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RAMANUJAN’S MASTER THEOREM FOR THE HYPERGEOMETRIC

FOURIER TRANSFORM ON ROOT SYSTEMS

G. ÓLAFSSON AND A. PASQUALE

Abstract. Ramanujan’s Master theorem states that, under suitable conditions, the Mellin
transform of an alternating power series provides an interpolation formula for the coefficients
of this series. Ramanujan applied this theorem to compute several definite integrals and
power series, which explains why it is referred to as the “Master Theorem”. In this paper
we prove an analogue of Ramanujan’s Master theorem for the hypergeometric Fourier trans-
form on root systems. This theorem generalizes to arbitrary positive multiplicity functions
the results previously proven by the same authors for the spherical Fourier transform on
semisimple Riemannian symmetric spaces.

Introduction

Ramanujan’s First Quaterly Report [3, p. 297] contains the following formal identity,
nowadays known as Ramanujan’s Master theorem: if a function f(x) can be expanded
around x = 0 in a power series of the form

f(x) =
∞∑

k=0

(−1)ka(k)xk

then ∫ +∞

0

x−λ−1f(x) dx = − π

sin(πλ)
a(λ) . (0.1)

By replacing a(λ) with A(λ) = a(λ)Γ(λ + 1), one obtains an equivalent version of (0.1) as
follows: if a function f(x) can be expanded around x = 0 in a power series of the form

f(x) =

∞∑

k=0

(−1)k
A(k)

k!
xk

then ∫ +∞

0

x−λ−1f(x) dx = Γ(−λ)A(λ) . (0.2)

Ramanujan’s presented this formula as “an instrument by which at least some of the definite
integrals whose values are at present not known can be evaluated” (see [3, p. 297]). As
reported by Berndt [3, p. 299], “Ramanujan was evidently quite fond of this clever, original
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technique, and he employed it in many contexts”. Most of the examples given by Ramanujan
by applying his Master Theorem turn out to be correct. But formulas (0.1) and (0.2) cannot
hold without additional assumptions, as one can easily see from the example a(λ) = sin(πλ).
The first rigorous reformulation of Ramanujan’s Master theorem was given by Hardy in his
book on Ramanujan’s work [16]. Using the residue theorem, Hardy proved that (0.1) holds
for a natural class of functions a and a natural set of parameters λ.

Let A, P, δ be real constants so that A < π and 0 < δ ≤ 1. Let H(δ) = {λ ∈ C :
Reλ > −δ}. The Hardy class H(A,P, δ) consists of all functions a : H(δ) → C that are
holomorphic on H(δ) and satisfy the growth condition

|a(λ)| ≤ Ce−P(Re λ)+A| Imλ|

for all λ ∈ H(δ). Hardy’s version of Ramanujan’s Master theorem is the following, see [16,
p. 189].

Theorem 0.1 (Ramanujan’s Master Theorem). Suppose a ∈ H(A,P, δ). Then:

(a) The power series

f(x) =
∞∑

k=0

(−1)ka(k)xk (0.3)

converges for 0 < x < eP and defines a real analytic function on this domain.
(b) Let 0 < σ < δ. For 0 < x < eP we have

f(x) =
1

2πi

∫ −σ+i∞

−σ−i∞

−π
sin(πλ)

a(λ)xλ dλ . (0.4)

The integral on the right hand side of (0.4) converges uniformly on compact subsets
of ]0,+∞[ and is independent of the choice of σ.

(c) Formula (0.1) holds for the extension of f to ]0,+∞[ and for all λ ∈ C with 0 <
Reλ < δ.

The last part of Theorem 0.1 is obtained from its second part by applying Mellin’s inver-
sion.

Ramanujan’s Master theorem has been extended to Riemannian symmetric spaces in dual-
ity by several authors. The rank-one semisimple case has been considered by Bertram in [5].
The starting point of Bertram’s extension is the following group theoretic interpretation of
(0.1). The functions xλ (λ ∈ C) are the spherical functions on XG = R+ and the xk (k ∈ Z)
are the spherical functions on the torus XU = U(1). Both XG and XU can be realized as real
forms of their complexification XC = C∗. Hence (0.1) gives a relation between the compact
and noncompact spherical trasforms of the restrictions to XU and XG of a “good” function
defined on XC. Bertram’s version of Ramanujan’s Master theorem was obtained by replacing
the duality between U(1) and R+ inside C∗ with the duality between symmetric spaces of the
compact type XU = U/K and of noncompact type XG = G/K inside their complexification
XC = GC/KC. Following the same point of view, the authors of the present paper proved
in [30] an analogue of Ramanujan’s Master theorem for (reductive) Riemannian symmetric
spaces of arbitrary rank. Some special classes of semisimple or reductive symmetric space
situations have also been considered by Bertram [4], Ding, Gross and Richard [9] and Ding
[8].
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In this paper we consider Ramanujan’s Master theorem on root systems. It is a gener-
alization of our result concerning semisimple Riemannian symmetric spaces. The harmonic
analysis associated with root systems is developed on a complex torus AC = TA built up
from a triple (a,Σ, m) consisting of a finite dimensional Euclidean real vector space a, a root
system Σ in the dual a∗ of a, and a positive multiplicity function m on Σ; see Section 1.1
for the precise definitions. The pair (T,A) inside AC plays the role of the pair (XU , XG) of
Riemannian symmetric spaces in duality inside their common complexication XC. The com-
pact and noncompact spherical Fourier trasforms on XU and XG are respectively replaced
by the Jacobi and hypergeometric Fourier transforms on T and A. Our theorem deals with
(normalized) alternating series of Jacobi polynomials on T of the form

f(t) =
∑

µ∈P+

(−1)|µ|a(µ+ ρ)P̃µ(t) . (0.5)

Here the P̃µ are suitable normalizations of the Heckman-Opdam’s Jacobi polynomials (see
Section 2.3). They are parametrized by the set P+ of positive restricted weights. Moreover,
as in Ramanujan’s Master Theorem 0.1, the coefficients a(µ + ρ) are obtained from a holo-
morphic function a belonging to a certain Hardy class H(A,P, δ) associated with (a,Σ, m)
and depending on three real parameters A, P and δ. The function f is proved to define
a W -invariant holomorphic function on a neighborhood of T in AC. It then extends holo-
morphically to a neighborhood of A in AC by means of the inverse hypergeometric Fourier
transform

f(a) =

∫

σ+ia∗
a(λ)b(λ)Fλ(a)

dλ

c(λ)c(−λ) , (0.6)

where Fλ(a) denotes the hypergeometric function of spectral parameter λ. The analogue of
Ramanujan’s formula (0.1) is then obtained from (0.6) using an inversion theorem for the
hypergeometric Fourier transform. The function b(λ) appearing on the right-hand side of
(0.6) is a normalizing factor and is used to produce singularities at the right points. It plays
the role of the function i

2
1

sin(πx)
occurring in the classical formula by Ramanujan. We refer

the reader to Theorem 5.1 for the complete statement of Ramanujan’s Master theorem for
the hypergeometric Fourier transform and for the unexplained notation.

Many tools needed to prove Ramanujan’s Master theorem for the hypergeometric trans-
form on root systems are known. For instance, the Lp-harmonic analysis of the hypergeo-
metric Fourier transform on A is known for p = 2 from the fundamental work of Opdam
[28], and the case of 1 ≤ p < 2 has been recently developed in [26]. Some results related to
the geometric case of symmetric spaces need nevertheless to be extended. Among them, the
study of the holomorphic extension of Jacobi series inside AC of (multivariate) Jacobi series.
This is a generalization of some results of Lassalle on holomorphic extensions of Laurent se-
ries on Riemannian symmetric spaces of the compact type; see [24]. It is presented in Section
2 below. Notice also that in [30] several objects have been introduced or studied using the
classification of root multiplicities associated with semisimple Riemannian symmetric spaces.
Their definition and analysis need to be generalized to the context of positive multiplicity
functions. Among them we mention the function d (which in the symmetric space case is
the polynomial from Weyl’s dimension formula), see Section 3, and the normalizing function
b occurring in Ramanujan’s formula (0.6), which will studied in Section 4. The proof of
Theorem 5.1 is given in Section 6. We will not work out all details, our aim being to prove
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what is necessary to apply the methods used in [30]. The final section, Section 7, is devoted
to some examples.

1. Notation and preliminaries

1.1. Root systems and their structure. In the following we shall work with triples
(a,Σ, m) where:

• a is finite dimensional real Euclidean vector space, with inner product 〈·, ·〉,
• Σ is a (not necessarily reduced) root system in the dual a∗ of a,
• m is a positive multiplicity function on Σ, that is a W -invariant function m : Σ →
]0,∞[. Here W is the Weyl group of Σ.

We shall write mα := m(α) for α ∈ Σ and extend m to a
∗ by setting mα = 0 for α /∈ Σ.

The rank of the triple (a,Σ, m) is the dimension of a, which we shall indicate by l. We
remark that our notation is based on the theory of symmetric spaces and differs from the
Heckman-Opdam’s notation as follows: the root system R used by Heckman and Opdam
is related to our root system Σ by R = {2α : α ∈ Σ}, and the multiplicity function k in
Heckman-Opdam’s work is given by k2α = mα/2. The triple (a,Σ, m) is said to be geometric
if there exists a Riemannian symmetric space of the noncompact type with restricted root
system Σ such that mα is the multiplicity of the root α for all α ∈ Σ; see [2] or [21, Ch. X,
Exercise F].

Let Σ+ be a choice of positive roots in Σ. We indicate by a
+ the open Weyl chamber in

a on which all elements of Σ+ are strictly positive. We denote by Π = {α1, . . . , αl} the set
of simple roots associated with Σ+. A root α ∈ Σ is said to be unmultipliable if 2α /∈ Σ.
We denote by Σ∗ the set of unmultipliable roots and by Σ+

∗ = Σ∗ ∩ Σ+ the set of positive
unmultipliable roots. We set

ρ =
1

2

∑

α∈Σ+

mαα =
1

2

∑

β∈Σ+
∗

(mβ/2

2
+mβ

)
β . (1.1)

For every non-zero λ ∈ a
∗, let Aλ ∈ a be determined by λ(H) = 〈H,Aλ〉 for all H ∈ a,

and set Hλ := 2Aλ/〈Aλ, Aλ〉. The complexification aC := a⊗R C of a can be viewed as the
Lie algebra of the complex torus AC := aC/2πi{Hα : α ∈ Σ}. We write exp : aC → AC

for the exponential map, with multi-valued inverse log. The real form A := exp a of AC is
an abelian subgroup of AC with Lie algebra a such that exp : a → A is a diffeomorphism.
We set A+ := exp a+. The polar decomposition of AC is AC = TA, where T = exp(ia) is a
compact torus with Lie algebra ia.

We extend the inner product to a
∗ by setting 〈λ, µ〉 = 〈Aλ, Aµ〉. Let a

∗
C
be the space of

all C-linear functionals on a. The C-bilinear extension to a
∗
C
and aC of the inner products

〈·, ·〉 on a
∗ and a will also be denoted by 〈·, ·〉. The action of W extends to a by duality, to

a
∗
C
and aC by C-linearity, and to AC and A by the exponential map. Moreover, W acts on

functions f on any of these spaces by (wf)(x) := f(w−1x), w ∈ W . The set of W -invariant
elements in a space of functions A will be indicated by AW .

1.2. The lattice of restricted weights. For λ ∈ a
∗
C
and α ∈ Σ we shall employ the

notation

λα =
〈λ, α〉
〈α, α〉 . (1.2)
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We set a∗+ = {λ ∈ a
∗
C
: λα ≥ 0 for all α ∈ Σ+}. The lattices P and P+ of restricted weights,

respectively positive restricted weights, are

P ={µ ∈ a
∗ : µα ∈ Z for all α ∈ Σ+} , (1.3)

P+ ={µ ∈ a
∗ : µα ∈ Z

+ for all α ∈ Σ+} . (1.4)

Here and in the following we shall employ the notation Z+ for the set on nonnegative integers
0, 1, 2, . . . . According to Helgason’s Theorem (see [22, Theorem 4.1, p. 535]), when (a,Σ, m)
is geometric, P+ coincides with the set of restrictions to a of the highest weights of the
finite-dimensional irreducible K-spherical representations of G.

Let Π = {α1, . . . , αl} be the basis of a∗ consisting of simple roots in Σ+. For j = 1, . . . , l
set

βj =

{
αj if 2αj /∈ Σ

2αj if 2αj ∈ Σ
. (1.5)

Then {β1, . . . , βl} is a basis of a∗ consisting of simple roots in Σ+
∗ . The fundamental restricted

weights ω1, . . . , ωl are defined by the conditions

(ωj)βk
=

〈ωj, βk〉
〈βk, βk〉

= δjk . (1.6)

Then Π∗ = {ω1, . . . , ωl} is a basis of a∗. For λ ∈ a
∗
C
we have

λ =

l∑

j=1

λjωj with λj := λβj
=

〈λ, βj〉
〈βj, βj〉

. (1.7)

Set

ρ =

l∑

j=1

ρjωj . (1.8)

Since βj is a multiple of a simple root, we have

ρj =
1

2

(
mβj

+
mβj/2

2

)
. (1.9)

For an arbitrary β ∈ Σ+
∗ , we set

ρ̃β =
1

2

(
mβ +

mβ/2

2

)
. (1.10)

Notice that ρ̃β = ρj = ρβj
if β = βj, but ρ̃β 6= ρβ in general.

In the following, we denote by ‖ · ‖ the W -invariant norm on a which is induced by the
inner product 〈·, ·〉. The same notation will also be employed for the corresponding norm on
a
∗. If λ = Reλ+ i Imλ ∈ a

∗
C
with Reλ, Imλ ∈ a

∗, then we set ‖λ‖2 = ‖Reλ‖2 + ‖ Imλ‖2.
We set

Ω = max
j=1,...,l

‖ωj‖ . (1.11)

The choice of Π∗ as a basis for a∗ (and a
∗
C
) is related to the fact that µ ∈ P+ if and only if

µ =
l∑

j=1

µjωj with µj ∈ Z
+ , j = 1, . . . , l .
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We shall write for such an element:

|µ| = µ1 + · · ·+ µl . (1.12)

If µ ∈ P , then the exponential eµ : AC → C defined by eµ(h) := eµ(log h) is single valued.
The eµ with µ ∈ P are the algebraic characters of AC, and their C-linear span coincides with
the ring of regular functions C[AC] on the affine algebraic variety AC. The set Areg

C
:= {h ∈

AC : e2α(h) = 1 for all α ∈ Σ} consists of the regular points of AC for the action of W . The
algebra C[Areg

C
] of regular functions on Areg

C
is the subalgebra of the quotient field of C[AC]

generated by C[AC] and by 1/(1− e−2α) for α ∈ Σ+.

1.3. c-functions. For α ∈ Σ+ define

cα(λ) =
Γ
(
λα +

mα/2

4

)

Γ
(
λα +

mα/2

4
+ mα

2

) . (1.13)

Set Γ∗(x) = Γ(1− x)−1 and let c∗α be given by the same formula as cα but with Γ∗ in place
of Γ, i.e.

c∗α(λ) =
Γ
(
1− λα − mα/2

4
− mα

2

)

Γ
(
1− λα − mα/2

4

) . (1.14)

Then, by the classical relation Γ(z)Γ(1− z) = π
sin(πz)

, we obtain

c∗α(λ) = Sα(λ)cα(λ) (1.15)

where

Sα(λ) =
sin
(
π(λα +

mα/2

4
)
)

sin
(
π(λα +

mα/2

4
+ mα

2
)
) . (1.16)

Define (see e.g. [20, (3.4.2) and (3.5.2)])

c̃(λ) =
∏

α∈Σ+

cα(λ) , (1.17)

c̃ ∗(λ) =
∏

α∈Σ+

c∗α(λ) , (1.18)

and set

c(λ) = cHC c̃(λ) , (1.19)

c∗(λ) = c∗HC c̃
∗(λ) , (1.20)

where cHC and c∗HC are normalizing constants so that c(ρ) = 1 and c∗(−ρ) = 1. Recall the
classical relation

√
π Γ(2z) = 22z−1 Γ(z)Γ

(
z + 1

2

)
and that λα/2 = 2λα. Then we can write

the functions c and c∗ as

c(λ) = cHC

∏

β∈Σ+
∗

Γ(2λβ)

Γ
(
2λβ +

mβ/2

4

) Γ
(
λβ +

mβ/2

4

)

Γ
(
λβ +

mβ/2

4
+

mβ

2

)

= c′HC

∏

β∈Σ+
∗

2−2λβΓ(2λβ)

Γ
(
λβ +

mβ/2

4
+ 1

2

)
Γ
(
λβ +

mβ/2

4
+

mβ

2

) (1.21)
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and, similarly,

c∗(λ) = c∗HC

∏

β∈Σ+
∗

Γ
(
1− 2λβ − mβ/2

2

)
Γ
(
1− λβ − mβ/2

4
− mβ

2

)

Γ(1− 2λβ)Γ
(
1− λβ − mβ/2

4

) (1.22)

= (c∗HC)
′
∏

β∈Σ+
∗

Γ
(
− λβ − mβ/2

4
+ 1

2

)
Γ
(
1− λβ − mβ/2

4
− mβ

2

)

22λβΓ(1− 2λβ)
. (1.23)

In (1.21) and (1.23) we have

c′HC = cHC

∏

β∈Σ+
∗

(
π1/221−mβ/2/2

)
and (c∗HC)

′ = c∗HC

∏

β∈Σ+
∗

(
π−1/22−mβ/2/2

)
. (1.24)

1.4. Heckman-Opdam’s hypergeometric functions. Let S(aC) denote the symmetric
algebra over aC considered as the space of polynomial functions on a

∗
C
. Every p ∈ S(aC)

defines a constant-coefficient differential operator ∂(p) on AC and on aC such that ∂(x) is
the directional derivative in the direction of x for all x ∈ a. The algebra of the differential
operators ∂(p) with p ∈ S(aC) will also be indicated by S(aC). We denote by D(Areg

C
) :=

C[Areg
C
] ⊗ S(aC) the algebra of differential operators on AC with coefficients in C[Areg

C
]. Let

LA denote the Laplace operator on A and set

Lm := LA +
∑

α∈Σ+

mα
1 + e−2α

1− e−2α
∂(Aα) . (1.25)

Heckman and Opdam proved in [19] that, for the triple (a,Σ, m), the commutant D(a, m,Σ) :=
{Q ∈ D(Areg

C
)W : LmQ = Qm} of Lm in D(Areg

C
)W is a commutative algebra which plays the

role the commutative algebra of the radial components on A+ of the invariant differential
operators on a Riemannian symmetric space of noncompact type. For geometric triples
(a,Σ, m) the operator Lm coincides with the radial component on A+ of the Laplace opera-
tor on a Riemannian symmetric space of noncompact type. The algebra D(a, m,Σ) can be
constructed algebraically. Indeed one has

D(a, m,Σ) := {Dp : p ∈ S(aC)
W},

where the differential operator Dp can be explicitly given in terms of Cherednik operators
(also called trigonometric Dunkl operators); see [28] or [18].

Let λ ∈ a
∗
C
be fixed. The system of differential equations

Dpϕ = p(λ)ϕ, p ∈ S(aC)
W , (1.26)

is called the hypergeometric system of differential equations with spectral parameter λ asso-
ciated with the data (a,Σ, m). The hypergeometric function of spectral parameter λ is the
unique analytic W -invariant function Fλ(a) on A which satisfies the system of differential
equations (1.26) and which is normalized by Fλ(e) = 1. Here e = exp 0. In the geomet-
ric case, the function Fλ agrees with Harish-Chandra’s (elementary) spherical function of
spectral parameter λ.

Example 1.1 (The rank-one case). The rank-one case corresponds to triples (a,Σ, m) in
which a is one dimensional. Then the set Σ+ consists at most of two elements: β and,
possibly, β/2. Fix H0 ∈ a such that β(H0) = 1 and normalize the inner product 〈·, ·〉
on a so that 〈H0, H0〉 = 1. Then, in the notation of Section 1.1, Hβ/2 = Aβ = H0 and
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〈β, β〉 = 〈Aβ, Aβ〉 = 1. We identify a and a
∗ with R (and their complexifications aC and a

∗
C

with C) by identifying Hβ and β with 1. Hence λ = λββ ∈ a
∗
C
is identified with λβ ∈ C

and H ∈ aC with β(H)/2 ∈ C. In the following we shall use the simplified notation λ ∈ C

instead of λβ ∈ C. We also identify A and a ≡ R by means of the exponential map. The
Weyl chamber a+ coincides with the half-line ]0,+∞[. The Weyl groupW reduces to {−1, 1}
acting on R and C by multiplication. The algebra D(a,Σ, m) is generated by Lm, and the
hypergeometric differential system with spectral parameter λ ∈ C is equivalent to the single
Jacobi differential equation. Heckman-Opdam’s hypergeometric function Fλ coincides with
the Jacobi function of the first kind

Fλ(expH) =
2F1

(
1
2

(mβ/2

2
+mβ

)
+ λ, 1

2

(mβ/2

2
+mβ

)
− λ;

mβ/2+mβ+1

2
;− sinh2 β(H)

2

)
.

Schapira proved in [31] that Fλ is real and strictly positive for λ ∈ a
∗. Moreover

|Fλ| ≤ FReλ , λ ∈ a
∗
C
. (1.27)

For every λ ∈ a
∗
C
the hypergeometric function Fλ extends holomorphically as aW -invariant

function on the domain exp(2Ωπ) in AC, where

Ωπ = {H ∈ aC : |α(ImH)| < π/2 for all α ∈ Σ} . (1.28)

An elementary proof of this fact was given by J. Faraut at the conference “Harmonic Analysis
on Complex Homogeneous Domains and Lie Groups”, Rome, May 1719, 2001. Faraut’s
argument has been reproduced in [6, p. 26].

We shall need the following estimates of the holomorphically extended hypergeometric
functions. Recall the constant Ω from (1.11).

Lemma 1.2. There is a constant C > 0 so that

|Fλ(expH)| ≤ Ce−minw∈W Im(wλ(H2))+maxw∈W Re(wλ(H1)) (1.29)

for all λ ∈ a
∗
C
and all H = H1 + iH2 ∈ Ωπ with H1, H2 ∈ a. In particular:

(a) For all λ ∈ a
∗
+ + ia∗ and H ∈ a we have

|Fλ(expH)| ≤ CeΩ‖H‖(
∑l

j=1 Reλj)

(b) For all H ∈ Ωπ and λ ∈ a
∗ we have

|Fλ(expH)| ≤ Ce‖ ImH‖‖ Imλ‖ .

Proof. (see [30, Lemma 5.1]) The estimates (1.29) are due to Opdam; see [28], Proposition
6.1(2) and Theorem 3.15. For (a), we can suppose by W -invariance that H ∈ a+. In this
case, for λ ∈ a

∗
+ + ia∗, we have

0 ≤ Reλ(H) =
l∑

j=1

Reλjωj(H) ≤ Ω‖H‖
( l∑

j=1

Reλj
)
.

Part (b) follows immediately from (1.29). �
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1.5. The hypergeometric Fourier transform. Let da denote a fixed normalization of
the Haar measure on A. We associate with the triple (a,Σ, m) the measure dµ(a) = µ(a) da
on A, where

µ(a) =
∏

α∈Σ+

∣∣eα(H) − e−α(H)
∣∣mα

, a = exp(H) . (1.30)

Notice that when (a,Σ, m) comes from a Riemannian symmetric space G/K, then dµ is the
component along A of the Haar measure on G with respect to the Cartan decomposition
G = KAK.

The hypergeometric Fourier transform Ff = f̃ of a sufficiently regular W -invariant func-
tions on A is the W -invariant function on ia∗ defined by

(Ff)(λ) = f̃(λ) =

∫

A

f(a)F−λ(a) dµ(a) . (1.31)

The Plancherel theorem states that the hypergeometric Fourier transform F is an isometry
of L2(A, dµ)W onto L2(ia∗, |W |−1|c(λ)|−2dλ)W . Here |W | denotes the order of the Weyl group
W and c is the c-function (1.19). Moreover, F has the following inversion formula, which
holds for instance if f ∈ Lp(A, dµ)W , with 1 ≤ p ≤ 2, and Ff ∈ L1(ia∗, |c(λ)|−2dλ)W : for
almost all a ∈ A we have

f(a) =
1

|W |

∫

ia∗
f̃(λ)Fλ(a)

dλ

c(λ)c(−λ) . (1.32)

See [26, Theorem 5.4].
Finally, we shall need the W -invariant Lp-Schwartz space isomorphism. For 1 ≤ p ≤ 2,

the Lp-Schwartz space Sp(A)W is the set of all W -invariant C∞ functions f on A such that
for each N ∈ N0 and q ∈ S(aC),

sup
H∈a

(1 + ‖H‖)NF0(expH)−
2

p |∂(q)f(expH)| <∞. (1.33)

Notice that C∞
c (A)W ⊂ Sp(A)W ⊂ Lp(A, dµ)W . Hence Sp(A)W is dense in Lp(A, dµ)W .

Moreover, Sp(A)W is a Frechét space with respect to the seminorms defined by the left-hand
side of (1.33). Set ǫp =

2
p
−1. Let C(ǫpρ) be the convex hull in a

∗ of the set {ǫpwρ : w ∈ W},
and let a∗ǫp = C(ǫpρ)+ ia

∗. Notice that, for p = 1, the set a∗ǫ1 = C(ρ)+ ia∗ is precisely the set

of parameters λ for which Fλ is bounded; see [26, Theorem 4.2]. Let S(a∗ǫp)W be the set of all
W -invariant functions g : a∗ǫp → C which are holomorphic in the interior of a∗ǫp, continuous

on a
∗
ǫp and satisfy for all r ∈ N0 and s ∈ S(aC)

sup
λ∈a∗ǫp

(1 + ‖λ‖)r |∂(s)g(λ)| <∞. (1.34)

Then S(a∗ǫp)W is a Fréchet algebra under pointwise multiplication and with the topology

induced by the seminorms defined by the left-hand side of (1.34). Notice that when p = 2,
this space reduces to the usual space of Schwartz functions on ia∗. The Schwartz space
isomorphism theorem states that the hypergeometric Fourier transform is a topological iso-
morphism between Sp(A)W and S(a∗ǫp)W . This theorem was proved in [31, Theorem 4.1] for

the case p = 2 and in [26, Theorem 5.6] for the general case. (The proof is in fact an easy
adaptation of Anker’s method for the geometric case [1].)

9



2. Jacobi polynomials and Jacobi series

2.1. Jacobi polynomials. Recall that C[AC] denotes the space of finite C-linear combina-
tions of elements eµ with µ ∈ P , and let C[AC]

W be its subspace of W -invariant elements.
Set

δ(m, t) :=
∏

α∈Σ+

|eiα(H) − e−iα(H)|mα

for t = exp(iH) with H ∈ a. Define an inner product 〈·, ·〉m on C[AC]
W by

〈f, g〉m :=

∫

T

f(t)g(t) δ(m, t) dt ,

where dt is the normalized Haar measure on T .
Recall from (1.4) the lattice P+ of positive restricted weights. The orbit sums

Mµ :=
∑

ν∈Wµ

eν (2.1)

form a basis of C[AC]
W as µ varies in P+ because each W -orbit in P intersects P+ in exactly

one point. The Jacobi polynomial Pµ is the exponential polynomial

Pµ :=
∑

µ≥ν∈P+

cµνMν (2.2)

where the coefficients cµν are defined by the following conditions, cf. [20, §1.3], or [25, §11]:
(a) cµµ = 1 ,
(b) 〈Pµ,Mν〉m = 0 for all ν ∈ P+ with ν < µ.

Condition (b) turns out to be equivalent to the fact that Pµ satisfies the 2nd order differential
equation on T :

LT
mPµ = −〈µ+ 2ρ, µ〉Pµ (2.3)

where

LT
m = LT +

∑

α∈Σ+

mα
1 + e−2α

1− e−2α
∂(iAα) ,

and LT is the Euclidean Laplace-Beltrami operator on the compact torus T . The fact that
Pµ is an eigenfunction of LT

m yields recursion relations for the coefficients cµν . One can then
deduce that cµν > 0 for all µ, ν ∈ P+ with ν ≤ µ. See [25, pp. 34–35].

Observe that, by definition, Pµ(t) extends holomorphically to AC as a function of t. More-
over {Pµ | µ ∈ P+} is a basis for C[AC]

W which is orthogonal with respect to the inner
product 〈·, ·〉m (cf. [20, Corollary 1.3.13]).

The relation between Jacobi polynomials and Heckman-Opdam’s hypergeometric functions
is given by the following lemma.

Lemma 2.1. Let µ ∈ P+. Then for all a ∈ A

Fµ+ρ(a) = c(µ+ ρ)Pµ(a) . (2.4)

Formula (2.4) provides a holomorphic extension of Fµ+ρ to AC. Moreover, for all µ ∈ P+

and w ∈ W , we have

c(w(µ+ ρ)− ρ)Pw(µ+ρ)−ρ = c(µ)Pµ . (2.5)
10



Proof. Formula (2.4) is [20, (4.4.1)], and (2.5) is a consequence of (2.4) and theW -invariance
of Fλ in λ ∈ a

∗
C
. �

Example 2.2 (The rank-one case). We keep the notation and identifications of Example 1.1.
In particular, we have the identification of P+ with Z+ so that µ = nβ ∈ P+ corresponds to
n ∈ Z+. The polynomial

Fnβ+ρ(expH) =
2F1

(
n +mβ +

mβ/2

2
,−n; mβ/2+mβ+1

2
; 1−cos β(H)

2

)
. (2.6)

is related to the classical Jacobi polynomial P
(a,b)
n (x) (see e.g. [12, 10.8(16)]) by

(
n+ a

n

)
Fnβ+ρ(expH) = P (a,b)

n (cos β(H))

where

a = (mβ/2 +mβ − 1)/2 and b = (mβ − 1)/2 .

As a special instance, one finds the symmetric Jacobi polynomials

X(m−1)/2
n (x) =

2F1

(
−n, n +m; m+1

2
; 1−x

2

)
, (2.7)

which are constant multiples of the Jacobi polynomials P
(a,a)
n (x) with a = m−1

2
. The polyno-

mials (2.7) are hypergeometric functions corresponding to a rank-one reduced root system
Σ with mβ = m. By selecting special values of m, one obtains specific classes of special
polynomials, such as the Legendre polynomials

Pn(x) = P (0,0)
n (x) = X−1/2

n (x) =
2F1

(
−n, n + 1; 1; 1−x

2

)
,

the Tchebichef polynomials of first kind

Tn(x) = X−1/2
n (x) =

2F1

(
−n, n; 1

2
; 1−x

2

)
,

and the Tchebichef polynomials of second kind

Un(x) = (n + 1)X1/2
n (x) = (n+ 1)

2F1

(
−n, n + 2; 3

2
; 1−x

2

)
.

See [12, formulas 10.10(3), 10.11(24), 10.11(25)]

Proposition 2.3. For µ ∈ P+, the Jacobi polynomial Pµ(a) is real valued and positive for
a ∈ A. For all h = ta with t ∈ T , a ∈ A, we have |Pµ(h)| ≤ Pµ(a). Moreover, for all

a = exp(H) ∈ A+,

eµ(H) ≤ Pµ(a) ≤ c(µ+ ρ)−1eµ(H) . (2.8)

Similarly, the hypergeometric function Fµ+ρ(a) is real valued and positive for a ∈ A. For all
h = ta with t ∈ T , a ∈ A, we have |Fµ+ρ(h)| ≤ Fµ+ρ(a). Furthermore, for all a = exp(H) ∈
A+,

c(µ+ ρ)eµ(H) ≤ Fµ+ρ(a) ≤ eµ(H) . (2.9)

Proof. Notice first that c(µ + ρ) > 0. Recall the defining formula (2.2) for Pµ and that
cµν > 0 for all ν < µ and cµµ = 1. By (2.1), we have Mν(e) = |Wν| = |W |/|Wν|, where
Wν = {w ∈ W : wν = ν}. Hence (2.4) and (2.2) yield

c(µ+ ρ)
∑

µ≥ν∈P+

cµν
|W |
|Wν |

= c(µ+ ρ)Pµ(e) = Fµ+ρ(e) = 1 .
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Moreover, wν(H) ≤ ν(H) ≤ µ(H) for all w ∈ W , ν ∈ P+ with ν ≤ µ and H ∈ a+. So for
a = exp(H) ∈ A+ we have

0 ≤Mν(a) ≤ |W |
|Wν |

eν(H) ≤ |W |
|Wν |

eµ(H) .

Therefore
Pµ(a) ≤

∑

µ≥ν∈P+

cµν
|W |
|Wν |

eµ(H) = c(µ+ ρ)−1eµ(H) .

Finally,

Pµ(a) =
∑

µ≥ν∈P+

cµν
∑

η∈Wν

eη(H) ≥ cµµe
µ(H) = eµ(H) .

This proves the first part of the proposition. The results for Fµ+ρ are then an immediate
consequence of (2.4). �

Remark 2.4. By using the non-symmetric hypergeometric functions, Schapira proved, more
generally, that Fλ(a) is real valued and positive for all λ ∈ a

∗ and a ∈ A. See [31, Lemma 3.1
and Corollary 3.1]. The estimate (2.9) is classical for the special case of spherical functions
on Riemannian symmetric spaces of the compact type. See e.g. [13, Proposition IV.5.2].

2.2. The norm of the Jacobi polynomials. Let c̃ and c̃ ∗ be as in Section 1.3. Set

‖f‖m = 〈f, f〉1/2m for the L2-norm of f ∈ C[AC]
W . The L2-norm of Pµ has been computed

by Opdam. It is given by

‖Pµ‖2m = |W | c̃
∗(−µ− ρ)

c̃(µ+ ρ)
(2.10)

= |W |
∏

α∈Σ+

Γ
(
µα + ρα +

mα/2

4
+ mα

2

)

Γ
(
µα + ρα +

mα/2

4

) Γ
(
1 + µα + ρα − mα/2

4
− mα

2

)

Γ
(
1 + µα + ρα − mα/2

4

) . (2.11)

See [27] or [20, Theorem 3.5.5]. Moreover, by [20, (3.5.14)],

|W | =
∏

α∈Σ+

(
ρα +

mα/2

4
+ mα

2

)
(
ρα +

mα/2

4

) . (2.12)

Formula (2.10) for µ = 0 yields

Iδ :=

∫

T

|δ(m, t)| dt = ‖P0‖2m = |W | c̃
∗(−ρ)
c̃(ρ)

. (2.13)

It follows from (2.4) and (2.10) that the L2-norm of Fµ+ρ is

‖Fµ+ρ‖2m = |W |c2HC c̃
∗(−µ− ρ)c̃(µ+ ρ) (2.14)

= Iδ
c̃ ∗(−µ− ρ)c̃(µ+ ρ)

c̃ ∗(−ρ)c̃(ρ) (2.15)

= Iδ c
∗(−µ− ρ)c(µ+ ρ) . (2.16)

Let d(µ) be the function on P+ defined by means of Vretare’s formula, see [23, Theorem
9.10, p. 321]:

d(µ) =
c(λ− µ)c(−λ+ µ)

c(λ)c(−λ)

∣∣∣∣
λ=µ+ρ

=
1

c(µ+ ρ)

c(−λ+ µ)

c(−λ)

∣∣∣∣
λ=µ+ρ

,

12



where we have used that c(ρ) = 1. Notice that, by (1.15),

c(−λ + µ)

c(−λ) =
∏

α∈Σ+

Sα(−λ)
Sα(−λ+ µ)

c∗(−λ+ µ)

c∗(−λ) =
c∗(−λ+ µ)

c∗(−λ)

since Sα(−λ) = Sα(−λ + µ) for µα ∈ Z. Hence, since c∗(−ρ) = 1, we have

d(µ) =
1

c(µ+ ρ)c∗(−µ− ρ)
. (2.17)

Formula (2.16) becomes therefore

‖Fµ+ρ‖2m = Iδ
1

d(µ)
. (2.18)

Remark 2.5. In the case of Riemannian symmetric spaces of the compact type U/K, (2.18)
reduces to the classical formula (consequence of Schur’s orthogonality relations) relating
the L2-norm of the spherical function ψµ = Fµ+ρ on U/K to the dimension d(µ) of the
corresponding spherical representation, see for instance [13, p. 146]. Indeed, let du and
dt be respectively the invariant probability measures on U and T . Then, for every K-
biinvariant continuous function f on U , we have

∫
U
f(u) du = C

∫
T
f(t)|δ(m, t)|dt where

C =
[ ∫

T
|δ(m, t)|dt

]−1
= I−1

δ . Hence (2.18) gives
∫

U

|ψµ(u)|2 du = I−1
δ

∫

T

|ψµ(t)|2|δ(m, t)|dt = I−1
δ ‖ψµ‖2m = d(µ)−1 .

2.3. The Jacobi transform and Jacobi series. The (normalized) Jacobi transform of

f ∈ L2(T )W is the function f̂ : P+ → C defined by

f̂(µ) := I−1
δ 〈f, Pµ〉m = I−1

δ

∫

T

f(t)Pµ(t
−1) δ(m, t) dt .

Here we have used the property that Pµ(t) = Pµ(t
−1) for t ∈ T . Observe that, by (2.4),

c(ρ+ µ)f̂(µ) = I−1
δ 〈f, Fµ+ρ〉m . (2.19)

The inversion formula is given by the Jacobi series

f = Iδ
∑

µ∈P+

f̂(µ)
Pµ

‖Pµ‖2m
(2.20)

=
∑

µ∈P+

d(µ)c(µ+ ρ)f̂(µ)Fµ+ρ (2.21)

with convergence in the sense of L2. In (2.21) we have used (2.4) and (2.18).
Set B = {H ∈ a : ‖H‖ < 1}. For ε > 0 the U -invariant domain in AC defined by

Dε = T exp(εB) is a W -invariant neighborhood of T in AC. In the following lemma we
study the holomorphic extension of Jacobi series. It generalizes a result proven by Lassalle
in the geometric case; see [24] or [13, Proposition V.2.3].

Lemma 2.6. Let G : P+ → C and let ε > 0. The Jacobi series∑

µ∈P+

d(µ)G(µ)Fµ+ρ(x) (2.22)
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converges normally on compact subsets of Dε if and only if there is a constant C > 0 and so
that

|G(µ)| ≤ Ce−ε‖µ‖ (2.23)

for all µ ∈ P+. In this case, its sum is a W -invariant holomorphic function on Dε.

Proof. Suppose that G satisfies (2.23). It is enough to prove the normal convergence of
(2.22) on compact subsets of the form Dr = T exp(rB) where B = {H ∈ a : ‖H‖ ≤ 1} and
0 < r < ε. Let h = t exp(rH) with H ∈ B ∩ a+. By Proposition 2.3 we have

|Fµ+ρ(h)| ≤ Fµ+ρ(exp(rH)) ≤ erµ(H) ≤ er‖µ‖ .

This estimate extends to Dr by W -invariance. Hence

|d(µ)G(µ)Fµ+ρ(h)| ≤ d(µ)e−(ε−r)‖µ‖ ,

which implies the convergence of (2.22) since d(µ) has polynomial growth.
Conversely, suppose that the series (2.22) converges normally on the compact subsets of

Dε. Let 0 < ε′ < δ < ε. By the normal convergence of (2.22) on Dδ, we have for all
H ∈ exp(δB) ⊂ Dδ:

1 ≥ |d(µ)G(µ)|Fµ+ρ(expH) =
∣∣∣ G(µ)

c∗(−µ− ρ)

∣∣∣Pµ(expH).

Hence, by (2.8), for all H ∈ exp(δB),

|G(µ)| ≤ |c∗(−µ− ρ)|eµ(H) .

Taking H = −(δ/‖µ‖)Aµ, we obtain that

|G(µ)| ≤ |c∗(−µ− ρ)|e−δ‖µ‖ ≤ Ce−ε′‖µ‖

where C is a constant independent of µ and ε′. This implies (2.23). �

3. The function d

We extend d(µ), µ ∈ P+, to a meromorphic function on a
∗
C
by means of (2.17):

d(λ) =
1

c(λ+ ρ)c∗(−λ− ρ)
(3.1)

When (a,Σ, m) is geometric, d coincides with the polynomial given by Weyl’s dimension
formula (written in terms of restricted roots). The polynomial nature of d is precised by
Lemma 3.1 below. In the following, we set

Π(λ) =
∏

β∈Σ+
∗

λβ . (3.2)

Recall also the notation ρ̃β = 1
2

(mβ/2

2
+mβ

)
and the constant Lβ from (4.8) .

Lemma 3.1. (a) We have

d(λ− ρ) =
1

c(λ)c∗(−λ)

= Cd Π(λ)
∏

β∈Σ+
∗

Γ
(
λβ +

mβ/2

4
+ 1

2

)
Γ(λβ + ρ̃β)

Γ
(
λβ − mβ/2

4
+ 1

2

)
Γ
(
λβ − ρ̃β + 1

) (3.3)
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where

Cd = c̃(ρ)c̃ ∗(−ρ)
∏

β∈Σ+
∗

2mβ/2. (3.4)

(b) If (mβ/2)/2 ∈ Z+ and 0 6= mβ ∈ Z+, then d(λ) is a polynomial in
λ ∈ a

∗
C
. Explicitely,

d(λ− ρ) = Cd

∏

β∈Σ+
∗

(
λβ

mβ/2
2

−1∏

k=0

[
λβ −

(mβ/2

4
− 1

2

)
+ k
] 2ρ̃β−2∏

k=0

[λβ − (ρ̃β − 1) + k]
)
. (3.5)

Here we adopt the convention that empty products are equal to 1.
(c) The function d(λ) has polynomial growth. More precisely, set

M =
∑

β∈Σ+
∗

(mβ/2 +mβ) . (3.6)

Then, for every positive ε > 0, there are constants C0, C
′
0 and C ′′

0 so that

|d(λ− ρ)| ≤ C0

∏

β∈Σ+
∗

(1 + |λβ|)mβ/2+mβ ≤ C ′
0(1 + ‖λ‖)M ≤ C ′′

0

l∏

j=1

(1 + |λj|)M (3.7)

for all λ ∈ a
∗
C
with maxβ∈Σ+

∗
| arg(λβ)| ≤ π−ε and for all λ ∈ a

∗
C
with Reλβ ≥ −Lβ+ε

for all β ∈ Σ+
∗ .

Proof. Part (a) is an immediate consequence of (1.21) and (1.23).
Recall that, if 0 6= 2a ∈ Z+, then

Γ(λβ + a)

Γ(λβ − a+ 1)
=

Γ(λβ − a+ 1 + (2a− 1))

Γ(λβ − a+ 1)
=

2(a−1)∏

k=0

(λβ − a+ 1 + k) .

This proves (b) by taking a =
mβ/2

4
+ 1

2
and a = ρ̃β .

Finally, to prove (c), observe first that |λβ| ≤ ‖λ‖‖β‖−1 for all λ ∈ a
∗
C
and β ∈ Σ+

∗ .
Hence, if a > 0, then there is a constant K ≥ 0 so that (1 + |λα|)a ≤ K(1 + ‖λ‖)a for all

λ ∈ a
∗
C
. Similarly, since λ =

∑l
j=1 λjωj , there is a constant K1 > 0 so that (1 + ‖λ‖) ≤

K1

∏l
j=1(1 + |λj|) for all λ ∈ a

∗
C
. Recall that

lim
|z|→+∞

Γ(z + a)

Γ(z)
e−a log z = 1 for | arg z| ≤ π − ε , (3.8)

where a ∈ C is fixed, log is the principal part of the logarithm, and ε > 0; see e.g. [32, Ch.
IV, p. 151]. Let now a > 0. Then for fixed constants C1 > 1 and ε > 0 there are constants
N1 > 0 and C2 ≥ C1 (also depending on a) so that

∣∣∣∣
Γ(z + a)

Γ(z − a + 1)

∣∣∣∣ ≤ C1(1 + |z − a+ 1|)2a−1 ≤ C2(1 + |z|)2a−1

for all z with |z| ≥ N1 and | arg z| ≤ π − ε. The function Γ(z+a)
Γ(z−a+1)

is holomorphic on

Re z > −a, so bounded on compact subsets of this domain. It is in particularly bounded on

{z ∈ C : |z| ≤ N1 and | arg z| ≤ π − ε}
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and (supposing without loss of generality that ε < π/2 so that the region is compact) on

{z ∈ C : Re z ≥ −a + ε and π ≥ | arg z| ≥ π − ε} .
It follows that there is a constant C3 ≥ C2 so that∣∣∣∣

Γ(z + a)

Γ(z − a+ 1)

∣∣∣∣ ≤ C3(1 + |z|)2a−1

for all z ∈ C with | arg z| ≤ π − ε and for all z ∈ C with Re z ≥ −a + ε.
Choose now a =

mβ/2

4
+ 1

2
. We get

∣∣∣∣∣
Γ
(
λβ +

mβ/2

4
+ 1

2

)

Γ
(
λβ − mβ/2

4
+ 1

2

)
∣∣∣∣∣ ≤ C ′

3(1 + |λβ|)mβ/2/2

for all λ ∈ a
∗
C
with | arg(λβ)| ≤ π − ε and for all λ ∈ a

∗
C
with Reλβ ≥ −

(mβ/2

4
+ 1

2

)
+ ε.

Choose then a = ρ̃β. In this case, we obtain
∣∣∣∣
λβΓ(λβ + ρ̃β)

Γ(λβ − ρ̃β + 1)

∣∣∣∣ ≤ C ′′
3 (1 + |λβ|)mβ/2/2+mβ−1|λβ| ≤ C ′′

3 (1 + |λβ|)mβ/2/2+mβ

for all λ ∈ a
∗
C
with | arg(λβ)| ≤ π − ε and for all λ ∈ a

∗
C
with Reλβ ≥ −ρ̃β + ε. These

estimates yield the claim for d(λ− ρ). �

Remark 3.2. By the infinitesimal classification of Riemannian symmetric spaces (see [2] or
[21, Ch. X, Exercise F]), the condition in (b) is satified by all geometric triples (a,Σ, m).
This condition is also satisfied if Σ is reduced and mβ ∈ Z, for instance in the so-called even
multiplicity case [29].

4. The function b

Let b be the meromorphic function on a
∗
C
defined by the equality 1

b(λ)

c(λ)c(−λ) = 2−ld(λ− ρ)

l∏

j=1

1

sin
(
π(λj − ρj)

) (4.1)

Then

b(λ) = 2−l c(−λ)
c∗(−λ)

l∏

j=1

1

sin
(
π(λj − ρj)

) . (4.2)

Recall the functions Sβ/2 and Sβ from (1.16). We have for all β ∈ Σ+
∗ :

Sβ/2(λ)Sβ(λ) =
sin(2πλβ)

sin
(
π(2λβ +

mβ/2

2
)
) sin

(
π
(
λβ +

mβ/2

4

))

sin(π(λβ + ρ̃β))

=
sin(πλβ) cos(πλβ)

cos
(
π
(
λβ +

mβ/2

4

))
sin(π(λβ + ρ̃β))

.

It follows then from (1.15) that

b(λ) = Cb

∏

β∈Σ+
∗

cos
(
π
(
λβ − mβ/2

4

))

cos(πλβ) sin(πλβ)

∏

β∈Σ+
∗ \{β1,...,βl}

sin
(
π(λβ − ρ̃β)

)
. (4.3)

1The constant (i/2)l of [30, formulas (37) and (53)] should be corrected as 2−l.
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where

Cb = 2−l cHC

c∗HC

= 2−l c̃
∗(−ρ)
c̃(ρ)

. (4.4)

Remark 4.1. By classification (see e.g. [21, Ch. X, Exercice F.4]), the parity of the
geometric root multiplicities are distinguished in four different cases. They are reported in
the following table together with the corresponding parity of ρ̃β:

mβ/2

2
mβ ρ̃β = 1

2

(mβ/2

2
+mβ

)

(a) 0 ∈ 2Z ∈ Z

(b) 0 ∈ 2Z+ 1 ∈ Z+ 1
2

(c) ∈ 2Z ∈ 2Z + 1 ∈ Z+ 1
2

(d) ∈ 2Z+ 1 ∈ 2Z+ 1 ∈ Z

The corresponding values of b(λ), which have been determined in [30, Remark 4.5], are

b(λ) =C ′
b

( ∏

β∈Σ
+
∗ \{β1,...,βl}

cases (b) or (c)

cot(πλβ)
)( ∏

β∈Σ
+
∗ \{β1,...,βl}

case (d)

tan(πλβ)
)

×
( ∏

j∈{1,...,l}

cases (a),(b) or (c)

1

sin(πλj)

)( ∏

j∈{1,...,l}

case (d)

1

cos(πλj)

)
(4.5)

where C ′
b = ±Cb and the sign depends on the parity of the multiplicities.

Lemma 4.2. Set
TΠ := {λ ∈ a

∗
C
: |Reλβ| < 1/2 for all β ∈ Σ+

∗ } . (4.6)

Let Π(λ) be as in (3.2). Then Π(λ)b(λ) is holomorphic on TΠ.

Proof. This is immediate from (4.5). �

Remark 4.3. According to the possible values of m, the function Π(λ)b(λ) might be holo-
morphic on a larger tube domain. See [30, Corollary 4.6] for the geometric case situation.

Lemma 4.4. Let Cd be the constant defined in (3.4). The function

b(λ)

c(λ)c(−λ) = 2−ld(λ− ρ)
l∏

j=1

1

sin
(
π(λj − ρj)

)

= Cd Π(λ)


∏

β∈Σ+
∗

Γ
(
λβ +

mβ/2

4
+ 1

2

)
Γ(λβ + ρ̃β)

Γ
(
λβ − mβ/2

4
+ 1

2

)
Γ(λβ − ρ̃β + 1)



(

l∏

j=1

1

sin
(
π(λj − ρj)

)
)

(4.7)

is meromorphic on a
∗
C
. Its possible singularities are along the following hyperplanes:

H1,β,k := {λ ∈ a
∗
C
: λβ = −ρ̃β − k} with β ∈ Σ+

∗ , k ∈ Z
+ ,

H2,β,k := {λ ∈ a
∗
C : λβ = −mβ/2

4
− 1

2
− k} with β ∈ Σ+

∗ , k ∈ Z
+ ,

Hj,k := {λ ∈ a
∗
C
: λj = ρj + k} with j = 1, . . . , l , k ∈ Z

+ (simple poles).
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The occurrence and the order of the singularities along H1,β,k and H2,β,k depend on the root
β (according to whether β = βj for some j = 1, . . . , l or not) and on the multiplicities of β/2
and β. The situation is summarized in Tables 1 and 2.

Proof. The explicit formula for in Part (a) is an immediate consequence of (3.3). The hyper-
planes H1,β,k and H2,β,k correspond respectively to the singularities of Γ

(
λβ +

mβ/2

4
+ 1

2

)
and

Γ(λβ + ρ̃β), whereas Hj,k corresponds to those of [Γ(λj − ρj + 1) sin(π(λj − ρj))]
−1 (Recall

that λj = λβj
and ρj = ρ̃βj

).
Some of the singularities along the hyperplanes H1,β,k and H2,β,k are cancelled by zeros

coming from the gamma functions in the denominator of (4.7). More precisely, when β = βj
(Table 1), the zeros of Γ

(
λβ − mβ/2

4
+ 1

2

)−1
remove the singularities along H1,β,k in case (1)

and those along H2,β,k in case (2). When β 6= βj (Table 2), the zeros of Γ
(
λβ − mβ/2

4
+ 1

2

)−1

also remove the singularities along H1,β,k in cases (1) and (2) and those along H2,β,k in
case (3). Moreover, because of the absence of the sin-functions at the denominator for
β 6= βj, additional cancellations occur in this case: the zeros of Γ(λβ − ρ̃β +1)−1 remove the
singularities along H1,β,k in case (3) and along H2,β,k in cases (1) and (6). �

In the last column of Tables 1 and 2 we have reported the first negative value lβ such that

λβ = lβ is a singular hyperplane of b(λ)
c(λ)c(−λ)

. Notice that lβ is not W -invariant since b is

not W -invariant. On the elements of Σ+
∗ inside a single W -orbit, there are nevertheless only

at most two values l1 ≤ l2 < 0 for lβ , and l2 = lβj
where βj is an element of the basis Π∗

belonging to this W -orbit. Notice also that the geometric case is contained in case (1), i.e.
mβ/2

2
∈ Z, of the two tables. To measure the largest W -invariant tube domain around ia∗ on

which b(λ)
c(λ)c(−λ)

is holomorphic, we introduce the following constants.

For β ∈ Σ+
∗ define

Lβ := −lβj
if βj ∈ Wβ ∩Π∗ (4.8)

Hence Lβ ∈
{
ρ̃β ,

mβ/2

4
+ 1

2

}
.

Then only the singular hyperplanes Hj,k, with j = 1, . . . , l and k ∈ Z+, intersect the region

LΣ := {λ ∈ a
∗
C : Reλβ > −Lβ for all β ∈ Σ+

∗ } ⊃ a
∗
+ + ia∗ . (4.9)

Corollary 4.5. For all w ∈ W the function b(wλ)
c(λ)c(−λ)

is holomorphic in the tube domain

TΣ = {λ ∈ a
∗
C
: |Reλβ| < Lβ for all β ∈ Σ+

∗ } (4.10)

Remark 4.6. In the geometric case we have Lβ = ρ̃β for all β ∈ Σ+
∗ . Observe that if

Lβ = ρ̃β for all β ∈ Σ+
∗ , then the base of the tube TΣ is C(ρ)0, the interior of the convex hull

of {wρ : w ∈ W} in a
∗. In this case, TΣ = C(ρ)0 + ia∗ is the interior of the domain in a

∗
C
in

which all hypergeometric functions Fλ are bounded, see [26, Theorem 4.2].

4.1. Tube domains in a
∗
C
. Recall the constants Lβ introduced in (4.8). Let mL be the

positive multiplicity function on Σ defined for β ∈ Σ∗ by

(mL)β/2 := mβ/2 (4.11)

(mL)β :=

{
mβ if Lβ = ρ̃β
1
2

if Lβ =
mβ/2

4
+ 1

2
.

(4.12)



The corresponding ρ-function is

ρL = 1
2

∑

β∈Σ+
∗

[
(mL)β/2

2
+ (mL)β

]
β = 1

2

∑

β∈Σ+
∗

Lββ . (4.13)

Hence Lβ = (ρ̃L)β in the notation of (1.10).
For δ > 0, we consider the following tube domains in a

∗
C
around the imaginary axis:

Tδ = {λ ∈ a
∗
C
: |Reλβ| < δLβ for all β ∈ Σ+

∗ } , (4.14)

T ′
δ = {λ ∈ a

∗
C
: |Reλj| < δLβj

for all j = 1, . . . , l} , (4.15)

T ′′
δ = {λ ∈ a

∗
C : Reλj < δLβj

for all j = 1, . . . , l} . (4.16)

The following lemma is standard. A proof can be found for instance in [30, Lemma 1.2].

Lemma 4.7. Let w0 be the longest element of W . Then

T ′
δ = T ′′

δ ∩ w0(T
′′
δ ) (4.17)

and

Tδ =
⋂

w∈W

w(T ′
δ) =

⋂

w∈W

w(T ′′
δ ) . (4.18)

In particular, Tδ is the largest W -invariant tube domain contained in T ′
δ. Moreover,

Tδ = C(δρL)
0 + ia∗ (4.19)

where C(ν) is the the convex hull of the W -orbit {wν : w ∈ W} of ν ∈ a
∗ and C(ν)0 is its

interior.

Remark 4.8. Notice that T1 = TΣ is the tube domain introduced in Corollary 4.5.

5. Statement of Ramanujan’s Master theorem for root systems

Let AC = AT be the complex torus associated with a triple (a,Σ, m) as in Section 1.1, and
let Lβ , with β ∈ Σ+

∗ , be defined by (4.8). Let A, P, δ be constants so that A < π, P > 0
and 0 < δ ≤ 1, and define

H(δ) = {λ ∈ a
∗
C
: Reλβ > −δ ρ̃β for all β ∈ Σ+

∗ } . (5.1)

The Hardy class H(A,P, δ) consists of the functions a : H(δ) → C that are holomorphic on
H(δ) and so that

|a(λ)| ≤ C
l∏

j=1

e−P(Re λj)+A| Imλj | (5.2)

for some constant C ≥ 0 and for all λ ∈ H(δ).

Theorem 5.1 (Ramanujan’s Master Theorem for root systems). Let d and b be the mero-
morphic functions on a

∗
C
defined by (3.1) and (4.2), respectively. Suppose a ∈ H(A,P, δ).

(1) Let Ω be as in (1.11). Then the alternating normalized Jacobi series

f(t) =
∑

µ∈P+

(−1)|µ|d(µ)a(µ+ ρ)Fµ+ρ(t) (5.3)
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converges normally on compact subsets of DP/Ω = T exp
(
(P/Ω)B

)
where B = {H ∈

a : ‖H‖ < 1} is the open unit ball in a. Its sum is a W -invariant holomorphic
function on the neighborhood DP/Ω of T in AC.

(2) Let Tδ be the tube domain in (4.14) and let σ ∈ Tδ ∩ a
∗. Then for x = expH ∈ A

with ‖H‖ < P/Ω, we have

f(x) =
1

|W |

∫

σ+ia∗

(
∑

w∈W

a(wλ)b(wλ)

)
Fλ(x)

dλ

c(λ)c(−λ) . (5.4)

The integral on the right-hand side of (5.4) is independent of the choice of σ. It con-
verges uniformly on compact subsets of A and extends to a holomorphic W -invariant
function on a neighborhood of A in AC.

(3) The extension of f to A satisfies
∫

A

|f(x)|2 dµ(x) = 1

|W |

∫

ia∗

∣∣∣
∑

w∈W

a(wλ)b(wλ)
∣∣∣
2 dλ

|c(λ)|2 .

Moreover, ∫

A

f(x)F−λ(x) dµ(x) =
∑

w∈W

a(wλ)b(wλ) (5.5)

for all λ ∈ Tδ∩TΠ. More precisely, the integral on the left-hand side of (5.5) converges
in L2-sense and absolutely on ia∗. It defines a W -invariant holomorphic function on
a W -invariant tube domain around ia∗, and (5.5) extends as an identity between
holomorphic functions on Tδ ∩ TΠ.

Remark 5.2. As in the classical case (0.2) or in the case of semisimple Riemannian symmet-
ric spaces in [30], there is an equivalent formulation of Ramanujan’s Master theorem for root
systems using the gamma function. This version, as well as some immediate consequences,
can be easily obtained, as in [30, Remark 2.6], from Theorem 5.1.

6. Proof of Theorem 5.1

The proof of Ramanujan’s Master Theorem 5.1 for root systems follows the same pattern
used in the proof of the corresponding theorem for semisimple Riemannian symmetric spaces
[30, Theorem 2.1]. The first statement is an application of Lemma 2.6. The crucial step
for the remaining parts, and this is the content of this section, consists in extending the
necessary estimates from [30] to the setting of positive multiplicity functions.

Observe first that there is a constant K > 0 so that
∣∣ sin

(
π(λj − ρj)

)∣∣−1 ≤ Ke−π| Imλj | (6.1)

for | Imλj | ≥ 1 or for Reλj = ρj +N + 1/2 with N ∈ Z+.
The second part of Theorem 5.1 is proven by computing the integral on the right-hand

side of (5.4) by separately applying the Residue Theorem to each veriable λj . The term
of parameter µ + ρ in the alternating normalized Jacobi series appears as the result of
taking residues (for j = 1, 2, . . . , l) in λj at the singularity ρj + µj corresponding to the
singular hyperplane Hj,µj

from Lemma 4.4. The residues are computed using (4.1). The
following lemma contains the estimates needed to apply the Residue Theorem. It is an easy
generalization of [30, Lemma 5.3], and its proof is omitted.
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Lemma 6.1. (a) Let N be a positive integer and letM be as in (3.6). Let λ =
∑l

j=1 λjωj ∈
a
∗
C
with | Imλj | ≥ 1 or Reλj = ρj +N + 1/2 or Reλj = 0 for all j = 1, . . . , l. Then

there is a positive constant C1, independent of N , so that

∣∣∣∣
b(λ)

c(λ)c(−λ)

∣∣∣∣ ≤ C1

l∏

j=1

[
(1 + |λj |)Me−π| Imλj |

]
.

(b) Set

B =
{
λ =

l∑

j=1

λjωj ∈ a
∗
+ + ia∗ : | Imλj | ≥ 1 or

Reλj ∈ (ρj + Z
+ + 1/2) ∪ {0} for all j = 1, . . . , l

}
. (6.2)

Let a ∈ H(A,P, δ). Then there is a constant C2 > 0 so that for all λ ∈ B and
H ∈ a+ we have

∣∣∣∣
a(λ)b(λ)

c(λ)c(−λ)Fλ(expH)

∣∣∣∣ ≤ C2

l∏

j=1

[
(1 + |λj|)Me(A−π)| Imλj |+(‖H‖Ω−P) Reλj

]
. (6.3)

The estimates in the next lemma allow us to prove that the integral on the right-hand
side of (5.4) is independent of the choice of σ ∈ Tδ ∩ a

∗.

Lemma 6.2. Let 0 < δ ≤ 1 and let Tδ be the tube domain from (4.14). Let M be the
constant defined in (3.6).

(a) There is a constant Cδ > 0 so that
∣∣∣∣

b(λ)

c(λ)c(−λ)

∣∣∣∣ ≤ Cδ(1 + ‖λ‖)Me−π
(∑l

j=1
| Imλj |

)
(6.4)

for all λ ∈ Tδ.
(b) Let a ∈ H(A,P, δ). For every R > 0 and every integer N ≥ 0 there is a constant

CR,N,δ > 0 so that for all λ ∈ Tδ and H ∈ a with ‖H‖ < R, we have
∣∣∣∣
a(λ)b(λ)

c(λ)c(−λ)Fλ(expH)

∣∣∣∣ ≤ CR,N,δ(1 + ‖λ‖)−N (6.5)

Consequently,
∣∣∣∣∣
( ∑

w∈W

a(wλ)b(wλ)
)Fλ(expH)

c(λ)c(−λ)

∣∣∣∣∣ ≤ CR,N,δ|W |(1 + ‖λ‖)−N . (6.6)

Proof. By Corollary 4.5, for all w ∈ W , the function b(wλ)
c(λ)c(−λ)

is holomorphic on the W -

invariant tube domain Tδ. Set

pj(λ) =
(
λj − (ρj − 1)

)(
λj − (ρj − 2)

)
· · ·
(
λj − (ρj − hj)

)
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where hj ∈ Z+ is chosen so that 2ρj − 1 ≤ hj < 2ρj . Then, by (4.7),

b(λ)

c(λ)c(−λ) = Cd Π(λ)


∏

β∈Σ+
∗

Γ
(
λβ +

mβ/2

4
+ 1

2

)

Γ
(
λβ − mβ/2

4
+ 1

2

)


×


 ∏

β∈Σ+
∗ \{β1,...,βl}

Γ(λβ + ρ̃β)

Γ(λβ − ρ̃β + 1)



(

l∏

j=1

Γ(λj + ρj)

Γ(λj − (ρj − hj) + 1)

pj(λ)

sin
(
π(λj − ρj)

)
)

(6.7)

For fixed η ∈]0, 1[, the function z
sin(πz)

is bounded on {z ∈ C : | Im z| ≤ 1, |Re z| ≤ η}. By

(6.1), we conclude that there is a constant C ′
δ > 0 so that for any fixed j = 1, . . . , l and every

λ =
∑

h λhωh with |Reλj| ≤ δLβj
and arbitrary λh ∈ C with h 6= j, we have

∣∣∣∣∣
pj(λ)

sin
(
π(λj − ρj)

)
∣∣∣∣∣ ≤ C ′δ(1 + |λj|)deg pje−π| Imλj | .

Part (a) then follows from these estimates and (6.7).
To prove (b), observe first that Tδ is a W -invariant subset of H(δ). Hence

( ∑

w∈W

a(wλ)b(wλ)
)Fλ(expH)

c(λ)c(−λ)

is holomorphic on Tδ for every fixed a ∈ H(A, P, δ). Let R > 0 be fixed. By (1.27) there is
a constant CR,δ > 0 so that

|Fλ(expH)| ≤ CR,δ (6.8)

for all λ ∈ Tδ and H ∈ a with ‖H‖ ≤ R. (In fact, since Tδ ⊂ T1, one knows from [26,
Theorem 4.2] that CR,δ can be chosen to be equal to 1.) Together with Part (a), (6.8) yields
that there is a constant C ′

R,δ > 0 so that
∣∣∣∣
a(λ)b(λ)

c(λ)c(−λ)Fλ(expH)

∣∣∣∣ ≤ C ′
R,δ(1 + ‖λ‖)Me(A−π)

∑l
j=1

| Imλj | .

This implies (6.5) as A < π. �

The last group of estimates we need shows that if a ∈ H(A,P, δ), then there is ε ∈]0, 1]
so that the function

ã(λ) =
∑

w∈W

a(wλ)b(wλ) (6.9)

belongs to the W -invariant Schwartz space S(a∗ε)W defined in Section 1.5.
For 0 ≤ η < 1/2 set

TΠ,η = {λ ∈ a
∗
C
: |Reλβ| < 1

2
− η for all β ∈ Σ+

∗ } . (6.10)

So TΠ,0 = TΠ is the tube domain on which Π(λ)b(λ) is holomorphic; see Corollary 4.5.

Lemma 6.3. Set s = |Σ+
∗ |.

(a) Let 0 < η < 1/2. Then there is a constant Cη > 0 so that

|Π(λ)b(λ)| ≤ Cη(1 + ‖λ‖)se−π
(∑l

j=1
| Imλj |

)

for all λ ∈ TΠ,η.
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(b) Let a ∈ H(A,P, δ) and set ã(λ) =
∑

w∈W a(wλ)b(wλ). Then ã is holomorphic in
TΠ ∩ Tδ. Moreover, let 0 < η < min{1/2, δ}. Then there are positive constants
Cη,a > 0 and C0 so that

|ã(λ)| ≤ Cη,a(1 + ‖λ‖)se(A−π)C0‖ Imλ‖

for all λ ∈ TΠ,η ∩ Tδ−η.
(c) Let 0 < η < min{1/2, δ} and set

γ = min
{
δ − η,

(
1
2
− η
)
min
b∈Σ+

∗

L−1
β

}
.

Then Tγ ⊂ TΠ,η ∩Tδ−η. Moreover, let 0 < ε < γ. Then ã ∈ S(a∗ε)W , the W -invariant
Schwartz space on the tube domain Tε.

Proof. Since Π(λ)b(λ) is bounded on TΠ,η, the proof of the estimate in (a) follows the same
argument used in part (a) of Lemma 6.2.

To prove part (b), notice first that, by Corollary 4.5, on TΠ the function b(λ) has at most
simple poles on hyperplanes of the form λβ = 0 with β ∈ Σ+

∗ . The same property holds
on TΠ ∩ Tδ for b(wλ)a(wλ), with w ∈ W , and hence for ã(λ). But ã(λ), as a W -invariant
function, cannot admit first order singularities on root hyperplanes through the origin. Thus
ã is holomorphic on TΠ ∩ Tδ.

Let 0 < η < η′ < min{1/2, δ}. Choose C0 > 0 so that
∑l

j=1 | Imλj| ≤ C‖ Imλ‖ for all

λ ∈ a
∗. By (a), there is a constant Cη′ > 0 so that

|Π(λ)b(λ)a(λ)| ≤ Cη′(1 + ‖λ‖)se(A−π)‖ Imλ‖1 ≤ Cη′(1 + ‖λ‖)se(A−π)C0‖ Imλ‖

for all λ ∈ TΠ,η′ ∩ Tδ−η′ . The required estimate for ã on TΠ,η ∩ Tδ−η follows then as in [30,
Lemma 5.6(b)].

To show that Tγ ⊂ TΠ,η ∩ Tδ−η, notice that γ ≤ δ − η and that if λ ∈ Tγ , then |Reλβ | <
γLβ ≤ 1

2
− η.

The property that ã ∈ S(a∗ε)W for 0 < ε < γ can be proven as in [30, Lemma 5.6(c)], using
(b) and Cauchy’s estimates. �

Lemma 6.3 allows us to apply the inversion formula (1.32) to ã and conclude that F−1ã ∈
Sp(A)W ⊂ (Lp ∩ L2)(A, dµ)W where p = 2/(ε + 1) ∈]1, 2[. The function ã is therefore
the hypergeometric Fourier transform of F−1ã and the equality in part (c) of Theorem 5.1,
initially valid on Tε, extends holomorphically to TΠ ∩ Tδ.

We leave the reader to follow the proof of [30, Theorem 2.1, Section 6], to fill in the missing
details of the proof of Theorem 5.1.

7. Examples

Let (a,Σ, m) be a triple of rank one with Σ of type A1. Hence Σ+ = {β} for a unique
root β. To simplify notation, we shall write m instead of mβ. Recall from Example 2.2 the
identification of the polynomials Fnβ+ρ(t), where t = expH ∈ T , with the symmetric Jacobi

polynomials X
(m−1)/2
n (x) =

2F1
(−n, n +m; (m+ 1)/2; (1− x)/2) with x = cos β(H). By

(3.1),

d(nβ) =
1

c(nβ + ρ)c∗(−nβ − ρ)
= Cd

(
n+ m

2

)Γ(n +m)

Γ(n+ 1)
,
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where Cd = c̃(ρ)c̃ ∗(−ρ) = 2/Γ(m + 1). We identify a ≡ a
∗ ≡ C as in Example 2.2. This

means that λ ∈ a
∗
C

and H ∈ aC = a ⊕ t are respectively identified with λβ ∈ C and
β(H)/2 ∈ C.

Let 0 ≤ A < π and P > 0 be fixed, and set a(λ) = e−(P+iA)λ. Then

|a(λ)| = e−PReλ+A Imλ ≤ e−PReλ+A| Imλ|

for all λ ∈ a
∗ ≡ C. Hence a ∈ H(A,P, δ) for every value of m > 0 and for all δ ∈]0, 1].

Consider the alternating normalized Jacobi series (5.3) for t = expH ∈ T

f(t) =

∞∑

n=0

(−1)nd(nβ)a(nβ + ρ)Fnβ+ρ(t)

= Cd e
−(P+iA)m/2

∞∑

n=0

(−1)n
(
n + m

2

) Γ(n+m)

Γ(n + 1)
e−(P+iA)nX(m−1)/2

n (cos β(H)) .

According to [7, (10)], one has for |τ | < 1

∞∑

n=0

(
n + m

2

) Γ(n +m)

Γ(n+ 1)
X(m−1)/2

n (x)τn =
Γ(m+ 1)

2
G(m, x, τ) (7.1)

where

G(m, x, τ) =
1− τ 2

(1− 2τx+ τ 2)1+
m
2

(7.2)

Thus for t = expH ∈ T

f(t) = e−(P+iA)m
2 G(m, cos β(H),−e−(P+iA)) . (7.3)

The first part of Ramanujan’s Master theorem 5.1 states that the normalized series (7.1)
converges normally to f on compact subsets of {z = iβ(H)/2 ∈ C : |Re z| < P/2}. Special
instances of the above formulas, involving Legendre or Tchebishef polynomials, are obtained
by selecting particular values of m; see Example 2.2.

Since Σ is reduced, we have b(λ) = Cb[sin(πλ)]
−1, where

Cb =
1

2

c̃ ∗(−ρ)
c̃(ρ)

=
1

2

Γ(m)

Γ
(
m
2

)
Γ
(
1 + m

2

)

is as in (4.4). Hence

∑

w∈W

a(wλ)b(wλ) = 2Cb
sinh((P+ iA)λ)

sin(πλ)
. (7.4)

Set u = β(H) for H ∈ a. Then

f(expH) = e−(P+iA)m
2 G(m, cosh u,−e−(P+iA)) =

2−
m
2 sinh(P+ iA)

(cosh u+ cosh(P+ iA))
m
2
+1
. (7.5)
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The second part of Ramanujan’s Master theorem says that for u ∈] − P,P[ and σ ∈
]−m/2, m/2[ we have

2−
m
2 sinh(P+ iA)

(cosh u+ cosh(P+ iA))
m
2
+1

=

Cb

∫

σ+iR

sinh((P+ iA)λ)

sin(πλ) 2F1

(
m+λ
2
, m−λ

2
; m+1

2
;− sinh2 u

) dλ

c(λ)c(−λ) , (7.6)

where the integral on the right-hand side extends as an even homomorphic function on a
neighborhood of R inside C. Notice that the left-hand side is holomorphic near R. The
equality (7.6) therefore holds for all u ∈ R. In (7.6) we have used the formula for Fλ(x)
given in Example 1.1 together with the duplication formula

2F1
(a, b; a + b+ 1/2; 4z(1− z)) =

2F1
(2a, 2b; a+ b+ 1/2; z) . (7.7)

See [11, 2.1.5(27)]. (Recall also that the c-function appearing under the integral sign in fact
depends on the parameter m > 0.)

If we take for instance A = σ = 0, then (7.6) yields

2−
m
2 sinhP

(cosh u+ coshP)
m
2
+1

= Cb

∫

iR

sinh(Pλ)

sin(πλ) 2F1

(
m+λ
2
, m−λ

2
; m+1

2
;− sinh2 u

) dλ

c(λ)c(−λ) ,

that is (since the Lebesgue measure on iR is dλ, iλ ∈ iR)

2−
m
2
+1 sinhP

(cosh u+ coshP)
m
2
+1

=

Γ(m)

Γ
(
m
2

)
Γ
(
1 + m

2

)
∫ +∞

−∞

sin(Pλ)

sinh(πλ) 2F1

(
m+λ
2
, m−λ

2
; m+1

2
;− sinh2 u

) dλ

c(iλ)c(−iλ) . (7.8)

Suppose moreover that u = 0. Since 1 + coshP = 2 cosh2(P/2), we obtain from (7.8)

2−m+1
[
cosh(P/2)

]−m
tanh(P/2) =

Γ(m)

Γ
(
m
2

)
Γ
(
1 + m

2

)
∫ +∞

−∞

sin(Pλ)

sinh(πλ)

dλ

c(iλ)c(−iλ) . (7.9)

In the case m = 2, (7.9) gives
∫ +∞

−∞

sin(Pλ)

sinh(πλ)
λ2 dλ = 1

2

[
cosh(P/2)

]−2
tanh(P/2). (7.10)

Notice that (7.10) can also be computed from the classical integral formula
∫ +∞

−∞

sin(Px)

sinh(πx)
dx =

1− e−P

1 + eP
= tanh(P/2) , (7.11)

see e.g. [10, (861.61)]. In fact,
∫ +∞

−∞

sin(Pλ)

sinh(πλ)
λ2 dλ = − d2

dP2

∫ +∞

−∞

sin(Pλ)

sinh(πλ)
dλ = −d

2 tanh(P/2)

dP2
.

For m = 1, (7.9) yields
∫ +∞

−∞

sin(Pλ)

sinh(πλ)
λ tanh(πλ) dλ =

[
cosh(P/2)

]−1
tanh(P/2) , (7.12)
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which is again a classical integral formula (see e.g. [10, (861.81)]).
Finally, the Plancherel formula in the last part of the theorem proves that

sinh2(P+ iA)

∫ ∞

0

sinhm u

(cosh u+ cosh(P+ iA))m+2
du

=
[ Γ(m)

2Γ
(
m
2

)
Γ
(
m
2
+ 1
)
]2 ∫ ∞

0

| sin((P+ iA)λ)|2
sinh2(πλ)

dλ

c(λ)c(−λ) . (7.13)

Moreover, according to (5.5),

2
m
2
+1 sinh2(P+ iA)

∫ ∞

0

2F1

(
m+λ
2
, m−λ

2
; m+1

2
;− sinh2 u

)
sinhm u

(cosh u+ cosh(P+ iA))
m
2
+1

du =

Γ(m)

Γ
(
m
2

)
Γ
(
m
2
+ 1
) sinh((P+ iA)λ)

sin(πλ)
(7.14)

for all λ ∈ C with |Reλ| < min{1/2, m/2}.
For A = 0, the right-hand side of (7.13) can be computed using the integral formula [15,

3.516(3)]:
∫ ∞

0

sinhm u

(coshP+ cosh u)m+2
du = π− 1

22
m
2 e−im

2
πΓ
(
m+ 1

2

)

Γ(m+ 2)
(coth2P− 1)Q

m/2
2+m/2(cothP) ,

where

Qµ
ν(z) =

eµπiΓ(ν + µ+ 1)Γ(1/2)

2ν+1Γ(ν + 3/2)
(z2 − 1)µ/2z−µ−ν−1

2F1

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3

2
; z−2

)

is the associated Legendre function of second kind.
As a special case of (7.14) for A = 0 and m = 2, we notice the formula

1

λ

∫ +∞

0

sinh(λu) tanhu

(coshP+ cosh u)2
du =

1

4 sinhP

sinh(Pλ)

sin(πλ)
, (7.15)

which is a consequence of [11, 2.11(2) and 2.8(12)] because

2F1

(
1 +

λ

2
, 1− λ

2
;
3

2
;− sinh2 u

)
=

2F1

(
1

2
+
λ

4
,
1

2
− λ

4
;
3

2
;− sinh2(2u)

)
=

2 sinh(λu)

λ sinh(2u)
.

References

[1] Anker, J.-P.: The spherical Fourier transform of rapidly decreasing functions. A simple proof of
a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan. J. Funct. Anal.
96 (1991), no. 2, 331–349.

[2] Araki, S. I. : On root systems and an infinitesimal classification of irreducible symmetric spaces.
J. Math. Osaka City Univ. 13 (1962), 1–34.

[3] Berndt, B.: Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.
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case multiplicities H1,β,k H2,β,k lβ

(1)
mβ/2

2
∈ Z no sing simple poles −ρ̃β

(2)
mβ/2

2
/∈ Z , mβ/2 +mβ ∈ 2Z+ 1 simple poles no sing −

(mβ/2

4
+ 1

2

)

(3)
mβ/2

2
/∈ Z , mβ ∈ 2Z+ 3 simple poles for k = 0, . . . ,

mβ−3

2
double poles −

(mβ/2

4
+ 1

2

)

(4)
mβ/2

2
/∈ Z , mβ = 1 double poles (H1,β,k = H2,β,k) −

(mβ/2

4
+ 1

2

)

(5a)
mβ/2

2
/∈ Z , mβ/2 +mβ /∈ 2Z+ 1, mβ /∈ 2Z+ 1, mβ > 1 simple poles simple poles −

(mβ/2

4
+ 1

2

)

(5b)
mβ/2

2
/∈ Z , mβ/2 +mβ /∈ 2Z+ 1, mβ /∈ 2Z+ 1, mβ ≤ 1 simple poles simple poles −ρ̃β

Table 1. Case β = βj

case multiplicities H1,β,k H2,β,k lβ

(1)
mβ/2

2
∈ Z, mβ ∈ Z no sing no sing −−

(2)
mβ/2

2
∈ Z, mβ /∈ Z no sing simple poles −ρ̃β

(3)
mβ/2

2
/∈ Z , mβ/2 +mβ ∈ 2Z+ 1 no sing no sing −−

(4)
mβ/2

2
/∈ Z , mβ ∈ 2Z+ 3 simple poles for k = 0, . . . ,

mβ−3

2
double poles −

(mβ/2

4
+ 1

2

)

(5)
mβ/2

2
/∈ Z , mβ = 1 double poles (H1,β,k = H2,β,k) −

(mβ/2

4
+ 1

2

)

(6)
mβ/2

2
/∈ Z , mβ/2 +mβ /∈ 2Z+ 1, mβ /∈ 2Z+ 1, 2ρ̃β ∈ Z simple poles no sing −

(mβ/2

4
+ 1

2

)

(7a)
mβ/2

2
/∈ Z , mβ/2 +mβ /∈ 2Z+ 1, mβ /∈ 2Z+ 1, 2ρ̃β /∈ Z, mβ > 1 simple poles sinple poles −

(mβ/2

4
+ 1

2

)

(7b)
mβ/2

2
/∈ Z , mβ/2 +mβ /∈ 2Z+ 1, mβ /∈ 2Z+ 1, 2ρ̃β /∈ Z, mβ ≤ 1 simple poles sinple poles −ρ̃β

Table 2. Case β 6= βj

2
9


