Measure contraction properties of Carnot groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Measure contraction properties of Carnot groups

Résumé

We prove that any corank 1 Carnot group of dimension k + 1 equipped with a left-invariant measure satisfies the MCP(K, N) iff K ≤ 0 and N ≥ k + 3. This generalizes the well known result by Juillet for the Heisenberg group H 2d+1 to a larger class of structures, which admit non-trivial abnormal minimizing curves. The number k + 3 coincides with the geodesic dimension of the Carnot group, which we define here for a general metric space. We discuss some of its properties, and its relation with the curvature exponent (the least N such that the MCP(0, N) is satisfied). We prove that, on a metric measure space, the curvature exponent is always larger than the geodesic dimension which, in turn, is larger than the Hausdorff one. When applied to Carnot groups, this result improves a previous lower bound due to Rifford. As a byproduct, we prove that a Carnot group is ideal if and only if it is fat.
Fichier principal
Vignette du fichier
MCPc1.pdf (469.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01218376 , version 1 (21-10-2015)
hal-01218376 , version 2 (23-02-2016)
hal-01218376 , version 3 (21-05-2016)

Identifiants

Citer

Luca Rizzi. Measure contraction properties of Carnot groups. 2015. ⟨hal-01218376v1⟩
355 Consultations
258 Téléchargements

Altmetric

Partager

More