Spherical parameterization for genus zero surfaces using Laplace-Beltrami eigenfunctions
Résumé
In this work, we propose a fast and simple approach to obtain a spherical parameterization of a certain class of closed surfaces without holes. Our approach relies on empirical findings that can be mathematically investigated, to a certain extent, by using Laplace-Beltrami Operator and associated geometrical tools. The mapping proposed here is defined by considering only the three first non-trivial eigenfunctions of the Laplace-Beltrami Operator. Our approach requires a topological condition on those eigenfunctions, whose nodal domains must be 2. We show the efficiency of the approach through numerical experiments performed on cortical surface meshes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...