A New PAC-Bayesian View of Domain Adaptation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

A New PAC-Bayesian View of Domain Adaptation

Résumé

We propose a new theoretical study of domain adaptation for majority vote classifiers (from a source to a target domain). We upper bound the target risk by a trade-off between only two terms: The voters’ joint errors on the source domain, and the voters’ disagreement on the target one. Hence, this new study is simpler than other analyses that usually rely on three terms. We also derive a PAC-Bayesian generalization bound leading to a DA algorithm for linear classifiers.
Fichier principal
Vignette du fichier
dalc_TLworkshop.pdf (325.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01223164 , version 1 (03-11-2015)

Identifiants

  • HAL Id : hal-01223164 , version 1

Citer

Pascal Germain, François Laviolette, Amaury Habrard, Emilie Morvant. A New PAC-Bayesian View of Domain Adaptation. NIPS 2015 Workshop on Transfer and Multi-Task Learning: Trends and New Perspectives, Dec 2015, Montréal, Canada. ⟨hal-01223164⟩
119 Consultations
253 Téléchargements

Partager

More