Ramanujan's Master theorem for the hypergeometric Fourier transform on root systems - Archive ouverte HAL
Article Dans Une Revue Journal of Fourier Analysis and Applications Année : 2013

Ramanujan's Master theorem for the hypergeometric Fourier transform on root systems

Résumé

Ramanujan's Master theorem states that, under suitable conditions, the Mellin transform of an alternating power series provides an interpolation formula for the coefficients of this series. Ramanujan applied this theorem to compute several definite integrals and power series, which explains why it is referred to as the "Master Theorem". In this paper we prove an analogue of Ramanujan's Master theorem for the hypergeometric Fourier transform on root systems. This theorem generalizes to arbitrary positive multiplicity functions the results previously proven by the same authors for the spherical Fourier transform on semisimple Riemannian symmetric spaces.
Fichier principal
Vignette du fichier
RamanujanHO-final-arxiv.pdf (300.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01232021 , version 1 (21-11-2015)

Identifiants

Citer

Gestur Https://www.Math.Lsu.Edu/~olafsson/ Olafsson, Angela Pasquale. Ramanujan's Master theorem for the hypergeometric Fourier transform on root systems. Journal of Fourier Analysis and Applications, 2013, 19 (6), pp.1150-1183. ⟨10.1007/s00041-013-9290-5⟩. ⟨hal-01232021⟩
95 Consultations
378 Téléchargements

Altmetric

Partager

More