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F-42000, Saint-Étienne, France

Eric Thiébaut
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ABSTRACT

With the progress of adaptive optics systems, ground-based
telescopes acquire images with improved resolutions. How-
ever, compensation for atmospheric turbulence is still partial,
which leaves good scope for digital restoration techniques
to recover fine details in the images. A blind image deblur-
ring algorithm for a single long-exposure image is proposed,
which is an instance of maximum-a-posteriori estimation
posed as constrained non-convex optimization problem. A
view of sky contains mainly two types of sources: point-
like and smooth extended sources. The algorithm takes into
account this fact explicitly by imposing different priors on
these components, and recovers two separate maps for them.
Moreover, an appropriate prior on the blur kernel is also
considered. The resulting optimization problem is solved by
alternating minimization. The initial experimental results on
synthetically corrupted images are promising, the algorithm
is able to restore the fine details in the image, and recover the
point spread function.

Index Terms— Astronomical imaging, blind image de-
blurring, non-convex optimization, alternate minimization,
Huber function, ADMM.

1. INTRODUCTION

Acquiring photometrically precise and high resolution images
from a ground-based imaging system is highly desirable and
remains a long-standing problem in astronomy. The atmo-
spheric turbulence is the major culprit for the distortions in the
acquired images. Adaptive optics (AO) [1] partially compen-
sates the turbulence in real-time and brings the effective point-
spread-function (PSF) closer to the diffraction limit. How-
ever, some amount of blur remains in long-exposure images,
and the finest details in the images, which are very important
for the astrophysical interpretations, are lost. It is therefore
necessary to use image restoration techniques to enhance the
quality of the images [2–4].
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Within the isoplanatic domain, the PSF is stationary, and
the observed image y formed at the focal plane of the imaging
system due to the sought sharp image x can be modeled by
the following discretized image formation model:

y = P(H x) + n (1)
where n is a vector drawn from a white Gaussian distribu-
tion, P denotes a Poisson random process, H is the matrix
of discrete convolution from PSF h. The image formation
model (1) is valid once the scale of image values is expressed
in photons, and the background and the flat field corrections
have been done on raw observed image.

Recovering x from y even when h is known perfectly is
already a difficult inverse problem because the matrix H is
often ill-conditioned. It is more realistic to consider that the
PSF h is not known perfectly, given the imperfect corrections
by AO [5,6]. Blind image deblurring (BID) is the problem of
inferring x from an input y when the h is unknown [7].

Image restoration, in general, has a long history that began
in 1950s with astronomical image restoration [3], whereas the
development of BID can be traced back to 1970s [8]. BID has
been vastly explored for restoring natural images degraded
due to motion blur and camera defocus (see [9] and the ref-
erences within), but only a few are dedicated to astronomical
images [4, 8, 10–13]. The BID approaches are specific to the
applications, however, most of the successful approaches are
built on a Bayesian framework differing primarily in the prior
information they include about the image and the blur kernel
to restore them.
Contribution: Many astronomical images can be described
as a superimposition of two types of components: point-like
sources (PS) and extended smooth sources (ES), on a dark
background. Image decomposition approaches [14] have
been shown to be very useful in image restoration applica-
tions. In this paper, we extend the decomposition approach
of [15] to the blind deconvolution setting. Different a priori
are imposed on each component to estimated two separate
maps for them. An appropriate a priori on the PSF is also
imposed. Recovering precisely the position and intensity of
PS embedded into ES is of great interest for astronomers. PS
are very effective features in the image to precisely estimate



the PSF, and thus, when the algorithm progresses to recover
precisely the PS, the PSF estimation gets refined, which then
ultimately refines the structural details in ES.

2. BLIND IMAGE DEBLURRING

2.1. BID as MAP estimation

Since BID is fundamentally an ill-conditioned and ill-posed
problem, strong priors on both the unknown sharp image and
the PSF are required to regularize the problem. This naturally
leads to maximum-a-posteriori (MAP) estimation framework:

{x̂, ĥ}MAP := argmax
x,h
{p(y|x,h) p(x) p(h)} (2)

which jointly estimates the unknown image and the blur. The
likelihood p(y|x,h) of observed data depends upon the noise
statistics, and the prior distributions p(x) and p(h) impose the
prior knowledge about the sought unknowns. Recently, [16]
pointed out that MAP approach may completely fail for BID
in the absence of a prior on the PSF h favoring some amount
of spreading. The authors advocate to use a marginalization
approach within a variational Bayesian approximation to es-
timate more reliably the PSF h. In the case of astronomical
images, the presence of PS provides both the good starting
guess of the PSF and the explicit detection of all point sources
of the image during the blind deconvolution procedure helps
the MAP approach to succeed, as shown below.

The MAP estimation can equivalently be cast as a mini-
mization problem:
{x̂, ĥ}MAP := argmin

x,h
− log {p(y|x,h) p(x) p(h)} (3)

by taking negative log of equation (2). In the following sec-
tions, we specify in detail the each term of equation (3).

2.2. The data fitting term

We consider the non-stationary white Gaussian noise model
proposed in [4], which is a pretty accurate approximation for
the mix of Poisson and Gaussian noise while keeping the
complexity arising in the optimization problem at a moderate
level. We believe that sufficiently precise and simple noise
model with strict a priori constraints on the solution can re-
sult into better behavior of the BID algorithm than a more
complex noise model which can hinder in strict enforcement
of the constraints. Dropping out the constant terms, the like-
lihood for the noise model is written as:
− log p(y|x,h) =

∑
i

1

2σi
(y − h ∗ x)2i =

1

2
‖y −Hx‖2W

where σi = σphi + σdeti , and σphi and σdeti are photon (Pois-
son) and detector (Gaussian) noise variances at the i-th pixel
in the image. W is diagonal and is the inverse of the covari-
ance matrix, i.e. W i,i = 1/σi. The covariance matrix de-
pends on x and h, thus one could improve its estimate at each
iteration of the Algorithm 1 as proposed in [17], but in paper
we keep it fixed, and estimate it initially from the observed
image as suggested in [4]. For unknown measurements, such

as dead or saturated or boundary pixels, W i,i = 0, as done
for example in [18] for handling boundaries correctly.

2.3. The image regularizer

An astronomical image can be described as the superimposi-
tion of point (i.e., unresolved) sources (PS) and extended (i.e.,
resolved) sources (ES). From a statistical point of view, the PS
can be modeled as sparse uncorrelated pixels, and the ES as
smoothly varying correlated pixels. Thus, a sparsity induc-
ing `1-norm is imposed on the PS, and smoothness-inducing
edge-preserving Huber prior is imposed on the ES, and two
separate maps: xP and xE , are estimated . An important
physical constraint, the positivity of these maps, is also im-
posed, and the a priori on PS and ES are written as:

− log p(xP ) = λ‖xP ‖1, xP ≥ 0

− log p(xE) = µ
∑
i

φδ(∇i xE), xE ≥ 0

where φδ(t) =
{

1
2‖t‖22 ‖t‖2 6 δ
δ(‖t‖2 − δ

2 ) ‖t‖2 > δ,

and ∇i x ∈ R2 represents the gradient vector at the i-th pixel
of the image. {λ, µ} > 0 are tunable hyperparameters, and
δ ≥ 0 is a threshold. The prior on ES is an intermediate
between Total Variation and Sobolev regularization, and its
behavior is adjusted by the δ.

2.4. The PSF regularizer

For ground-based large telescopes, there are mainly two
regimes of imaging: long and short (less than ≈ 1/4 second)
exposures. Short exposure images take the form of speckle
patterns, consisting of multiple distorted and overlayed copies
of the diffraction-limited PSF. In order to increase the signal-
to-noise ratio, almost all astronomical imaging is performed
with long exposures, unless conditions (such as high sky
brightness in the infrared) prevent it. Because the short-
exposure PSFs are highly variable, both in structure and
centroid position, the summed long-exposure PSF is highly
blurred compared to the diffraction-limit, even with a good
seeing conditions. Thanks to the real-time correction of the
AO system, the long-exposure PSF is maintained closer to
diffraction-limit, but because of some remaining perturba-
tions in the imaging system, the effective PSF still has some
uncorrected parts. Several measurements of PSF done at
Gemini north and Keck observatory [6] reveal that the un-
corrected part of the PSF are approximately Lorentzian or
Gaussian shape or both atop the Airy pattern. The PSF of
the AO corrected imaging system is quite smooth with small
aberrations, thus a smoothness inducing Sobolev-norm on the
sought PSF is chosen as a priori on PSF. The PSF of the con-
sidered imaging system is always positive, upper bounded by
the peak value of the diffraction-limited PSF, and normalized,
thus the a priori on PSF is written as:

− log p(h) =
ν

2
‖∇h‖22, 0 ≤ h ≤ α, 1Th = 1.
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Fig. 1: Left to right: Profile of the PSFs used for BID illus-
tration on the image at the bottom row in Figure 3, Square
error profiles of the initial PSFs and the estimated PSFs with
respect to the true PSFs. PSF#1 and PSF#2 correspond to the
PSFs used for the top row and the bottom row in Figure 3
respectively.

where α is the peak value of Airy pattern for a given aperture,
and γ > 0 is hyperparameter.

2.5. BID as a constrained optimization problem

With all prior terms described in preceding sections, BID is
expressed as a constrained minimization problem:

{x̂P , x̂E , ĥ}MAP := arg min
xP ,xE ,h

1

2
‖y −Hx‖2W + λ‖xP ‖1

+ µ
∑
i

φ(∇xE)i +
ν

2
‖∇h‖22

s.t. xP + xE = x, xP ≥ 0, xE ≥ 0,

0 ≤ h ≤ α, 1Th = 1. (4)
This is a difficult large-scale non-convex optimization prob-
lem with non-differentiable terms, and still may have several
local minima even though we restrict its solution space with
the possible penalties and constraints. Few authors [12] pro-
pose to solve BID by a joint estimation approach (estimat-
ing simultaneously both x and h), but their formulations of
BID are comparatively simpler, and do not contain any non-
differentiable terms. Solving this problem by joint estimation
approach is a very difficult task, however, the problem is con-
vex with respect to each of the unknown when considering the
other fixed, thus, a much simpler and widespread approach is
to perform Alternating Minimization [19], as presented in Al-
gorithm 1. One can reach to the expected local minimum
using Algorithm 1, provided that one starts with a good initial
guess of the PSF. Luckily, in case of astronomical imaging,
finding a good initial guess of the PSF is not a tedious task,
one can extract it from the observed image itself by select-
ing few blurry point-like sources (reference stars), otherwise
one could ask for calibrated PSF from the astronomers: they
always have model fitted PSF to characterize their imaging
system. The calibrated PSF of an imaging system with AO
are quite close to the true PSF. The optimization problems (5)
and (6) in Algorithm 1 are solved by the variable splitting

Algorithm 1: Blind Deblurring Algorithm
Data: y, W , and {λ, µ, δ, γ}.
Result: {x̂, ĥ}
Initialization: h = h(0); t = 1;
while convergence not reached do

Image Estimation:
{x̂(t+1)

P , x̂
(t+1)
E } := arg min

xP ,xE

{1
2
‖y −Hx‖2W

+ λ‖xP ‖1 + µ
∑
i

φ(∇ixE)}

s.t. xP + xE = x, xP ≥ 0, xE ≥ 0. (5)

PSF Estimation:
ĥ
(t+1)

:= argmin
h
{1
2
‖y −Xh‖2W +

ν

2
‖∇h‖22}

s.t. 1Th = 1, 0 ≤ h ≤ α. (6)

t = t+ 1

return: x̂, ĥ,
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Fig. 2: Convergence of the proposed BID for the image shown
at bottom row in Figure 3: Left to right: Cost, and Image and
PSF PSNR vs number of FFTs

trick, and transforming the resulting constrained optimiza-
tion problem into an unconstrained problem by forming the
augmented Lagrangian. The solution is then found by mini-
mizing the augmented Lagrangian by the convex optimization
framework recently proposed in [20]. We introduce the vari-
ables splittings: xP − zP = 0 and ∇xE − zE = 0, and
transform the problem (5) into following unconstrained form:

min
xP ,xE ,zP ,zE ,uP ,uE

{ 1
2
‖y −Hx‖2W + g(xP ) + λ‖zP ‖1

+
ρ1
2
‖xP − zP + uP ‖22 + µ

∑
i

φ(∇izE) + g(xE)

+
ρ2
2
‖∇xE − zE + uE‖22 }

where g is an indicator function for positivity, {uP ,uE} are
scaled Lagrangian multipliers, and {ρ1, ρ2} > 0 are called
penalty parameters.

Similarly, we introduce the variable splitting: h− z = 0,
and transform the problem (6) into the unconstrained form:

min
h,z,u

{ 1
2
‖y−Xh‖2W+f1(h)+f2(z)+

ρ3
2
‖h−z+u‖22 }

where X is the discrete convolution matrix formed from the



image x, and f1, f2 are the indicator functions for the bound
and the probability simplex constraints, respectively. Again,
ρ3 > 0 is the penalty parameter, and u is scaled Lagrangian
multiplier. The penalty parameters are selected by hand to
achieve fast convergence speed, however a very large range of
values offer satisfactory convergence speed, as shown in [20].
The iterations for each of the problems are terminated once
the relative change in the cost function is sufficiently low, and
similarly, the outer iteration in Algorithm 1 is terminated once
the relative change in cost function (4) is sufficiently low.

2.6. The hyperparameters

The proposed BID includes three tunable hyperparameters:
{λ, µ, ν} ≥ 0, and a tunable threshold: δ ≥ 0. The hyperpa-
rameters balance between the likelihood term and the priors,
and their values are proportional to noise variance in the ob-
served image. Hyperparameter λ controls the sparsity in the
PS map, µ and δ control the smoothness and sharp edges in
the ES map, and the ν controls the smoothness of the PSF. A
good balance among the hyperparameters is essential to ob-
tain satisfactory decomposition into PS and ES maps, and the
final result, however finding optimal values for them is a non-
trivial task, but at same time it makes the BID flexible. If one
believes that the observed image contains only PS, then one
can mask out the ES setting µ → ∞ (and conversly λ → ∞
to suppress point sources), or by trivially modifying the algo-
rithm. In our experimental results, we chose the hyperparam-
eters heuristically after few trials.

3. EXPERIMENTAL RESULTS

We evaluate the proposed BID algorithm on numerical simu-
lations of a simplified astronomical scene and of an observed
scene obtained from a space telescope. The top row in Fig-
ure 3 shows BID results on the synthetic scene consisting
of numerous point-like sources made of single pixels, and
extended sources made of few small Lorentzian discs and
large bivariate-Gaussians in different orientations, all on a
dark background. The bottom row in Figure 3 shows BID
results on the simulation involving a real image captured by
Spitzer space telescope. We consider an image captured by
a space telescope because it is distorted only due to imper-
fections in the imaging system, but not by the atmospheric
turbulence. Both the synthetic and the astronomical images
have high dynamic ranges, but have been scaled to the [0, 1]
range. The PSF considered here is a typical example of Gem-
ini north 8.1 m telescope, which has been generated here by
the convolution between an Airy pattern of radius 1.5 pixels
and a Gaussian with FWHM = [3.5, 4] pixels [6]. The simu-
lated blurred images are created by synthetically blurring the
two images with this PSF, and then corrupting them with a
mixture of Poisson and white Gaussian noise. The blurred
images are scaled to the range 0 to 105 photons before adding

Poisson noise, and rescaled back to the range 0 and 1 before
adding white Gaussian noise of variance 10−3.

To apply the proposed BID method on the simulated data,
few (4 to 5) blurry point-like looking sources in the observed
image are extracted, aligned, stacked, and averaged to get the
initial guess of the PSF. The inner iterations and outer itera-
tions in Algorithm 1 are terminated when the relative change
in function cost reaches 10−6. The three hyperparameters in
the proposed BID are tunned by hand after few trials to reach
a satisfying image quality.

Improvement in PSNR for the estimated image and es-
timated PSF for the image in top row of Figure 3 is 8.5dB
and 4.5dB, and for the image in bottom row is 8.47dB and
12.44dB respectively.

To check the viability/advantage of the map decomposi-
tion in the proposed BID, we applied BID on the image shown
in top row in Figure 3 with only the a priori for the ES (keep-
ing λ very large, and tuning µ and δ to achieve the best deblur-
ring quality), as expected the improvement in PSNR for the
estimated image and PSF reach only up to 5.45dB and 6.58dB
respectively, which is significantly below the values obtained
when the decomposition is applied. To have a single compo-
nent, if we tune the hyperparameters to achieve good resolu-
tion of the point sources then the smooth extended source are
deteriorated, and vice-versa is also observed.

4. CONCLUSION

This paper described a blind deconvolution method well fit-
ted to astronomical image restoration. The presence of unre-
solved point sources are very helpful to estimate the blur in an
astronomical image. The proposed method, thus, jointly per-
forms the detection of point-like objects and the reconstruc-
tion of extended objects. This is achieved by decomposing
the sought image into two components using different regu-
larization terms on each component. By alternating between
estimation of the PSF and deblurring, and decomposition into
the two components, the method progressively reaches a sat-
isfactory result. We showed on some numerical simulations
that the method can successfully perform the decomposition
into point-source and extended object, and recover correctly
the PSF. Performing the decomposition clearly helps in cor-
rectly modeling astronomical scenes, as observed when com-
paring the restoration quality obtained with and without the
decomposition. Ongoing works are carried on the application
of the method to ground-based blurry images.
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