rd−2

ˆ
Rd

exp(−
|x − y|2

4r2
) dµt−r2

∗ (y)¶ η3(x , t − r2),(3.16)

then
(x , t) /∈ Σµ.

An immediate corollary is

Corollary 3.15. For any (x , t) ∈ Σµ, we have

ΘP
d−2(µ∗, (x , t))¾ η3(x , t).

The remainder of this paragraph is devoted to the proof of Theorem 3.14, which is essentially a
consequence of Theorem 3.13. We first need two preliminary lemmas.

Lemma 3.16. Let x ∈ Σt
µ and 0< r <

p
t. Then, we have

r2−dµt−r2

∗ (B(x ,λ(x , t − r2)r))¾ η2,

where η2 is the constant in Theorem 3.13.

Proof. Indeed, assume by contradiction that

r2−dµt−r2

∗ (B(x ,λ(x , t − r2)r))< η2.

Then, by Theorem 3.13, for every τ ∈
�

t − 1
16 r2, t

�

µτ∗ = |∇Φ†|2 d x on B
�

x ,
r
4

�

,

where Φ† is smooth. We are going to show that

(3.17) s2−d
ˆ
Rd

exp

�

−
|x − y|2

4s2

�

dµt−s2

∗ → 0 as s→ 0.

Indeed, we write and compute

s2−d
ˆ

B(x , r
8 )

exp

�

−
|x − y|2

4s2

�

dµt−s2

∗ ¶ s2−d‖∇Φ†‖L∞(B(x , 1
8 r))

ˆ
Rd

exp

�

−
|x − y|2

4s2

�

d x

¶ K‖∇Φ†‖L∞(B(x , 1
8 r))s

2→ 0 as s→ 0.(3.18)

On the other hand,

(3.19) s2−d
ˆ
Rd\B(x , r

8 )
exp

�

−
|x − y|2

4s2

�

dµt−s2

∗ → 0 as s→ 0.

Indeed,

s2−d
ˆ
Rd\B(x , r

8 )
exp

�

−
|x − y|2

4s2

�

dµt−s2

∗ = s2−d
ˆ
Rd\B(x , r

8 )

�

exp

�

−
|x − y|2

8s2

��2

dµt−s2

∗

¶ s2−d
ˆ
Rd\B(x , r

8 )
exp

�

−
r2

8× 64s2

�

exp

�

−
|x − y|2

8s2

�

dµt−s2

∗

¶ s2−d exp

�

−
r2

512s2

�ˆ
Rd

exp

�

−
|x − y|2

8s2

�

dµt−s2

∗

¶
�

2
t + s2

�
d−2

2

exp

�

−
r2

512s2

�ˆ
Rd

exp

�

−
|x − y|2

4(t + s2)

�

dµ0
∗
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by the monotonicity formula at (x , t + s2) between
p

2s and
p

t + s2 (we can assume s <
p

t).
Since ˆ

Rd
exp

�

−
|x − y|2

4(t + s2)

�

dµ0
∗ ¶ C(t)

by inequality (3.12), we have

s2−d
ˆ
Rd\B(x , r

8 )
exp

�

−
|x − y|2

4s2

�

dµt−s2

∗ ¶
C(t)

t
d−2

2

exp

�

−
r2

512s2

�

→ 0 as s→ 0.

Combining (3.18) and (3.19), (3.17) follows and hence ΘP
d−2(µ∗, (x , t)) = 0, i.e. (x , t) /∈ Σµ, which

is a contradiction. �

Lemma 3.17. The function (x , t)→ ΘP
d−2(µ∗, (x , t)) is upper semi-continuous on the setRd×(0,+∞).

Proof. Let (x , t) ∈ Rd × (0,+∞), and let (xm, tm)m∈N be a sequence such that (xm, tm)→ (x , t). We
are going to show that

(3.20) limsup
m→+∞

ΘP
d−2(µ∗, (xm, tm))¶ ΘP

d−2(µ∗, (x , t)).

Let 0 < r < 1
2

p
t be fixed for the moment. For m sufficiently large, let rm =

p

r2 + tm − t, so that
t − r2 = tm − r2

m. By the monotonicity formula, we have

ΘP
d−2(µ∗, (xm, tm))¶

1
rd−2

m

ˆ
Rd

exp(−
|y − xm|2

4r2
) dµ

tm−r2
m

∗ (y)

¶
1

rd−2
m

ˆ
Rd

exp

�

−
|y − xm|2

4r2

�

dµt−r2

∗ (y).

We assert that, as m→ +∞,

1
rd−2

m

ˆ
Rd

exp

�

−
|y − xm|2

4r2

�

dµt−r2

∗ (y)→
1

rd−2

ˆ
Rm

exp

�

−
|y − x |2

4r2

�

dµt−r2

∗ (y).

Indeed, since the sequence (xm)m is bounded by a constant M > 0, we write

1
rd−2

m

ˆ
Rd

exp

�

−
|y − xm|2

4r2

�

dµt−r2

∗ (y) =
1

rd−2
m

ˆ
B(0,2M)

exp

�

−
|y − xm|2

4r2

�

dµt−r2

∗ (y)

+
1

rd−2
m

ˆ
c B(0,2M)

exp

�

−
|y − xm|2

4r2

�

dµt−r2

∗ (y).

Passing to the limit in the integral on B(0, 2M) does not raise any difficulty. For the second integral,
we have

|y − xm|¾ |y| − |xm|¾ |y| −M ¾
1
2
|y|,

so, if y ∈ Rd \ B(0,2M),

exp

�

−
|y − xm|2

4r2

�

dµt−r2

∗ (y)¶ exp

�

−
|y|2

16r2

�

dµt−r2

∗ (y),

and by the monotonicity formula at point (0, t + 3r2) between r1 = 2r and r2 =
p

t + 3r2,ˆ
Rd

exp

�

−
|y|2

16r2

�

dµt−r2

∗ (y)¶
�

2r
p

t + 3r2

�d−2 ˆ
Rd

exp

�

−
|y|2

4(t + 3r2)

�

dµ0
∗(y)¶ C(t),

by (3.12). We then get the result as a consequence of Lebesgue’s dominated convergence Theorem.
So if we let m→ +∞, we obtain

lim sup
m→+∞

ΘP
d−2(µ∗, (xm, tm))¶

1
rd−2

ˆ
Rd

exp

�

−
|y − x |2

4r2

�

dµt−r2

∗ (y).
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Now, let r → 0, and (3.20) follows. �

Proposition 3.18. There exists an explicit constant K such that for all x ∈ Rd and t > 0,

(3.21) ΘP
d−2(µ∗, (x , t))¾ KΘ∗d−2(µ

t
∗, x).

In particular,
Θ∗d−2(µ

t
∗, x)≡ 0 on Rd \Σt

µ.

Proof. Let (x , t) ∈ Rd × (0,+∞) be given. Let 0 < r < t be fixed for the moment. We write, for
every 0< s <

p
t,

1
rd−2

µt
∗(B(x , r))¶ exp

�

1
4

�

1
rd−2

ˆ
Rd

exp

�

−
|y − x |2

4r2

�

dµt
∗(y)

¶ exp
�

1
4

�

1

(r2 + s2)
d−2

2

ˆ
Rd

exp

�

−
|y − x |2

4(r2 + s2)

�

dµt−s2

∗ (y),

where we have used the monotonicity formula at the point (x , t + r2) between r and
p

r2 + s2 for
the last inequality. Next, we choose s =

p
r. This yields

(3.22)
1

rd−2
µt
∗(B(x , r))¶ exp

�

1
4

�

1

(r2 + r)
d−2

2

ˆ
Rd

exp

�

−
|y − x |2

4(r2 + r)

�

dµt−r
∗ (y).

In the last integral, we decompose

Rd = B(x , 1)∪ (Rd \ B(x , 1)).

On B(x , 1), observe that

exp

�

−
|y − x |2

4(r2 + r)

�

¶ K exp

�

−
|y − x |2

4r

�

,

for some absolute constant K . On the other hand, on Rd \ B(x , 1), we have

(3.23)
1

(r2 + r)
d−2

2

ˆ
Rd\B(x ,1)

exp

�

−
|x − y|2

4(r2 + r)

�

dµt−r
∗ ¶

C(t)

t
d−2

2

exp
�

−
1

8(r2 + r)

�

.

Indeed,

1

(r2 + r)
d−2

2

ˆ
Rd\B(x ,1)

exp

�

−
|x − y|2

4(r2 + r)

�

dµt−r
∗(3.24)

¶ exp
�

−
1

8(r2 + r)

�

1

(r2 + r)
d−2

2

ˆ
Rd

exp

�

−
|x − y|2

8(r2 + r)

�

dµt−r2

∗ (y)

¶ exp
�

−
1

8(r2 + r)

��

2
2r2 + r + t

�
d−2

2
ˆ
Rd

exp

�

−
|x − y|2

4(2r2 + r + t)

�

dµ0
∗(y)(3.25)

¶
�

2
t

�
d−2

2

exp
�

−
1

8(r2 + r)

�
ˆ
Rd

exp

�

−
|x − y|2

4(2r2 + r + t)

�

dµ0
∗(y)(3.26)

where we have used the monotonicity formula at point (x , 2r2 + r + t) between
p

2(r2 + r) andp
2r2 + r + t for inequality (3.25). Then, (3.26) and Lemma 2.13 lead to inequality (3.23). Going

back to (3.22), we infer

1
rd−2

µt
∗(B(x , r))¶

K

r
d−2

2

ˆ
Rd

exp

�

−
|x − y|2

4r

�

dµt−r
∗ +

�

C(t)

t
d−2

2

�

exp
�

−
1

8(r2 + r)

�

.

Letting r go to zero, the conclusion follows. �

We can now complete the proof of Theorem 3.14.
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Proof of Theorem 3.14. Let (x , t) ∈ Rd × (0,+∞) and 0< r <
p

t. We have

(3.27) r2−dµt−r2

∗ (B(x ,λ(x , t − r2)r))¶ exp

�

λ2(x , t − r2)
4

�

Eµ((x , t), r).

Consider therefore the function

η3(x , s) = exp

�

−
λ2(x , s)

4

�

η2,

and assume next that, for some 0< r <
p

t,

Eµ((x , t), r)¶ η3(x , t − r2).

Then, by (3.27),
r2−dµt−r2

∗ (B(x ,λ(x , t − r2)r))¶ η2

and the conclusion follows by Lemma 3.16. �

3.4.3. Consequences: regularity of Σµ and decomposition of µ∗. At this stage, we are in position to
derive the following conclusions, without invoking any further property of the equation (PGLε).

Proposition 3.19. (1) The set Σµ is closed in Rd × (0,+∞).
(2) Let x ∈ Rd . For t ∈ (0, 1/2], then

H d−2(B(x , 1)∩Σt
µ)¶ C(|x |)| ln t|

d−2
2 .(3.28)

For t ¾ 1/2, we have
H d−2(B(x , 1)∩Σt

µ)¶ C(|x |, t).

(3) For any t > 0, the measure µt
∗ can be decomposed as

µt
∗ = g(x , t)H d + Θ∗(x , t)H d−2øΣt

µ,

where g is some smooth function defined on Rd × (0,+∞) \Σµ and Θ∗ verifies the bound

Θ∗(x , t)¶
C(|x |, t)

t
d−2

2

.

The bound (3.28) will actually be relevant in the proof of Theorem 1.3: for d = 2, it does not depend
on small times.
The function Θ∗ is the Radon-Nikodym derivative of µt

∗øΣ
t
µ with respect to H d−2; at this stage we

may just assert that it lies between the lower and upper densities.
Concerning g, it can be locally defined as |∇Φ†|2 for some smooth Φ† verifying the heat equation.
The function Φ† however is not yet globally defined.

Proof. (1) In view of Corollary 3.15, we have

Σµ =
�

(x , t) ∈ Rd × (0,+∞) : ΘP
d−2(µ∗, (x , t))¾ η3(x , t)

	

.

Since η3(·) is continuous and since ΘP
d−2(µ∗, ·) is upper semi-continuous by Lemma 3.17, we deduce

that ΘP
d−2(µ∗, ·)−η3(·) is upper semi-continuous as well and the conclusion follows.

(2) We argue slightly differently for small and large values of t. Let us start with t ¶ 1/2, where we
seek better estimates.

Let 0< δ <
s

t
2

. Consider a standard covering of B(x , 1) such that

B(x , 1) ⊂
⋃

j∈J

B(x j ,λ(x , t)δ), and B
�

x i ,λ(x , t)
δ

2

�

∩ B
�

x j ,λ(x , t)
δ

2

�

=∅ for i 6= j.
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Recall from Proposition 2.3 where the function was first defined that λ is continuous and has slow
variations on B(x , 1)×(0,1] in the sense of (2.2). It follows that there exists a function K continuous
on [0,+∞) such that

∀(y,τ) ∈ B(x , 1)× [t/2, t], λ(y,τ)¶ (K(|x |)− 1)λ(x , t).(3.29)

(Observe that actually, if f has at most exponential growth, K can be chosen to be a constant inde-
pendent of x). Define

Iδ =
¦

i ∈ J : B (x i ,λ(x , t)δ)∩ B(x , 1)∩Σt
µ 6=∅

©

.

For i ∈ Iδ, there exists some yi ∈ Σt
µ ∩ B (x i ,λ(x , t)δ). Hence, by Lemma 3.16,

µt−δ2

∗ (B(yi ,λ(yi , t −δ2)δ))> η2δ
d−2.

Due to (3.29) and as t −δ2 ¾ t/2, B(yi ,λ(yi , t −δ2)δ) ⊂ B(x i , K(|x |)λ(x , t)δ) and

µt−δ2

∗ (B(x i , K(|x |)λ(x , t)δ))> η2δ
d−2.(3.30)

If δ is so small that K(|x |)λ(x , t)δ < 1, the balls B(x i , K(|x |)λ(x , t)δ) are included in B(x , 2); since

the balls B
�

x i ,λ(x , t)
δ

2

�

are disjoint, the balls B(x i , K(|x |)λ(x , t)δ) cover at most C(d)K(|x |)d times

the ball B(x , 2). Therefore, using inequality (3.3),

δ2−d
∑

i∈Iδ

µt−δ2

∗ (B(x i , K(|x |)λ(x , t)δ))¶ C(d)δ2−d K(|x |)dµt−δ2

∗ (B(x , 2))

¶ CK(|x |)dδ2−d f (2|x |)¶ C(|x |)δ2−d .

With (3.30), this implies that
η2 Card Iδ < C(|x |)δ2−d .

Now by definition, we have

H d−2(B(x , 1)∩Σt
µ)¶ limsup

δ→0
(Card Iδ)(λ(x , t)δ)d−2 ¶ λ(x , t)d−2C(|x |)< +∞,

which yields the desired bound: indeed, observe that for all a, b ¾ 0,
p

a+ b ¶
p

1+ a
p

1+ b so
that

λ(x , t)¶ C
Æ

| ln t|+ ln f (2x)¶ C
Æ

1+ | ln t|
Æ

1+ ln f (2x)¶ C(|x |)
Æ

| ln t|.
If we now consider the case t ¾ 1/2, we can argue in the same fashion, except now λ has no longer
slow variations, but is still continuous. Therefore, we can replace (3.29) with

∀(y,τ) ∈ B(x , 1)× [t/2, t], λ(y,τ)¶ (K(|x |, t)− 1)λ(x , t),(3.31)

for some function K continuous on [0,+∞)×[1,+∞). The remainder of the argument is unchanged,
and yields a bound C(|x |, t) where we have no control in t.

(3) As Σt
µ is closed, we have the decomposition

µt
∗ = µ

t
∗ø(R

d \Σt
µ) +µ

t
∗øΣ

t
µ.

On the one hand, on Σt
µ, and due to the bound (2), we can use the Radon-Nikodym theorem, which

provides a function Θ∗ ∈ L1
loc(H

d−2(Rd)) such that

µt
∗øΣ

t
µ = Θ∗H

d−2øΣt
µ.

Due to Lemma 3.11, we also have the bound

Θ∗(x , t)¶
C(|x |, t)

t
d−2

2

.
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On the other hand, for x0 /∈ Σt0
µ , ΘP

d−2(µ∗(x , t))→ 0 as (x0, t0)→ (x , t) by Lemma 3.17. From there,
and using the bound (3.21), there exists δ > 0 small enough such that

µt−δ2

∗ (B(x ,λ(x , t −δ2)δ))¶ η2δ
d−2.

Then Theorem 3.13 applies and shows that

µs
∗ = |∇Φ∗(x , s)|2d x on B(x0,δ0/4)× [t −δ2/16, t],

where Φ∗ solves the heat equation and is smooth: this allows to define g locally. �

3.4.4. Lower bounds forΘ∗,d−2(µt
∗). As already mentioned, lower bounds forΘ∗,d−2 play an important

role for regularity issues: however, up to now we have only lower bounds for ΘP
d−2 (see Corollary

3.15). The next result provides the reverse inequality to (3.21).

Proposition 3.20. There exists a continuous function κ : Rd × (0,+∞) → (0,+∞), such that for
almost every t > 0, the following inequality holds

(3.32) Θ∗,d−2(µ
t
∗, x)¾ κ(x , t)ΘP

d−2(µ∗, (x , t))

forH d−2 almost every x ∈ Rd .

Combining Corollary 3.15 and Proposition 3.20, we are led to

Corollary 3.21. For almost every t > 0,

Θ∗,d−2(µ
t
∗, x)¾ κ(x , t)η3(x , t) forH d−2 a.e. x ∈ Rd .

Our goal in this subsection is to prove Proposition 3.20, but we need some preliminary tools first.
Our starting point is the estimate for the time derivative ∂tuε provided by Proposition 4.2, namely

∀T > 0,∀R> 0,
1
| lnε|

ˆ
B(0,R)×[0,T]

|∂tuε|2 ¶ C(T, R).

Therefore, by a diagonal extraction argument, we may assume that there exists some non negative
Radon measure ω∗ defined on Rd × [0,+∞) such that

1
| lnε|

|∂tuε|2 *ω∗ as measures,(3.33)

so that ω∗(B(0, R)× [0, T])¶ C(T, R).
In [8], it is known at this point that Σµ ⊂ Rd × (0, T f +1) for some constant T f . In our case, we don’t
have the same result, and since we want to work on compact domains in Rd × [0,+∞), we will fix
T > 0, and then intersect our sets of Rd with balls B(0, R).

Step 1. We fix T > 0.
We want to prove that for almost t ∈ (0, T], inequality (3.32) holds for every x ∈ Rd .
We define, for ` ∈ N∗ and q > 0 to be fixed later, the set

A`(ω∗) =

�

(x , t) ∈ Rd × (0, T] : lim sup
r→0

1
rq

ˆ
B(x ,`r)×[t−r2,t]

ω∗ ¾ 1

�

and its intersection with B(0, R)

A`(ω
R
∗ ) = {(x , t) ∈ A`(ω∗) : |x |¶ R} .

The following shows that A`(ω∗) is small in some appropriate sense.

Lemma 3.22. For each ` ∈ N∗ and R> 0,

H q
P (A`(ω

R
∗ ))< +∞,

whereH q
P denotes the q-dimensional Hausdorff measure with respect to the parabolic distance

dP((x , t), (x ′, t ′)) =max(|x − x ′|, |t − t ′|
1
2 ).
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Proof. Let 0 < δ ¶ 1 be given, and fixed for the moment. For (x , t) ∈ A`(ωR
∗ ), there exists r =

r(x , t)< δ such that ˆ
B(x ,`r)×[t−r2,t]

ω∗ ¾ rq.

If we denote
Γ P
` (x , t, r(x , t)) = B(x ,`r(x , t))× [t − r(x , t)2, t],

clearly, the reunion of the parabolic balls
⋃

(x ,t)∈A`(ωR
∗ )
Γ P
`
(x , t, r(x , t)) covers A`(ωR

∗ ). Notice that

diam(Γ P
`
) ¶ 2`r. Since A`(ωR

∗ ) ⊂ B(0, R) × [0, T], we may apply the Besicovitch covering theorem
(see for example [16]). There exists an integer m(`, d) depending only on d and `, and there exists
a sub-covering of the form

A`(ω
R
∗ ) ⊂

m(`,d)
⋃

i=1

⋃

j∈Jδi

Γ P
` (x j , t j , r j(x j , t j)),

where for fixed i, the sets Γ j = Γ P
`
(x j , t j , r j(x j , t j)) are disjoint. Consequently, it follows that for each

i ∈ ¹1, m(`, n)º,
∑

j∈Jδi

r(x j , t j)
q ¶

∑

j∈Jδi

ˆ
Γ j

ω∗ ¶
ˆ

B(0,R+`)×[0,T]
ω∗ ¶ C(T, R,`).

Therefore,
m(`,d)
∑

j=1

∑

j∈Jδi

diam(Γ j)
q ¶ m(`, d)`qC(T, R,`).

Observe that the constant on the right hand side is independent of δ. Hence, letting δ → 0, we
obtain

H q
P (A`(ω

R
∗ ))¶ lim sup

δ→0
(

m(`,d)
∑

j=1

∑

j∈Jδi

diam(Γ j)
q)¶ m(`)`qC(T, R,`),

and the proof is complete. �

We fix q = d−
3
2

. This choice has no specific geometrical meaning, but is convenient (as the following

shows).

Corollary 3.23. We have

H d−1

�

⋃

`∈N∗
A`(ω∗)

�

= 0.

Hence, for almost every t > 0,

H d−2

�

⋃

`∈N∗
At
`(ω∗)

�

= 0,

where At
`
(ω∗) = A`(ω∗)∩ (Rd × {t}).

Proof. Since, by Lemma 3.22,H d− 3
2

P (A`(ωR
∗ ))<∞, it follows that

H d−1
P (A`(ω

R
∗ )) = 0.

On the other hand, parabolic balls are smaller than euclidian balls of the same radius, so that the
parabolic Hausdorff measure dominates the euclidian Hausdorff measure. It follows that

H d−1

�

⋃

`∈N∗

⋃

R∈N∗
AR
`(ω∗)

�

= 0.
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Since
⋃

R∈N∗
AR
`(ω∗)) = Al(ω∗), we obtain that

H d−1

�

⋃

`∈N∗
A`(ω∗)

�

= 0,

and the proof is complete. �

Next, we introduce the set
Ωω = (Rd × [0, T]) \

⋃

`∈N∗
A`(ω∗).

Lemma 3.24. Let χ ∈ C∞c (R
d). Then, for (x , t) ∈ Ωω,

lim
r→0

�

1
rd−2

ˆ
Rd
χ
� y − x

r

�

dµt
∗(y)−

1
rd−2

ˆ
Rd
χ
� y − x

r

�

dµt−r2

∗ (y)
�

= 0.

Proof. We need to go back to the level of the function uε. For 0< r <
p

t, by Lemma 3.2, we haveˆ
Rd×{t}

eε(uε)
| lnε|

χ
� y − x

r

�

d x −
ˆ
Rd×{t−r2}

eε(uε)
| lnε|

χ
� y − x

r

�

d x

= −
ˆ
Rd×[t−r2,t]

|∂tuε|2

| lnε|
χ
� y − x

r

�

d xd t(3.34)

−
1

r| lnε|

ˆ
Rd×[t−r2,t]

∂tuε∇uε · ∇χ
� y − x

r

�

d xd t.(3.35)

Let ` ∈ N∗ such that Supp(χ) ⊂ B(`). We set Λ = B(x ,`r)× [t − r2, t], and estimate the last term in
the previous identity by the Cauchy-Schwarz inequality ,

1
r| lnε|

�

�

�

�

ˆ
Λ

∂tuε∇uε.∇χ
� y − x

r

�

�

�

�

�

¶
�ˆ
Λ

|∂tuε|2

| lnε|

�
1
2
�ˆ
Λ

|∇uε|2

r2| lnε|

�
1
2

‖∇χ‖∞.

We now let ε→ 0 in (3.35), therefore obtaining the inequality for measures

1
rd−2

�

�

�

�

ˆ
Rd
χ
� y − x

r

�

(dµt
∗ − dµt−r2

∗ )(y)

�

�

�

�

¶

�

1
rd−2

ˆ
Λ

ω∗ +
�

1
rd−2

ˆ
Λ

ω∗

�
1
2
�

1
rd

ˆ
Λ

dµ∗

�
1
2

�

‖χ‖C 1 .

Letψ ∈ C∞c (R
d × [0,+∞)) such thatψ= 1 in Λ, andψ= 0 out of B(x , 2`r)× [t−2r2, t]. We have

1
rd

ˆ
ψdµε ¶

1
rd−2

ˆ t

t−2r2

ˆ
B(x ,2`r)

eε(uε)
| lnε|

¶
1
rd

ˆ t

t−2r2
e

1
4

ˆ
Rd

eε(uε)(y, s)
| lnε|

e−
|x−y|2

16`2 r2 d yds

¶
1
rd

ˆ t

t−2r2
e

1
4

�

2`r
p

s+ 4`2r2

�d−2 ˆ
Rd

eε(u0
ε)

| lnε|
e−

|x−y|2

4(s+4`2 r2) d yds

where we used the monotonicity formula applied at point (x , s+4`2r2) between 2`r and
p

s+ 4`2r2.
From there, we infer

1
rd

ˆ
ψdµε ¶ e

1
4
(2`)d−2

(t + 2`r2)
d−2

2

C(t + 4`2r2).

Letting ε→ 0, and then r → 0, we get

limsup
r→0

1
rd

ˆ
ψdµ∗ ¶

C(t,`)

t
d−2

2

.
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Recall that

(3.36) if (x , t) ∈ Ωω, then lim sup
r→0

1

rd− 3
2

ˆ
B(x ,`r)×[t−r2,t]

ω∗ ¶ 1.

Now we have

1
rd−2

ˆ
Λ

ω∗ +
�

1
rd−2

ˆ
Λ

ω∗

�
1
2
�

1
rd

ˆ
Λ

dµ∗

�
1
2

¶
�

1

rd− 3
2

ˆ
Λ

ω∗

�

r
1
2 + r

1
4

�

1

rd− 3
2

ˆ
Λ

ω∗

�
1
2
�

1
rd

ˆ
ψdµ∗

�
1
2

.

According to (3.36), and letting r → 0, we deduce that

ˆ
Λ

ω∗ +
�
ˆ
Λ

ω∗

�
1
2
�

1
r2

ˆ
Λ

dµ∗

�
1
2

→ 0,

and the proof is complete. �

In Lemma 3.24, we assumed that χ has compact support. The following shows that the result still

holds for χ(x) = exp

�

−
|x |2

4

�

, which is of special interest in view of the monotonicity formula.

Corollary 3.25. We have, for any (x , t) ∈ Ωω,

lim
r→0

�

1
rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt
∗(y)−

1
rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt−r2

∗ (y)

�

= 0.

In particular, for (x , t) ∈ Σµ ∩Ωω, the following limit exists and verifies the inequality

lim
r→0

1
rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt
∗(y)¾ η3(x , t).

Proof. Let ζ be a smooth cut-off function such that 0¶ ζ¶ 1, ζ= 1 on B(1) and ζ= 0 outside B(2).
For ` > 0, consider the function ζ` defined by ζ`(y) = ζ(y/`), and denote χ` the function defined
on Rd by

χ`(y) = exp

�

−
|y|2

4

�

ζ`(y).

We apply Lemma 3.24 to χ`, so that

(3.37) lim
r→0

�

1
rd−2

ˆ
Rd
χ`(

y − x
r
)dµt

∗(y)−
1

rd−2

ˆ
Rd
χ`(

y − x
r
)dµt−r2

∗ (y)
�

= 0.

On the other hand, we claim that, for r < 1
2

p
t and every s ∈ [t − r2, t],

(3.38)
1

rd−2

ˆ
Rd

�

exp

�

−
|y − x |2

4r2

�

−χ`(
y − x

r
)

�

dµs
∗(y)¶

C(t)

t
d−2

2

exp

�

−
`2

8

�

.

(The implicit constant does not depend on `). Indeed, notice first that

exp

�

−
|y − x |2

4r2

�

−χ`
� y − x

r

�

= exp(−
|y − x |2

4r2
)
�

1− ζ`
� y − x

r

��

¶ exp

�

−
|y − x |2

8r2

�

exp

�

−
`2

8

�

.
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Second, due to the monotonicity formula, we have

1

(
p

2r)d−2

ˆ
Rd

exp

�

−
|y − x |2

8r2

�

dµs
∗(y)

¶
1

(s+ 2r2)
d−2

2

ˆ
Rd

exp

�

−
|y − x |2

4(s+ 2r2)

�

dµ0
∗(y)¶

C(s+ 2r2)

(s+ 2r2)
d−2

2

f (2|x |),

and as 2s ¾ t ¾ max(s, 2r2), the claim (3.38) follows. Observe that the right hand side of (3.38)
does not depend on r, for r < 1

2

p
t. Combining (3.37) and (3.38), we conclude that

limsup
r→0

�

1
rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

(dµt
∗ − dµt−r2

∗ )(y)

�

¶
C(t)

t
d−2

2

f (2|x |)exp

�

−
`2

8

�

.

Letting `→ +∞, the conclusion follows. �

We are now in position to prove Proposition 3.20.

Proof of Proposition 3.20. For (x , t) ∈ Ωω, define

Θ̃d−2(µ
t
∗, x) = lim

r→0

1
rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt
∗(y).

In view of Corollary 3.25, Θ̃d−2(µt
∗, x) exists on Ωω and

(3.39) Θ̃d−2(µ
t
∗, x) = ΘP

d−2(µ∗, (x , t)).

If (x , t) /∈ Σµ, then ΘP
d−2(µ∗, (x , t)) = 0 so that (3.32) is obviously verified. Therefore, we assume in

the following that (x , t) ∈ Σµ ∩Ωω. Arguing as for the claim in Corollary 3.25, we obtain

1
(`r)d−2

ˆ
B(x ,`r)

dµt
∗ ¾

K
`d−2

1
rd−2

ˆ
Rd

exp

�

−
|x − y|2

4r2

�

dµt
∗ − K

C(t)

t
d−2

2

f (2|x |)exp

�

−
`2

8

�

.

Hence, letting r → 0, and by (3.39),

(3.40) Θ∗,d−2(µ
t
∗, x)¾

K
`d−2

�

ΘP
d−2(µ∗, (x , t))− `d−2 exp

�

−
`2

8

�

C(t)

t
d−2

2

f (2|x |)
�

.

In order to obtain (3.32), we invoke the fact that on Σµ, ΘP
d−2 ¾ η3(t). We choose ` = `(x , t)

sufficiently large so that

K`d−2 exp

�

−
`2

8

�

C(t)

t
d−2

2

f (2|x |)¶
1
2
η3(x , t)¶

1
2
ΘP

d−2(µ∗, (x , t)).

Going back to (3.40), with this choice of `, we obtain

Θ∗,d−2(µ
t
∗, x)¾

K
2`d−2

ΘP
d−2(µ∗, (x , t))

so that inequality (3.32) is true for all (x , t) ∈ Ωω. Choose κ(x , t) =
K

2`(x , t)d−2
, then Corollary 3.23

allows to conclude. �

3.4.5. Σt
µ is (d − 2)-rectifiable. Now, we have to deal with the diffuse part, and different kinds of

arguments could then lead to regularity for Σt
µ. One way is to prove the existence of the density

Θd−2 and then to invoke Preiss’ regularity Theorem [28]. More precisely, we have:

Proposition 3.26. For almost every t > 0,

Θ∗,d−2(µ
t
∗, x) = Θ∗d−2(µ

t
∗, x)¾ η(x , t) := κ(x , t)η3(x , t) H d−2-a.e x ∈ Σt

µ.

As a consequence, for almost every t > 0, the set Σt
µ is (d − 2)-rectifiable.
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Proof. The proof is as in [8, Proof of Proposition 8, p.155]. For the convenience of the reader, we
provide a brief sketch.
Fix (x , t) ∈ Ωω. Denote L∞c ([0,+∞),R) the set of bounded, real valued functions with compact
support; for r > 0 and g ∈ L∞c ([0,+∞),R), we define

Ir(g) =
1

rd−2

ˆ
g
� |y − x |

r

�

dµt
∗(y).

Consider the set

F =
n

g ∈ L∞c ([0,+∞),R) : I(g) := lim
r→0

Ir(g) exists and is finite
o

.

Then F is a vector space, and the equality of upper and lower (d −2)-dimensional densities is equiv-
alent to 1[0,1] ∈ F .
Observe that F is stable by scaling g 7→ gα where gα(x) = g(αx) for α > 0 and that

(3.41) I(gα) = I(g)α
d−2

2 .

The starting point is Corollary 3.25. It shows that x 7→ e−αx2
belongs to F . By repetitively differenti-

ating (3.41) with respect to α, one can then infer that for any k ∈ N, ψk : x 7→ x2ke−x2
belongs to F .

Denote Vm = Span(ψk, k = 0, . . . , m), and Pm the L2 projection on Vm.
Using the Hermite polynomials, one can prove that for f ∈ C 2

c (R),

‖ f − Pm( f )‖H1 ¶
C
p

m
(‖ f ′′‖L2 + ‖x2 f ‖L2).

From there, if g ∈ C 2
c ([0,+∞)) satisfies g ′(0) = 0, we can symmetrize it into g̃ ∈ C 2

c (R), and an
approximation argument shows that g ∈ F .
Then one approximates 1[0,1] by the sequence of functions gn ∈ C 2

c ([0,+∞)) defined as follows.
Let χ ∈ C∞(R) be non increasing, and such that χ(x) = 1 for x ¶ −1/2 and χ(x) = 0 for x ¾ 0;
we set for x ¾ 0, gn(x) = χ(n(x − 1)). This allows to prove that 1[0,1] ∈ F , as desired.
Finally, we invoke Corollary 3.21 for the lower bound. �

3.5. Convergence in modulus outside Σµ.

End of the proof of Theorem 1.1. We can now complete the proof of Theorem 1.1. We gather the
results obtained in Propositions 3.19 and 3.26. Only two points are left to clarify.

The first point is that the function Φ∗ which appears in Theorem 1.1 is global, whereas up to now the
function Φ† constructed in Theorem 3.13 was only locally defined. Let us sketch how to overcome
this problem, we refer to [8, Part II, Section 4, p. 131] for more details.
Fix (x0, t0) /∈ Σµ. Recall that Φ† is defined on a neighborhood Λ(x0, t0) 1

2
of (x0, t0) as the limit of

Φε
p

| lnε|
, where Φε is the phase provided by Theorem 2.5.

Now denote Φ̃ε,m the phase provided by Theorem 2.7 on the compact Km = B(0, m)× [1/m, m]. Up
to changing Φ̃ε,m by a constant, we can also assume that

(3.42) ∀ε > 0, ∀m, Φ̃ε,m(x0, t0) = Φε(x0, t0).

The bounds given in Theorem 2.7 (and parabolic regularization) show the existence of Φm such that

Φ̃ε,m
p

| lnε|
→ Φm in Km−1,

so that Φm also satisfies the heat equation on Km−1.
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On the other hand, using the bounds in Theorem 2.5 (and also in the remark that follows) on the
gradient, one can prove that











∇Φε,m
p

| lnε|
−
∇Φ̃ε
p

| lnε|











Lp(Λ(x0,t0) 1
2
)

→ 0 as ε→ 0.

Therefore, for m so large that Λ(x0, t0) 1
2
⊂ Km−1,

∇Φm =∇Φ† on Λ(x0, t0) 1
2
.

It follows from there and (3.42) that for m large enough, all the Φm coincide on Λ(x0, t0) 1
2
. By

analyticity, for all m0 large enough, the (Φm)m¾m0
coincide on Km0−1. Letting m0→ +∞, we denote

Φ∗ their common value. By construction, it satisfies all the requirements of Theorem 1.1.

The second and last remaining point is to show that |uε(x , t)| → 1 uniformly on every compact subset
K ⊂ Rd ×(0,+∞)\Σµ. As Σµ is closed, up to doing finite reunions, it suffices to prove it for a family
of cylinders (which cover Rd×(0,+∞)\Σµ). Therefore, we can furthermore assume that there exist
δ > 0, K1 ⊂ Rd convex and K2 ⊂ (0,+∞) a compact interval such that

{(x , t) : d((x , t), K)¶ δ} ⊂ K1 × K2 ⊂ Rd × (0,+∞) \Σµ.

Denote K = K1 × K2. We have, for every t ∈ K2,ˆ
K1

eε(uε)(x , t)
| lnε|

d x =
ˆ

K1

|∇Φ∗|2dH d ¶ C(K ).

Hence ˆ
K1

(1− |uε|2)2(x , t)d x ¶ C(K )ε2| lnε|,

and ˆ
K1

|∇uε|2(x , t)d x ¶ C(K )| lnε|.

Let
A=

�

(x , t) ∈ K : ∀ε > 0, 1− |uε(x , t)|2 ¾ κ1(ε)
	

,

where κ1(ε)> 0 will be determined later.
We want to show that A is empty, and argue by contradiction. If not, let (x , t) ∈ A. We try to find
γ(ε) such that

∀y ∈ B(x ,γ(ε)), |1− |uε(y)|2|¾
κ1(ε)

2
.

We have

|uε(x , t)− uε(y, t)|¶
ˆ y

x
|∇uε(t)|¶ ‖∇uε(t)‖L2

Æ

|y − x |¶ C(K )
Æ

| lnε|
Æ

γ(ε),

and

|uε(y, t)|2 − 1= (|uε(y, t)| − 1)(|uε(y, t)|+ 1)¶ 2(|uε(y, t)| − 1)

¶ 2 (|uε(x , t)− uε(y, t))|+ |uε(x , t)| − 1)

¶ 2
�

C(K )
Æ

| lnε|pγ+ |uε(x , t)| − 1
�

.

Since

1− |uε(x , t)|¾
κ1(ε)

1+ |uε(x , t)|
¾

1
2
κ1(ε),

we deduce that
|uε(y, t)|2 − 1¶ 2C(K )

Æ

| lnε|pγ− κ1(ε).
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So we choose γ(ε) =
�

κ1(ε)
4C(K )

�2 1
| lnε|

. Then, assuming that B(x ,γ) ⊂ K1, we have

ˆ
B(x ,γ)

(1− |uε(y, t)|2)2d y ¾
ˆ

B(x ,γ)

�

κ1(ε)
2

�2

¾ κ1(ε)
2ωd

4
γ(ε)d

¾ κ1(ε)
2d+2 1
| lnε|d

ωd

42d+2C(K )d
.

Thus,

(3.43) C(K )ε2| lnε|¾ κ1(ε)
2d+2 1
| lnε|d

ωd

42d+2C(K )d
.

This inequality leads us to define

κ1(ε) = 2

�

42d+2C(K )d+1

ωd
ε2| lnε|d+1

�
1

2d+2

= 8

√

√C(K )
ωd

ε
Æ

| lnε|.

Observe that in this case, γ(ε)→ 0 as ε→ 0.
Let ε0 > 0 be so small that for ε ∈ (0,ε0), γ(ε) < δ. Then B(x ,γ(ε)) ⊂ K1, so that the computation
(3.43) above holds: this is a contradiction. This proves that for ε < ε0, the set A is empty. Arguing
similarly, we obtain that the set

B =
�

(x , t) ∈ K : ∀ε > 0, 1− |uε(x , t)|2 ¶ −κ1(ε)
	

is also empty. Therefore, for ε < ε0,

‖1− |uε|2‖L∞(K) ¶ κ1(ε)¶ C(K )ε
Æ

| lnε|,

which means that |uε(x , t)| → 1 uniformly on K .

The proof of Theorem 1.1 is complete. �

4. EVOLUTION OF THE LIMITING DENSITY

Our goal in this section is to provide a proof for Theorem 1.2.

4.1. Mean curvature flows. Let us start by recalling some definitions on the mean curvature flow.

4.1.1. The classical notion. Let Σ be a smooth compact manifold of dimension k, and γ0 : Σ→ Rd

(n ¾ k) be a smooth embedding, so that Σ0 = γ0(Σ) is a smooth k-dimensional submanifold of Rd .
The mean curvature vector at the point x of Σ0 is the vector of the orthogonal space (TxΣ

0)⊥ given
by

(4.1) ~HΣ0(x) = −
d−k
∑

α=1

 

k
∑

j=1

(τ j ·
∂ να

∂ τ j
)να

!

= −
d−k
∑

α=1

(divTxΣ0 να)να,

where (τ1, . . . ,τk) is an orthonormal moving frame on TxΣ
0, (ν1, . . . ,νn−k) is an orthonormal moving

frame on (TxΣ
0)⊥, and divTxΣ0 denotes the tangential divergence at point x . The integral formulation

of (4.1) is given by

(4.2)
ˆ
Σ0

divTxΣ0 ~X dH k = −
ˆ
Σ0

~HΣ0 · ~X dH k,

for all ~X ∈ D(Rd ,Rd).
Next, we introduce a time dependance, and consider a smooth family {γt}t∈I of smooth embeddings
of Σ in Rd , where I denotes some open interval containing 0. We set Σt = γt(Σ). If χ is a smooth
compactly supported function on Rd , a standard computation shows that
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(4.3)
d
d t

ˆ
Σt
χ(x)dH k =

ˆ
Σt

�

−χ(x) ~HΣt (x) + P(∇χ(x))
�

· ~Y (x)dH k,

where ~Y (x) =
d
ds
γs(γ

−1
t (x)) is the velocity vector at point x , and P denotes the orthogonal projection

on (TxΣ
t)⊥.

The family (Σt)t∈I is moved by mean curvature in the classical sense if and only if, for all m ∈ Σ and
t ∈ I ,

(4.4)
d
d t
γt(m) = ~HΣt (γt(m)).

In particular, if (Σt)t∈I is moved by mean curvature, (4.3) becomes

(4.5)
d
d t

ˆ
Σt
χ(x)dH k = −

ˆ
Σt
χ(x)| ~HΣt (x)|2dH k +

ˆ
Σt
∇χ(x) · ~HΣt (x)dH k.

Now, χ can be chosen arbitrarily, so that (4.5) is actually equivalent to (4.4).

4.1.2. Brakke’s flows. In the attempt to extend (4.4) or (4.5) to a larger class of (less regular) objects,
and in particular to extend the flow past singularities, Brakke [13] relaxed equality in (4.5), and
considered instead sub-solutions, i.e. verifying the inequality

(4.6)
d
d t

ˆ
Σt
χ(x)dH k ¶ −

ˆ
Σt
χ(x)| ~HΣt (x)|2dH k +

ˆ
Σt
∇χ(x) · ~HΣt (x)dH k,

for all non-negative χ ∈ D(Rd). Following Brakke [13], we are thus going to extend (4.6) to less
regular objects than smooth embedded manifolds. Actually, we adopt the point of view of Ilmanen
[19], which is slightly different from Brakke’s original one.
Recall that a Radon measure ν on Rd is said to be k-rectifiable if there exists a k-rectifiable set Σ,
and a density function Θ ∈ L1

loc(H
køΣ) such that

ν= ΘH køΣ.

Since Σ is rectifiable, for H k-a.e. x ∈ Σ, there exist a unique tangent space TxΣ belonging to the
Grassmanian Gn,k. The distributional first variation of ν is the vector-valued distribution δν defined
by

(4.7) δν( ~X ) =
ˆ
Σ

divTxΣ
~X dν for all ~X ∈ D(Rd ,Rd).

In the case when the measure |δν| is absolutely continuous with respect to ν, we say that ν has a
first variation and we may write

δν= ~Hν,

where ~H is the Radon-Nikodym derivative of δν with respect to ν. In this setting, formula (4.7)
becomes

(4.8)
ˆ
Σ0

divTxΣ
~X dν= −

ˆ
Σ

~H · ~X dν.

We are now in position to give the precise definition of a Brakke flow. Let (νt)t>0 be a family of
Radon measures on Rd . For χ ∈ C 2

c (R
d , [0,+∞)), we define

(4.9) D̄tν
t0(χ) = lim sup

t→t0

νt(χ)− νt0(χ)
t − t0

.
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If νtø{χ > 0} is a k-rectifiable measure which has a first variation verifying χ| ~H|2 ∈ L1(νt), then we
set

B(νt ,χ) = −
ˆ
χ| ~H|2dνt +

ˆ
∇χ · P( ~H)dνt .

(Here P denotesH k-a.e. the orthogonal projection onto the tangent space to νt .)
Otherwise we set

B(νt ,χ) = −∞.

Definition 4.1. (Brakke flow) Let (νt)t>0 be a family of k-rectifiable Radon measures on Rd . We say
that (νt)t¾0 is a k-dimensional Brakke flow if and only if

(4.10) D̄tν
t(χ)¶B(νt ,χ),

for every χ ∈ D(Rd , [0,+∞)) and for all t > 0.

4.2. Mean curvature flow in Brakke’s formulation for νt
∗.

4.2.1. Relating (PGLε) to mean curvature flow. The starting point of the analysis is the formal analogy
of equality (4.5), namely

d
d t

ˆ
Σt
χ(x)dH k = −

ˆ
Σt
χ(x)| ~HΣt (x)|2dH k +

ˆ
Σt
∇χ(x) · ~HΣt (x)dH k,

with the evolution of local energies for (PGLε) (see equation (3.5))

(4.11)
d
d t

ˆ
Rd
χ(x)dµt

ε = −
ˆ
Rd×{t}

χ(x)
|∂tuε|2

| lnε|
d x +

ˆ
Rd×{t}

∇χ(x)
−∂tuε · ∇uε
| lnε|

d x .

We already know that as ε → 0, µt
ε → µ

t
∗. Therefore, the comparison of the two formulas suggests,

at least formally, that in the limit

(4.12) ωt
ε :=

|∂tuε|2

| lnε|
(x)d x → | ~H|2dµt

∗,

and

(4.13) σt
ε :=

−∂tuε.∇uε
| lnε|

(x)d x → ~Hdµt
∗.

Actually, this is a little over optimistic for two reasons. First, we have to deal with the diffuse part of
the energy (this will be handled thanks to Theorem 1.1). Second, since (4.12) involves the quadratic
term | ~H|2, only lower semi-continuity can be expected at first sight.

4.2.2. Convergence ofσt
ε and decomposition of the limit. In this section, we use the following estimate

of the time derivative ∂tuε, which requires some calculations, whereas it was straightforward in [8].

Proposition 4.2. For all T > 0 and R> 0, there holds

1
| lnε|

ˆ
B(0,R)×[0,T]

|∂tuε|2 ¶ C(T, R).

Proof. By Lemma 3.4, we have for all χ ∈ C∞c (R
d),

∂

∂ t

ˆ
Rd
χ(x)dµt

ε = −
ˆ
Rd×{t}

χ(x)
|∂tuε|2

| lnε|
d x +

ˆ
Rd×{t}

D2χ∇uε · ∇uε −∆χeε(uε)
| lnε|

d x .
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Integrating the last equality between 0 and T , we get

(4.14)
ˆ
Rd
χ(x)dµT

ε −
ˆ
Rd
χ(x)dµ0

ε

= −
ˆ
Rd×[0,T]

χ(x)
|∂tuε|2

| lnε|
d x +

ˆ
Rd×[0,T]

D2χ∇uε · ∇uε −∆χeε(uε)
| lnε|

d x .

We choose χ such that χ(x) = 1 if |x |¶ R, χ ¾ 0, Supp(χ) ⊂ B(0, R+ 1) and ‖D2χ‖∞ ¶ 1.
Then ˆ

Rd×[0,T]

D2χ∇uε · ∇uε −∆χeε(uε)
| lnε|

d xd t ¶ C
ˆ

B(0,R+1)×[0,T]

eε(uε)
| lnε|

¶ C(T, R),(4.15)

due to inequality (3.1). Plugging (4.15) into (4.14), we getˆ
Rd×[0,T]

χ(x)
|∂tuε|2

| lnε|
d x ¶ C(T, R) +

ˆ
Rd
χ(x)dµ0

ε −
ˆ
Rd
χ(x)dµT

ε .

Let’s deal with the two last terms. Due to (H1( f )), we haveˆ
Rd
χ(x)dµ0

ε ¶
ˆ

B(0,R+1)
dµ0

ε ¶ C(R).

Finally, ˆ
Rd
χ(x)dµT

ε ¾ 0.

So
1
| lnε|

ˆ
B(0,R)×[0,T]

|∂tuε|2 ¶
ˆ
Rd×[0,T]

χ(x)
|∂tuε|2

| lnε|
d x ¶ C(T, R). �

Consider the measure σε = σt
εd t defined on Rd × [0,+∞). By Cauchy-Schwarz inequality with

(2.23) and (2.27), for every T > 0, σε is locally bounded on Rd × [0, T] uniformly in ε > 0. Hence,
passing to a further subsequence, we may assume that σε * σ∗ as measures. The Radon-Nikodym
derivative of σε with respect to µε verifies

d|σε|
dµε
¶
|∂tuε|
p

eε(uε)
.

Now, let T > 0 and R> 0 be fixed. We have

(4.16)











|∂tuε|
p

eε(uε)











L2(B(0,R)×[0,T],dµε)

=
ˆ

B(0,R)×[0,T]

|∂tuε|2

| lnε|
¶ C(T, R),

so that
d|σε|
dµε

is bounded in L2(B(0, R)× [0, T], dµε) uniformly in ε > 0. Since it is true for all T > 0

and R > 0, it follows that σ∗ is absolutely continuous with respect to µ∗ (see [1, Remark 2.2] for
further details). Therefore, we may write

σ∗ = ~hµ
t
∗d t,

where ~h ∈ L2
loc(R

d × [0, T],µt
∗d t) and satisfies the bound

‖~h‖L2(B(0,R)×[0,T],µt
∗d t) ¶ C(T, R).

Arguing as in Theorem 1.1 and its proof, we infer

Lemma 4.3. The measure σ∗ can be decomposed as σ∗ = σt
∗d t, where for a.e. t > 0,

σt
∗ = −∂tΦ∗ · ∇Φ∗d x + ~hνt

∗.
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4.2.3. Mean curvature of νt
∗. The next step will be to identify the restriction of ~h on Σt

µ with the mean
curvature defined by (4.8), that is:

Proposition 4.4. For t > 0 a.e., νt
∗ has a first variation and

δνt
∗ = ~hν

t
∗,

i.e. ~h is the mean curvature of νt
∗.

Proof. Notice that we already know by Theorem 1.1 that νt
∗ is (d − 2)-rectifiable for a.e. t > 0.

The starting point is formula (3.5). Indeed, let ~X ∈ D(Rd ,Rd). Then for all t > 0,

(4.17)
1
| lnε|

ˆ
Rd×{t}

�

eε(uε)δi j −
∂ uε
∂ x i

∂ uε
∂ x j

�

∂ X i

∂ x j
d x = −

ˆ
Rd×{t}

~X ·σt
ε.

Formula (4.17) is already very close to (4.8), in particular the right hand side. In order to handle
the diffuse energy, as well as to interpret the left-hand side as a tangential divergence, we need to
analyse the weak-limit of the stress-energy density tensor

αt
ε := Aεd x =

�

Id−
∇uε ⊗∇uε

eε(uε)

�

dµt
ε.

(Recall that the stress-energy matrix Aε was defined in (3.6).) Clearly, |αt
ε| ¶ Kdµt

ε, and we may
assume that

αt
ε *α

t
∗ =: Adµt

∗,
where A is a d × d symmetric matrix. Since the symmetric matrix ∇uε ⊗∇uε is non-negative, we
have

A¶ Id .
On the other hand,

Tr(eε(uε) Id−∇uε ⊗∇uε) = (d − 2)eε(uε) + dVε(uε).
Therefore, as the trace is a linear operation, we may take the limit ε→ 0 and obtain

(4.18) Tr(A) = (d − 2) + d
dV∗
dµ∗

,

where the non-negative measure V∗ is the limit (up to a possibly further subsequence) of Vε(uε)/| lnε|.
Going to the limit in (4.17), and using the decomposition in Theorem 1.1, we obtain for t ¾ 0 a.e.,ˆ

Rd
Ai j ∂ X i

∂ x j
dνt
∗ +
ˆ
Rd

�

|∇Φ∗|2

2
δi j −

∂Φ∗
∂ x i

∂Φ∗
∂ x j

�

∂ X i

∂ x j
d x

= −
ˆ
Rd

~X · ~hdνt
∗ −
ˆ
Rd

~X · ∇Φ∗∂tΦ∗d x .(4.19)

On the other hand, Φ∗ verifies the heat equation

(4.20)
∂Φ∗
∂ t
−∆Φ∗ = 0.

Multiplying (4.20) by ~X .∇Φ∗, we obtain

(4.21)
ˆ
Rd

�

|∇Φ∗|2

2
δi j −

∂Φ∗
∂ x i

∂Φ∗
∂ x j

�

∂ X i

∂ x j
d x = −

ˆ
Rd

~X · ∇Φ∗∂tΦ∗ d x .

Combining (4.19) and (4.21) we have therefore proved

Lemma 4.5. For t > 0 a.e., and for every ~X ∈ D(Rd ,Rd),

(4.22)
ˆ
Rd

Ai j ∂ X i

∂ x j
dνt
∗ = −

ˆ
Rd

~X · ~hdνt
∗.
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Recall that we already know thatΣt
µ is rectifiable for a.e. t ≥ 0. Comparing (4.22) with (4.8) in order

to identify ~h with the mean curvature of νt , we merely have to prove that the matrix A corresponds
to the orthogonal projection P onto the tangent space TxΣ

t
µ. We first have

Lemma 4.6 ([8, Lemma 6]). For t > 0 a.e.,

(4.23) A(x)

�ˆ
TxΣt

µ

∇χ(y)dH d−2(y)

�

= 0 forH d−2-a.e. x ∈ Σt
µ ,

and for all ~X ∈ D(Rd ,R).

A straightforward consequence is

Corollary 4.7. For t and x as in Lemma 4.6,
�

TxΣ
t
µ

�⊥
⊆ ker A(x).

With a little more elementary linear algebra, we further deduce

Corollary 4.8 ([8, Corollary 4]). For t and x as in Lemma 4.6, A= P is the orthogonal projection onto
the tangent space TxΣ

t
µ.

Gathering (4.22) and Corollary (4.8) proves the proposition. �

Remark 4.9. Corollaries 4.7 and 4.8 have many important consequences.

(1) Using (4.18), we deduce that
dV∗
dν∗

= 0, i.e. there is only kinetic energy in the limit.

(2) Let (τ1, . . . ,τn) be an orthonormal frame such that TxΣ
t
µ = Span(τ3, . . . ,τn). In view of

the expression of the stress-energy tensor in these coordinates, we infer that the energy
concentrates in the (τ1,τ2) plane (i.e. (TxΣ

t
µ)
⊥) and uniformly with respect to the direction.

In particular, since σt
ε is colinear to ∇uε, this suggests strongly that ~h is perpendicular to

TxΣ
t
µ. Such an argument is made rigorous in [1, Proposition 6.2].

4.2.4. Semi-continuity ofωt
ε. It solely remains to show (4.10) to complete the proof of Theorem 1.2.

We now prove that for a.e. t ¾ 0,

lim inf
ε→0

ˆ
Rd×{t}

χ
|∂tuε|2

| lnε|
¾
ˆ
Rd×{t}

χ|~h|2dνt
∗ +
ˆ
Rd×{t}

χ|∂tΦ∗|2 d x .

We recast the problem in the framework of Young measures, which turns out to be an appropri-

ate concept to analyse the energies of the oscillations. In this direction, denote pε = −
∇uε
|∇uε|

, and

consider the measure (defined on Rd ×R2d)

ω̃t
ε = δpε(x)

|∂tuε.pε|2

| lnε|
d x .

Extracting possibly a further subsequence, we may assume that ω̃t
εd t → ω̃∗ as measures. Arguing as

in Theorem 1.1 and its proof once more,

Lemma 4.10. The measure ω̃∗ decomposes as ω̃∗ = ω̃t
∗d t, and for t ¾ 0 a.e.

ω̃t
∗ = Π

t
∗,x(p)|∂tΦ∗|2 d x +M t

∗ ,

where Πt
∗,x(p) is a measure on R2d (with support on the unit ball) and M t

∗ = ω̃
t
∗øΣ

t
µ. Moreover,

Πt
∗,x(p)(R

2d) = 1.

The main ingredient that we will borrow directly from the analysis by Ambrosio and Soner [1] can
be formulated as follows.
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Proposition 4.11 ([1, Section 6]). For t ¾ 0 a.e., and every χ ∈ D(Rd),ˆ
Rd×R2n

χ(x)M t
∗ (x , p)¾

ˆ
Rd
χ|~h|2dνt

∗.

At this stage, we are in position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. In view of [1, Theorem 4.4], it suffices to establish the integral version of
(4.10). Let 0< T0 < T1. We integrate (4.11) on [T0, T1], and let ε go to zero. Combining the results
of Lemma 4.3, Proposition 4.4, Lemma 4.10, Proposition 4.11, Theorem 1.1, we obtain

νT1
∗ (χ)− ν

T0
∗ (χ) +

ˆ
Rd×{T1}

χ|∇Φ∗|2 d x −
ˆ
Rd×{T0}

χ|∇Φ∗|2 d x

¶ −
ˆ
Rd×[T0,T1]

χ|~h|2dν∗ +
ˆ
Rd×[T0,T1]

∇χP(~h)dν∗

−
ˆ
Rd×[T0,T1]

χ|∂tΦ∗|2 d xd t +
ˆ
Rd×[T0,T1]

∇χ∇Φ∗∂tΦ∗.(4.24)

Since Φ∗ verifies the heat equation, we have the identity

(4.25)
ˆ
Rd×{T1}

χ|∇Φ∗|2 d x −
ˆ
Rd×{T0}

χ|∇Φ∗|2 d x

=
ˆ
Rd×[T0,T1]

χ|∂tΦ∗|2 d xd t +
ˆ
Rd×[T0,T1]

∇χ∇Φ∗∂tΦ∗.

Combining (4.24) and (4.25) we obtain

νT1
∗ (χ)− ν

T0
∗ (χ)¶ −

ˆ
Rd×[T0,T1]

χ|~h|2dν∗ +
ˆ
Rd×[T0,T1]

∇χP(~h)dν∗.

As mentioned above, this integral formulation implies (4.10), under suitable assumptions which are
fulfilled here, namely rectifiability of Σt

µ, lower bounds on the density Θ∗, and orthogonality of the

mean curvature ~h with (TxΣ
t
µ)
⊥. The proof of Theorem 1.2 is complete. �

5. POINT VORTICES IN TWO SPACE DIMENSIONS

Our goal in this last section is to prove Theorem 1.3. We start with the derivation of some pointwise
estimates, which actually hold in any dimension d ¾ 2, and refine the estimates of Theorem 2.5.
Indeed, we need a careful analysis on the set where |uε| is far from zero. For this purpose, we
consider, for T > 0, ∆T > 0, R> 0 given, the cylinder

Λ= B(x0, R)× [T, T +∆T] ⊂ R2 × [0,+∞),

and we assume that for some constant 0< σ < 1
2 ,

(5.1) |uε|¾ 1−σ on Λ.

In particular, we may write

uε = ρε exp(iφε) on Λ,

where ρε = |uε| and where φε is a smooth real-valued map on Λ. Set

Λα = B(x0,αR)× [T + (1−α2)∆T, T +∆T].

The following higher-order regularity for uε holds.
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Theorem 5.1. Assume that (5.1) holds. There exist constants 0< σ0 ¶
1
2

and 0< α,β < 1 depending

only on the dimension d, such that if σ < σ0, then

‖∇φε‖L∞(Λ 3
4
) ¶ C(Λ)

Æ

| lnε|,(5.2)

‖1−ρε‖L∞(Λ 1
2
) ¶ C(Λ)ε2

�

1+ ‖∇φε‖2
L∞(Λ 3

4
)

�

,(5.3)

‖∂tρε‖C 0,α(Λ 1
2
) + ‖∇ρε‖C 0,α(Λ 1

2
) ¶ C(Λ)εβ .(5.4)

In addition, there exists a real-valued function Φε defined on Λ 1
2
, and satisfying the heat equation, such

that

(5.5) ‖∂tφε − ∂tΦε‖C 0,α(Λ 1
2
) + ‖∇φε −∇Φε‖C 0,α(Λ 1

2
) ¶ C(Λ)εβ .

Proof. The proof is similar to the one given in [9, Theorem 2.1] since we have on Λ the same bounds

on the energy
ˆ
Λ

(|∂tuε|2+ eε(uε))d x ¶ C(Λ)| lnε|. It relies in particular (and improves) on Theorem

2.5. �

From now on and throughout the rest of this section, we work in dimension d = 2. In order to prove
Theorem 1.3, let us first recall Theorem 1.1. In dimension 2, it asserts that Σt

µ has locally finiteH 0

measure, i.e. Σt
µ is a discrete set. In particular, we can write

Σt
µ = {bi(t) : i ∈ I}, where I is finite or I = N.

Also, Σµ =
⋃

t>0Σ
t
µ is a closed set in R2× (0,+∞) and |uε| → 1 locally uniformly on R2× (0,+∞)\

Σµ. Moreover, a.e. t ¾ 0,

µt
∗ =
|∇Φ∗|2

2
(·, t)d x + νt

∗, where νt
∗ =

∑

i∈I

σi(t)δbi(t),

where the function Φ∗ satisfies the heat equation on R2 × (0,+∞).

Off the singular set Σt
µ, the main contribution to the time derivative ∂tuε stems from the phase Φε.

In this direction, the following proposition is motivated by Lemma 3.2.

Proposition 5.2. We have, as ε→ 0,

|∂tuε|2

| lnε|
→ |∂tΦ∗|2 in C 0

loc(R
2 × (0,+∞) \Σµ),

∂tuε.∇uε
| lnε|

→ ∂tΦ∗.∇Φ∗ in C 0
loc(R

2 × (0,+∞) \Σµ).

Proof. As Σµ is open, it suffices to show uniform convergence on small cylinders (which cover R2 ×
(0,+∞) \Σµ). This is then an immediate consequence of Theorem 5.1, which shows that

∂tuε = i exp(iφε)∂tΦε +O(εβ ), and ∇uε = i exp(iφε)∇Φε +O(εβ ). �

We now need to establish some asymptotics for the measures

|∂tuε|2

| lnε|
d xd t and

∂tuε.∇uε
| lnε|

d xd t.

For the first one, it suffices to have the inequality

(5.6) lim inf
ε→0

ˆ
R2×[0,+∞)

|∂tuε|2

| lnε|
χ(x) d xd t ¾

ˆ
R2×[0,+∞)

|∂tΦ∗|2χ(x) d xd t,
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which is a straightforward consequence of Proposition 5.2. For the second one, we need to be a little
bit more careful. We have

Lemma 5.3. Extracting possibly a further subsequence,

(5.7) σε := −
∂tuε.∇uε
| lnε|

d xd t *σ∗ =: −∂tΦ∗.∇Φ∗d xd t + hν∗,

weakly as measures on R2 × [0,+∞), where ν∗ = νt
∗d t = µ∗øΣµ and h ∈ L2(ν∗).

Proof. Let R> 0, and T > 0. We have

(5.8)
ˆ

B(0,R)×[0,T]
dσε ¶

�ˆ
B(0,R)×[0,T]

|∂tuε|2

| lnε|

�
1
2
�ˆ

B(0,R)×[0,T]

|∇uε|2

| lnε|

�
1
2

¶ C(T, R).

In view of (5.8), and by an argument of diagonal extraction, we see that there exists a Radon measure,
defined on R2 × [0,+∞), bounded on compacts, such that, up to a subsequence,

σε *σ∗ as measures in R2 × [0,+∞).

We claim that σ∗ is absolutely continuous with respect to µ∗. In order to prove this, we compute the
Radon-Nikodym derivative of σε with respect to µε, obtaining

(5.9)

�

�

�

�

dσε
dµε

�

�

�

�

¶
|∂tuε|.|∇uε|

eε(uε)
,

and therefore for all T > 0 and R> 0,

(5.10)
ˆ

B(0,R)×[0,T]

�

�

�

�

dσε
dµε

�

�

�

�

2

¶
ˆ

B(0,R)×[0,T]

|∂tuε|2

| lnε|
d xd t ¶ C(T, R).

Invoking a result of Reshetnyak [29] as in [9], the claim is proved.
It follows from Proposition 5.2 that on R2× [0,+∞)\Σµ, σ∗ = −∂tΦ∗.∇Φ∗d xd t and the conclusion
follows. �

In the same spirit, we have

Lemma 5.4. Extracting possibly a further subsequence,

(5.11)
Aε
| lnε|

d xd t * A∗ =: T (Φ∗)d xd t + Bν∗,

weakly as measures on R2 × [0,+∞), where T is defined in (3.7) and B ∈ L∞(ν∗).

The proof is identical to the proof of Lemma 5.3. The next result expresses the fact that the points
have "zero mean curvature".

Proposition 5.5. The vector h and the matrix B given above are identically equal to zero.

Proof. We rely again on equation (3.5). Let ~X ∈ D(R2,R2) be a smooth, time independent, vector
field, we integrate (3.5) on the time interval [T1, T2] for 0< T1 < T2. Taking the limit ε→ 0, we getˆ

R2×[T1,T2]
(A∗)i j∂ jX i =

ˆ
R2×[T1,T2]

~X ·σ∗.

From (5.11), and as Φ∗ verifies the heat equation, we inferˆ
R2×[T1,T2]

Bi j∂ jX idν∗ =
ˆ
R2×[T1,T2]

~X · hdν∗.
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Therefore letting T1, T2→ t, we infer that a.e t ¾ 0,ˆ
R2

Bi j(t)∂ jX id x =
ˆ
R2

~X · hdνt
∗.

Now the support of νt
∗ is a discrete set: by using cut-off vector fields, we see that h = 0, and from

there, B = 0. �

Proof of Theorem 1.3. We claim that for any function χ ¾ 0 compactly supported on R2, we have for
a.e. t > 0,

(5.12)
d
d t

ˆ
R2×{t}

χdνt
∗ ¶ 0.

Indeed, passing to the limit in (3.4) and using (5.6), Lemma 5.3, Lemma 5.4 and Proposition 5.5,
we obtain

(5.13)
d
d t

ˆ
R2×{t}

|∇Φ∗|2

2
χ(x)d x +

d
d t

ˆ
R2×{t}

χdνt
∗ ¶ −

ˆ
R2×{t}

|∂tΦ∗|2χ − ∂tΦ∗.∇Φ∗.∇χd x .

On the other hand, since Φ∗ solves the heat equation, we have

d
d t

ˆ
R2×{t}

|∇Φ∗|2

2
χ(x)d x =

ˆ
R2×{t}

∇(∂tΦ∗).∇Φ∗χ

= −
ˆ
R2×{t}

(∂tΦ∗.∆Φ∗χ − ∂tΦ∗.∇Φ∗.∇χ) = −
ˆ
R2×{t}

(|∂tΦ∗|2χ − ∂tΦ∗.∇Φ∗.∇χ),

so that (5.12) follows. We deduce that

νt1
∗ ¶ ν

t0
∗ for any 0< t0 ¶ t1.(5.14)

It then follows as an easy consequence that for 0 < t0 ¶ t1, Σt1
µ ⊂ Σ

t0
µ . Let Σ0

µ :=
⋃

k¾1

Σ1/k
µ , then Σ0

µ

is countable, and we can enumerate it Σ0
µ = {bi : i ∈ N}. Then for all t > 0, there exist an injective

function ρ(t) : N → N such that bi(t) = bρ(t,i), and (up to permuting the (bi(t))i) we can assume
without loss of generality that ρ(t, i) = i. This means that the bi(t) do not move.
Fix x ∈ Rd . As Card(Σt

µ ∩ B(x , 1)) is uniformly bounded as t → 0 due to (3.28) for d = 2, we infer
that Σ0

µ ∩ B(x , 1) is a finite set. As a consequence, Σ0
µ is a discrete set.

Finally, the other consequence of (5.14) is that the σi(t) are non increasing. �
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