A BLIND DEBLURRING AND IMAGE DECOMPOSITION APPROACH FOR ASTRONOMICAL IMAGE RESTORATION
Résumé
With the progress of adaptive optics systems, ground-based telescopes acquire images with improved resolutions. However, compensation for atmospheric turbulence is still partial, which leaves good scope for digital restoration techniques to recover fine details in the images. A blind image deblurring algorithm for a single long-exposure image is proposed, which is an instance of maximum-a-posteriori estimation posed as constrained non-convex optimization problem. A view of sky contains mainly two types of sources: point-like and smooth extended sources. The algorithm takes into
account this fact explicitly by imposing different priors on these components, and recovers two separate maps for them. Moreover, an appropriate prior on the blur kernel is also considered. The resulting optimization problem is solved by alternating minimization. The initial experimental results on synthetically corrupted images are promising, the algorithm is able to restore the fine details in the image, and recover the point spread function.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...