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Abstract

We propose a new theoretical study of domain adaptation for majority vote classi-
fiers (from a source to a target domain). We upper bound the target risk by a trade-
off between only two terms: The voters’ joint errors on the source domain, and
the voters’ disagreement on the target one. Hence, this new study is simpler than
other analyses that usually rely on three terms. We also derive a PAC-Bayesian
generalization bound leading to a DA algorithm for linear classifiers.

1 Introduction

Machine learning practitioners are commonly exposed to domain adaptation (DA) [1, 2]: One usu-
ally learns a model from a corpus, i.e., a fixed yet unknown source distribution/domain, and then
wants to apply it on a new corpus, i.e., a related but slightly different target distribution/domain.
Several approaches exist in the literature to address DA, but often with the same idea: If the source
domain is “close” to the target domain (possibly given a transformation), then one can learn a model
from the source examples. This process is generally performed by iterative procedures [3, 4], and/or
by reweighting the importance of labeled data [5, 6, 7], and/or by minimizing a measure of diver-
gence between the domains [8, 9]. The divergence-based approach has especially been explored
to derive generalization bounds for DA [10, 11, 12, 13, 14, 9]. Recently, this issue has been stud-
ied through the PAC-Bayesian framework [9], which focuses on learning weighted majority votes1.
Even if this result opens the door to tackle DA in a PAC-Bayesian fashion, it shares the same phi-
losophy than the seminal works of Ben-David et al. [11, 12] and Mansour et al. [13]: The target
error is upper-bounded by a trade-off between the source error, the divergence between the marginal
domains, and a non-estimable term related to the ability to adapt in the current space.

In this paper, we derive a novel DA bound relying on a simpler expression: The target error is upper-
bounded by a trade-off between the voters’ disagreement on the target domain, and the voters’
joint errors on the source domain. The trade-off between these two terms is given by a notion of
divergence between the source and the target domains. From an algorithm design perspective, an
interesting characteristic of the new bound is that this trade-off expression can be dealt as a constant
and thus seen as a hyperparameter to tune. Therefore, we provide a PAC-Bayesian generalization
bound to justify the empirical minimization of this new DA trade-off and provide an algorithm that
clearly improves the performances of the previous PAC-Bayesian DA algorithm [9].

1This setting is not too restrictive since many machine learning approaches can be seen as a majority vote
learning. Think for instance to ensemble learning, or to support vector machines which output classifiers.
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2 PAC-Bayesian Domain Adaptation Setting and the Previous Analysis

Notations. We stand in the DA PAC-Bayesian setting studied in [9]. We tackle DA binary classifi-
cation tasks from a d-dimensional input space X⊆Rd to the output space Y ={−1, 1}. Our goal is
to perform DA from a source domain S on X×Y to a different but related target domain T on X×Y ;
with marginal distribution on X respectively denoted SX and TX. Given a domain D, we denote
(D)m the distribution of a m-sample of m elements drawn i.i.d. from D. We consider unsupervised
DA for which the algorithm is provided with a labeled source ms-sample S={(xi, yi)}ms

i=1∼ (S)ms ,
and with an unlabeled target mt-sample T ={χi}mt

i=1∼ (TX)mt . Given H, a set of voters h : X→Y,
the “ingredients” of the PAC-Bayesian DA approach are a prior distribution π onH, a pair of source-
target learning sets (S, T ) and a posterior distribution ρ on H. The prior π models an a priori
belief—before observing (S, T )—of the voters’ accuracy. Then, given (S, T ), the learner aims at
finding a posterior ρ leading to a ρ-weighted majority vote over H, Bρ(·) = sign [Eh∼ρ h(·)] , with a
low true target risk: RT (Bρ) = E(χ,y)∼T I [Bρ(χ) 6= y] , where I [a] = 1 if a is true, and 0 otherwise.
However, in the PAC-Bayes framework [15, 16, 17], one does not directly focus on the risk of the
deterministic Bρ, but studies the risk of the closely related stochastic Gibbs classifier Gρ. Given
x ∈ X, the output of Gρ(x) is obtained by first drawing a voter h ∈ H according to ρ, and then
returning h(x). Thus, the risk of Gρ on a domain D is the expectation of the risks according to ρ :

RD(Gρ) = E
(x,y)∼D

E
h∼ρ

I [h(x) 6= y] . (1)

The basic relation between the deterministic Bρ and the stochastic Gρ is RD(Bρ) ≤ 2RD(Gρ) . A
tighter bound on RD(Bρ) exists [18, 19], and depends on the expected disagreement dDX

(ρ) and
the expected joint error eD(ρ) of the pairs of voters, defined as
dDX(ρ) = E

x∼DX

E
(h,h′)∼ρ2

I
[
h(x) 6=h′(x)

]
, and eD(ρ) = E

(x,y)∼D
E

(h,h′)∼ρ2
I [h(x) 6=y] I

[
h′(x) 6=y

]
, (2)

with ρ2(h, h′)=ρ(h)×ρ(h′). Given S∼ (D)m, we use R̂S(Gρ), d̂S(ρ) and êS(ρ) to denote the em-
pirical estimation of the risk of the Gibbs classifier, the disagreement and the joint error respectively.
Note that, given a domain D, the starting point of our work is the following simple observation:

∀ρ onH, RD(Gρ) =
1

2
E

(x,y)∼D
E

(h,h′)∼ρ2

(
I [h(x) 6=y]+I [h′(x) 6=y]

)
=

1

2
dDX

(ρ)+eD(ρ) . (3)

The Previous PAC-Bayesian DA Analysis and Algorithm. Inspired by the seminal DA analy-
ses [11, 12, 13], the following PAC-Bayesian DA bound was derived by Germain et al. [9]. It is
based on a divergence between distributions suitable for the stochastic Gibbs classifier (see Eq. (4)).
Theorem 1 (Germain et al. [9]). LetH be a set of voters. For any domains S and T , we have:

∀ρ onH, RT (Gρ) ≤ RS(Gρ) + disρ(SX, TX) + λ(ρ, ρT
∗) ,

where disρ(SX, TX) is the domain disagreement between the marginals SX and TX:

disρ(SX, TX) =
∣∣dSX(ρ)− dTX(ρ)

∣∣ , (4)
and λ(ρ, ρT

∗) is a non-estimable term from unlabeled target samples, and ρT∗=argminρ RT (Gρ).

This bound reflects a prevalent DA philosophy [11, 12, 13]. Indeed, assuming that λ(ρ, ρT
∗) is

small, a nice situation for DA arises when the divergence disρ(SX, TX) and the source risk RS(Gρ)
are small. Along with the above theorem, Germain et al. [9] provide the following PAC-Bayesian
generalization bound (based on the PAC-Bayes analysis of non-adaptative learning of Catoni [17]).
Theorem 2. For any domains S and T , any set of votersH, any prior π overH, any δ ∈ (0, 1], any
a > 0 and c > 0, with a probability at least 1− δ over the choice of S×T ∼(S×TX)m, we have:

∀ρ onH, RT (Gρ) ≤ c′R̂S(Gρ)+a′d̂isρ(S, T )+
(
c′

c + 2a′

a

)(KL(ρ‖π)+ln 3
δ

m

)
+λ(ρ, ρT

∗)+α′−1,

where R̂S(Gρ), resp. d̂isρ(S, T ), is the empirical estimation of RS(Gρ), resp. of d̂isρ(S, T ), and
c′ = c

1−e−c , and a′ = 2a
1−e−2a , and KL(ρ‖π) is the Kullback-Leibler divergence between ρ and π.

This justifies the DA algorithm PBDA [9], which aims at minimizing the previous bound given a
source-target sample (S, T ). However, λ(ρ, ρT

∗) does not appear in the optimization process since it
cannot be estimated from unlabeled target data. In [9], they argued that λ(ρ, ρT

∗) is negligible when
DA is achievable (which is a strong assumption as it relies on ρ). Thus, givenA>0 andC>0, PBDA

minimizes the trade-off C R̂S(Gρ) +A d̂isρ(S, T ) + KL(ρ‖π), specialized to linear classifiers.
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3 A New PAC-Bayesian Domain Adaptation Bound and Algorithm

We now derive a simpler and more precise analysis. Inspired by the idea of [18, 19], we separate
the risk RT (Gρ) into dTX(ρ) and eT (ρ) (see Eq. (3)). In the present DA scenario, we are able
to estimate dTX(ρ) using T since it does not rely on label. However, eT (ρ) cannot be estimated
from T . Theorem 3 below presents our DA bound and links eT (ρ) with eS(ρ) by weighting the
latter by a divergence measure βq(T ‖S) between the domains, parameterized by a real value q>0:

βq(T ‖S) =

[
E

(x,y)∼S

(
T (x, y)

S(x, y)

)q ] 1
q

. (5)

We denote β∞(T ‖S) = sup(x,y)∈X×Y
T (x,y)
S(x,y) the limit case q →∞ . With some q values, we can

recover known divergences (e.g., the χ2-distance, with q = 2). Moreover, we can relate βq(T ‖S)
to the Rényi divergence2, which has already led to generalization bounds in the specific context of
importance weighting [7].

The divergence measure βq(T ‖S) between the two domains is the only term that cannot be estimated
from samples (since we do not consider target labels) in the statement of Th. 3 below.

Theorem 3. Let H be a set of voters, let S and T resp. be the source and the target domains on
X×Y . Let q > 1 be a constant. We have:

∀ρ onH, RT (Gρ) ≤ 1
2 dTX(ρ) + βq(T ‖S)×

[
eS(ρ)

]1− 1
q

.

where dTX(ρ), eS(ρ) and βq(T ‖S) are respectively defined by Eq. (2) and (5).

Proof. Starting from Eq. (3), and thanks to Hölder inequality, with p such that 1
p = 1− 1

q , we have

∀ρ onH,RT (Gρ) =
1

2
dTX(ρ) + E

(x,y)∼S

(
T (x, y)

S(x, y)
E

(h,h′)∼ρ2
I [h(x) 6= y] I

[
h′(x) 6= y

])
≤ 1

2
dTX(ρ) +

[
E

(x,y)∼S

(
T (x, y)

S(x, y)

)q] 1
q
[

E
(h,h′)∼ρ2

E
(x,y)∼S

(
I [h(x) 6= y] I

[
h′(x) 6= y

])p] 1
p

.

We remove the exponent from (I [h(x) 6=y] I [h′(x) 6=y])p since its value is either 1 or 0.

It is instructive to compare Th. 3 with the previous Th. 1. In the new bound, the only non-estimable
term is βq(T ‖S); Contrary to λ(ρ, ρT

∗) of Th. 1, it does not depend on the posterior ρ learned, i.e.,
for all ρ onH, βq(T ‖S) is a constant measuring the relation between domains. Moreover, βq(T ‖S)
is not an additive term but a multiplicative one (as opposed to disρ(SX, TX)+λ(ρ, ρT

∗)). This is a
contribution of our new analysis, since βq(T ‖S) can be considered as a hyperparameter to tune the
trade-off between dTX(ρ) and eS(ρ). Thus, we do not need to make assumptions on its value.

PAC-Bayesian Generalization Bounds. (we skip the proofs of this paragraph, the reader can find them
in our research report [20]) For justifying the empirical minimization of our new bound, we first provide
PAC-Bayesian theorems for dTX(ρ) and eS(ρ).

Theorem 4. For any S and T , anyH, any π onH, any δ∈(0, 1], any a>0 and c>0, we have:

Pr
T∼(TX)mt

(
∀ρ onH, dTX(ρ) ≤ c′ d̂T (ρ) +

c′

c

2KL(ρ‖π) + ln 1
δ

mt

)
≥ 1− δ ,

and Pr
S∼(S)ms

(
∀ρ onH, eS(ρ) ≤ a′ êS(ρ) +

a′

a

2KL(ρ‖π) + ln 1
δ

ms

)
≥ 1− δ .

where d̂T (ρ), resp. êS(ρ), is the empirical estimation of dTX(ρ), resp.eS(ρ), c′= c
1−e−c, and a′= a

1−e−a.

For algorithmic reasons, we deal with Th. 3 when q→∞. Thanks to Th. 4, minimizing Th. 3 bound
amounts to optimize Th. 5 bound below, defined w.r.t. the empirical estimates of dTX(ρ) and eS(ρ).

2For every q ≥ 0, we can easily prove that: βq(T ‖S) = dq(T ‖S)
q−1
q , where dq(T‖S) = 2Dq(T ‖S) with

Dq(T ‖S) the Rényi divergence between T and S.
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Table 1: Error rates on Amazon dataset. Best risks appear in bold and seconds are in italic.

SVMCV DASVMRCV CODARCV PBDARCV DALC RCV

books→DVDs 0 .179 0.193 0.181 0.183 0.178
books→electronics 0.290 0 .226 0.232 0.263 0.212
books→kitchen 0.251 0.179 0.215 0.229 0 .194
DVDs→books 0.203 0.202 0.217 0 .197 0.186
DVDs→electronics 0.269 0.186 0 .214 0.241 0.245
DVDs→kitchen 0.232 0.183 0 .181 0.186 0.175
electronics→books 0.287 0.305 0.275 0.232 0 .240
electronics→DVDs 0.267 0.214 0.239 0 .221 0.256
electronics→kitchen 0 .129 0.149 0.134 0.141 0.123
kitchen→books 0.267 0.259 0 .247 0 .247 0.236
kitchen→DVDs 0.253 0.198 0.238 0.233 0 .225
kitchen→electronics 0.149 0.157 0.153 0.129 0 .131

Average 0.231 0 .204 0.210 0.208 0.200

Theorem 5. For any domains S and T , any set of voters H, any prior π on H, any δ ∈ (0, 1], any
a > 0 and c > 0, with a probability at least 1−δ over the choice of S×T ∼(S×TX)m, we have

∀ρ onH, RT (Gρ) ≤ c′
1

2
d̂T (ρ) + b′ êS(ρ) +

(
c′

c
+

b′

b a

)
2KL(ρ‖π) + ln 2

δ

m
,

where b = β∞(T ‖S), and b′ = b a
1−ea , and c′ = c

1−e−c .

The Algorithm. (more details on the derivation of the algorithm are given in our research report [20]) From
an optimization perspective, the problem suggested by Th. 5 is much more convenient to minimize
than the one of Th. 2. The former is smoother than the latter that contains an absolute value required
by d̂isρ(S, T ). Germain et al. [9] choose also to ignore the non-constant term λ(ρ, ρT

∗). In our case,
such compromise is not mandatory to apply the theoretical result to real DA problems. Recalling
that βq(T ‖S) is a constant that can tuned, and according to Th. 5, given hyperparameters C>0 and
B>0—where B models the divergence between T and S—we propose to minimize the trade-off
C d̂T (ρ) +B êS(ρ) + KL(ρ‖π) . We follow the setting of PBDA [9] for specializing this equation to
linear classifiers. Therefore, we considerH as a set of linear classifiers in a d-dimensional space, and
we use Gaussian posterior ρw and prior π0 with identity covariance matrix (respectively centered on
vectors w and 0). Then, our new algorithm, called DALC (Domain Adaptation of Linear Classifiers),
consists in minimizing

G(w) = C ×
mt∑
i=1

Φ

(
w · χi
‖χi‖

)
Φ

(
−w · χi
‖χi‖

)
+B ×

ms∑
i=1

[
Φ

(
yi

w · xi
‖xi‖

)]2
+

1

2
‖w‖2 , (6)

where Φ(x) = 1
2

[
1−Erf

(
x√
2

)]
. Similarly to PBDA [9], we can apply the kernel trick. Even though

the objective function is highly non-convex, we achieved good empirical results by minimizing the
“kernelized” version of Eq. (6) by gradient descent, with a uniform weight vector as a starting point.

Experiments. We evaluate DALC3 on the Amazon.com Reviews benchmark [21] according to the
setting used in [4, 9] (See [9] for a complete description). This dataset contains reviews of 4 types
of products (books, DVDs, electronics, and kitchen appliances), labeled into two classes: products
rated≤3 and products rated≥4. The data are described with about 40, 000 attributes. A domain is a
type of product, and a task consists in adapting from a kind to (→) another one. We compare DALC
with the non-adaptative SVM (trained only on S), the adaptative DASVM [3], the DA co-training
CODA [4], and the PAC-Bayesian DA algorithm PBDA [9]. Each parameter is selected with cross-
validation (CV ) on the S for SVM, and thanks to a reverse validation procedure [3, 22](RCV ) for
CODA, DASVM, PBDA, and DALC. The algorithms use a linear kernel, with |S|= |T |=2, 000. Tab. 1
reports the error rates of the methods evaluated on the same separate target test sets proposed in [4].
Above all, the DA approaches show the best result, implying that tackling this problem with a DA
method is reasonable. Except for the two DA tasks between “electronics” and “DVDs”, DALC is
either the best one (6 times), or the second one (4 times). Moreover, DALC clearly increases the
performances over the previous PAC-Bayesian PBDA, which confirms that our new bound improves
the analysis done by Germain et al. [9].

3We released the source code at http://graal.ift.ulaval.ca/dalc/.
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