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Abstract. In this work, we propose a fast and simple approach to obtain
a spherical parameterization of a certain class of closed surfaces without
holes. Our approach relies on empirical findings that can be mathemat-
ically investigated, to a certain extent, by using Laplace-Beltrami Op-
erator and associated geometrical tools. The mapping proposed here is
defined by considering only the three first non-trivial eigenfunctions of
the Laplace-Beltrami Operator. Our approach requires a topological con-
dition on those eigenfunctions, whose nodal domains must be 2. We show
the efficiency of the approach through numerical experiments performed
on cortical surface meshes.
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1 Introduction

Spherical parametrization of 3D closed (genus-0) meshes is a classical approach
in computer graphics for texture mapping, remeshing and morphing [11]. Neu-
roimaging data analysis is an important field of applications since representing
the brain as a closed surface is increasingly popular in the community, in line
with the specific advantages for e.g. visualization and inter-subjects mapping [5].
Several works [7,1] translated most recent methodological advances from com-
puter graphics to brain mapping, and put emphasis on two properties that are
particularly desirable in this field [8]: the spherical parameterization must be
fold-free to ensure the validity of neuroimaging data analysis that rely on the
spherical representation, and computationally efficient in order to be applicable
to large number of individual meshes whose sub-milimetric resolution involves
typically more than 100 K vertices.
In this work, we propose a fast and simple approach to obtain a spherical param-
eterization of a certain class of genus 0 surfaces. Our approach is a particular case
of the one defined by Bérard in [3], by considering only the three first non-trivial
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eigenfunctions of the Laplace-Beltrami Operator. A comparable approach has
also been proposed in [8] but implies to solve a highly non linear partial differen-
tial equation. We note also an empirical approach based on the spatial regularity
of the first eigenfunctions in [10]. We complement these papers with preliminary
theoretical contributions, which echo with empirical findings that make it very
appealing for neuroimaging studies. In particular, our contributions support the
C∞ diffeomorphic nature of our mapping, under specific condition on the consid-
ered surface. We show through numerical experiments performed on 138 cortical
surface meshes that this condition is systematically met in practice. Moreover,
the resulting mapping is computed in few seconds and almost diffeomorphic with
less than 1% of folded triangles on average.

2 Background and main results

We recall first classical results on Spectral theory and Laplace-Beltrami eigen-
functions. The interested reader can refer to [12].

2.1 Laplace-Beltrami eigenfunctions

Definition 1 Given (M, g) a compact 2-Riemannian manifold without bound-
ary, denoting x(p) = (x1, x2) a local coordinate system, i.e. a local diffeomor-
phism M→ R2 around a point p, the Laplace-Beltrami operator acting on C∞

functions is

∆f =
1√
det(g)

∑
i,j

∂xj

(√
det(g)gi,j∂xif

)
(1)

Remark 1. In the applications M will be a closed surface in R3 and the metric
g will correspond to the euclidean inner product.

If we consider the eigenvalue problem:

∆f = −λf (2)

we know that it has eigenvalues 0 = λ0 < λ1 ≤ λ2... and corresponding eigen-
functions Φ1, Φ2, ... (See Fig 1 for a visual intuition of some Φi). The eigenfunc-
tions are orthogonal in the sense of the scalar product < u, v >M=

∫
M uvdµ,

where the volume form dµ is given by
√
det(g)dx1dx2.

Definition 2 Given an eigenfunction Φ of the Laplace-Beltrami Operator, we
call nodal set the set of points where Φ vanishes. We denote it N(Φ) in the
following. The nodal domains correspond to the connected components of the
complementary of the nodal set.

We have some qualitative results on the nodal domains of eigenfunctions:



Theorem 1 (Courant’s nodal domain theorem) The number of nodal do-
mains for the n-th eigenfunction is inferior or equal to n+ 1.

There is a global result on the dimension of nodal sets whenM is a 2-manifold:

Theorem 2 (S.H. Cheng [4]) Except on a closed set of points, the nodal set
of an eigenfunction Φ is a C∞ 1-manifold, i.e. a line in our applications.

Last we recall the Green formula for an open set D ∈M that will be of great
use in the following:

∫
D

Φ∆Ψdµ = −
∫
D

g(∇Φ,∇Ψ)dµ+

∫
∂D

Φ(∇Ψ · n)dµ̃ (3)

dµ̃ is the induced metric on the boundary. For simplicity, we use the notation
· instead of the riemannian metric g(., .) and remove the volume forms in the
following.

Fig. 1: From left to right: eigenfunctions Φ1, Φ2 and Φ3. Colormap goes from
blue (negative) to red/yellow (positive). Each nodal sets are in green.

2.2 Main conjecture

Based on empirical findings we suggest the following result, which allows to
define a natural spherical parameterization:

Conjecture 3 Let M be a genus zero surface in R3. Let Φ1, Φ2 and Φ3 be
three orthogonal eigenfunctions of the Laplace-Beltrami operator. We assume
they have only two nodal domains. Then the mapping

Φ :M−→ S2

p 7−→
(√

Φ1(p)2 + Φ2(p)2 + Φ3(p)2
)−1(

Φ1(p), Φ2(p), Φ3(p)
)

is well defined and it is a C∞ diffeomorphism.



Remark 2. The orthogonality condition is more general than assuming different
eigenvalues and allows applying the conjecture on the sphere itself. In that case
Φ is exactly the identity (up to a multiplicative constant). Namely, given a point
p and its spherical coordinates p = (sin θ cosφ, sin θ sinφ, cos θ), a choice of three

first normalized eigenfunctions is
√

3
4π cos θ,

√
3
4π sin θ cosφ and

√
3
4π sin θ sinφ.

Remark 3. The mapping Φ is a particular case of the mapping Φλ :M→ SN(λ)

proposed by Pierre Bérard in [3] where N(λ) is the number of eigenvalues inferior
to λ. But it is important to note that the proper definition of Φ is easier in
[3] when λ is large enough because the denominator is guaranteed to never
vanish. It was also shown that Φλ is an embedding for λ large enough. In our
case the restrictions on the topology of the eigenfunctions could guarantee the
diffeomorphic aspect for only 3 eigenfunctions.

Remark 4. We first proposed a sketch of proof for the injectivity of Φ by using
properties of the mapping F : p →

(
Φ1(p), Φ2(p), Φ3(p)

)
. In particular, we used

the formula ∆F(p) = 2H(p)N(p) linking laplacian of coordinates and mean cur-
vature for hypersurfaces, combined with ∆F = (−λ1Φ1,−λ2Φ2,−λ3Φ3). But it
is important to see that the first formula holds if ∆ is the Laplace-Beltrami oper-
ator of F(M) (provided it is a submanifold !) which makes the second equation
not true anymore.
Nevertheless our initial flaw was at the origin of experimental observations that
yield the conjecture:

Conjecture 4 With the previous notations and hypotheses, F(M) is a genus-
zero surface whose mean curvature has a constant sign.

3 Preliminary results

Our initial strategy to tackle the first conjecture was:

– to prove first that intersection points of two nodal sets exist, thanks to global
arguments.

– to characterize those intersections in terms of the angle between the two iso-
lines (equivalently the gradient of the eigenfunctions), by using local results
on eigenfunctions. That sort of results are known for auto-intersection of
nodal sets.

Those two first steps would allow a correct definition of the mapping Φ but the
diffeomorphic aspect remains the most difficult part.

Proposition 1 Let M be a genus zero surface in R3. We consider two eigen-
functions Φ and Ψ with only two nodal domains and different associated eigen-
values. Then their nodal sets have at least one intersection point.



Proof. Let λ and λ′ be the two eigenvalues associated to Φ and Ψ . Since Φ and Ψ
have two nodal domains, their nodal sets divide M in two parts respectively. If
we assume that N(Φ)∩N(Ψ) = ∅, we have a partition ofM in three connected
domains D1, D2, D3 and the two nodal sets (of measure 0).

where

D1 = {p|Φ(p) > 0, Ψ(p) > 0}
D2 = {p|Φ(p) > 0, Ψ(p) < 0}
D3 = {p|Φ(p) < 0, Ψ(p) < 0}

The figure on the right provides a
schematic illustration of the configuration.
Inspired by this figure, we define B = D2

and use the Green formula in two different
ways:

λ

∫
B

ΦΨ =

∫
B

−Ψ∆Φ =

∫
B

∇Ψ · ∇Φ−
∫
∂B

Φ
(
∇Ψ · n

)
λ′
∫
B

ΦΨ =

∫
B

−Φ∆Ψ =

∫
B

∇Ψ · ∇Φ−
∫
∂B

Ψ
(
∇Φ · n

)
to obtain

(λ′ − λ)

∫
B

ΦΨ =

∫
∂B

Φ
(
∇Ψ · n

)
−
∫
∂B

Ψ
(
∇Φ · n

)
(4)

The boundary ∂B equals N(Φ) ∪N(Ψ). On N(Φ) (resp. N(Ψ)) we have Φ = 0
(resp. Ψ = 0) and onN(Ψ) (resp.N(Φ)) we have also∇Ψ ·n = 0 (resp.∇Φ·n = 0)
since N(Ψ) is a level set of Ψ (resp. Φ). Then the two integrals in the right term
of (4) vanish which leads to

∫
B
ΦΨ = 0. It is a contradiction since both Φ and Ψ

have a constant sign on B. �

Remark 5. We can find simple examples where this proposition fails when the
nodal domains are more than 2. For very elongated ellipsoids the second and
third eigenfunctions have respectively 3 and 4 nodal domains. Numerical simu-
lations (not shown here) revealed that the three first eigenfunctions have isolines
that are all parallel and nodal sets have no intersection points.

Remark 6. It is probably harder to find examples of surfaces for which there
is only one intersection point. This singular configuration implies a colinearity
of ∇Φ and ∇Ψ at the crossing point. Conversely if there is no colinearity at an
intersection point, one can intuitively conclude that there is at least a second
intersection point by an argument à la Jordan.

Next our initial attempt to characterize the local behavior at the intersection
point followed ideas exposed in [4]. In particular Theorem 2.5 says that when the
nodal lines of a given eigenfunction meet, they form an equiangular system. The



proof relies on local approximations of solutions of elliptic partial differential
equations close to the origin in the C∞ case thanks to a theorem by Lipman
Bers. Nevertheless this strategy appeared to be too general in our case and we
were not able to obtain a relationship linking angle between nodal sets of two
eigenfunctions and other quantities such as the local mean curvature, even if
numerical computations may reveal interesting behaviors (see Fig 3 right).

4 Experimental results

Data We implemented our approach on 138 triangular meshes of cortical surfaces
from the OASIS database that were segmented through FreeSurfer software.
The number of vertices ranges from 106914 to 167230 vertices. Laplace-Beltrami
eigenfunctions were computed through a variational formulation of Equation (2)
and a discretization with Finite Element Methods [6]. On Fig 1 we displayed
the three first eigenfunctions and the nodal set in green for a given surface. We
observed that the three first eigenfunctions had only 2 nodal domains (yellow
and blue in each case). The codes were implemented in MATLAB on a Mac with
a 2.6 GHZ processor. CPU time ranges from 3.76s to 6.71s.

Diffeomorphic aspects On Fig 2 we illustrated our approach for a brain mesh
at left on which the mean curvature was computed following [6] and was repre-
sented as an image. The surface F(M) was represented on the middle with the
initial curvature. The orientation followed the one of the brain at left. On the
right we showed the sphere Φ(M) and the inital mean curvature with the same
orientation as previously.
Next we verified that for all the meshes, the number of nodal domains of the
three first non-trivial eigenfunctions were exactly 2. We evaluated the number of
flipped faces in percentage, ranging from 0.008% to 7.01% (average: 0.29±0.7%).
Fig 4 left showed an example of such faces and we observed that they correspond
to local defects in the mesh, probably affecting a proper approximation of eigen-
functions.

Fig. 2: Left: Cortical surface M and its mean curvature. Colormap goes from
blue (negative) to red/yellow (positive). Middle: F(M). Right: spherical surface
with the initial curvature.



Reproducibility On Fig 3 left and middle we represented the intersection points
of the 3 first nodal sets for all the meshes superimposed in the Talairach space,
a classical reference system in neuroimaging. We observed first that those inter-
section points are only 6 for each brain and secondly that they are consistently
distributed in 3D. This result is of course related to the stability of the first
eigenfunctions across the different brains and is more directly interpretable by
looking at points than functions. On Fig 3 right we displayed the distribution of
angles between nodal sets. The distribution is unimodal in one case (intersection
of Φ1 and Φ3) and bimodal for the other cases.

Distorsions Finally we obtained evaluations of geometric distorsions through
angular errors and relative error on lengths across all the meshes (Fig 4 middle
and right). Those errors are discrepencies between the values measured on the
initial mesh and on the spherical representation. Even if the errors are larger
than for methods that explicitly minimize distorsions [5,1], the average values
are of the same order of magnitude.

Fig. 3: Left and middle: The 6 intersection points of the 3 first nodal sets for all
the meshes superimposed in the Talairach space. A slightly transparent cortical
mesh is shown to illustrate the reproducibility. Right: Distribution of angles
between nodal sets of 1st and 2nd, 1st and 3rd, 2nd and 3rd eigenfunctions. On
the three figures the colors are matched.

5 Discussion and perspectives

In this work we have proposed a spherical mapping with preliminary mathe-
matical and empirical results in favor of a C∞ diffeomorphic property. Cortical
surfaces were very suitable in our case because they satisfy the property pro-
posed in our mathematical part, with a number of nodal domains equal to 2. In
practice we obtained (a limited number of) flipped faces due to mesh irregular-
ities. Moreover the computation time was 5s in average, which outperforms the
recent approach in [8]. Our approach offers a correct stability across a group of



brain shapes, in the sense that interesting features such as intersection of nodal
sets are quite consistent. Our mapping is probably suboptimal when it comes
to match brain meshes with respect to strategies using more eigenfunctions [10].
Nevertheless our method would be very appropriate for a faster initialization of
a spherical mapping instead of a Gauss map and Tutte map [7]. It can also be
used ”on the fly” for extensive simulations [9].
We could try to generalize our results for any kind of spherical mesh by looking
for eigenfunctions associated to larger eigenvalues in the spectrum, with only
2 nodal domains. But there is no guarantee that there exist 3 eigenfunctions
of this kind. We could think also to possible extensions for manifolds of higher
dimension. In [2] results have been obtained to bound the embedding dimen-
sion of Laplacian eigenfunctions map thanks to Ricci curvature and injectivity
radius. A topological condition on the number of nodal domains could produce
complementary views on this question.

Fig. 4: From left to right: Examples of flipped triangles in green, distributions of
angular error (in degree) and relative error on distances (%).
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