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MEASURE CONTRACTION PROPERTIES OF CARNOT GROUPS

RIZZI LUCA

ABSTRACT. We prove that any corank 1 Carnot group of dimension k£ 4+ 1 equipped
with a left-invariant measure satisfies the MCP(K, N) iff K < 0 and N > k + 3. This
generalizes the well known result by Juillet for the Heisenberg group Haq+1 to a larger
class of structures, which admit non-trivial abnormal minimizing curves.

The number k + 3 coincides with the geodesic dimension of the Carnot group, which
we define here for a general metric space. We discuss some of its properties, and its
relation with the curvature exponent (the least N such that the MCP(0, N) is satisfied).
We prove that, on a metric measure space, the curvature exponent is always larger than
the geodesic dimension which, in turn, is larger than the Hausdorff one. When applied
to Carnot groups, this result improves a previous lower bound due to Rifford.

As a byproduct, we prove that a Carnot group is ideal if and only if it is fat.

1. SUMMARY OF THE RESULTS

Let (X,d, 1) be a metric measure space which is assumed to be geodesic with negligible
cut locus. In particular, for any = € X there exists a negligible set C(z) and a measurable
map & : X\C(z) %[0, 1] — X, such that the curve v(t) = ®*(y, t) is the unique minimizing
geodesic joining x with y. Moreover p is a Borel measure such that 0 < p(B(z,r)) < +o0
for any r > 0, where B(z,r) is the metric ball of radius r centered in z. Any complete
Riemannian manifold, equipped with the Riemannian measure, provides an example.

For any set €2, we consider its geodesic homothety of center x € X and ratio ¢ € [0, 1]:

(1) Q= {2%(y,t) [y € X\ C()}.

For any K € R, define the function
(1/VK) sin(vVKt) if K >0,

(2) si(t) =<t if K =0,
(1/v/—K)sinh(v—Kt) if K <0.

Definition 1 (Ohta [15]). Let K € R and N > 1, or K < 0 and N = 1. We say that

(X, d, p) satisfies the measure contraction property MCP(K, N) if for any = € M and any
measurable set  with with 0 < p(£2) < 400 (and with Q C B(z,7/N — 1/K) if K > 0)

, lsK(td(x, P E IR
sg(d(z,z)/v/N —1)

where we set 0/0 = 1 and the term in square bracket is 1 if K <0 and N = 1.

(3) p(e) > |

Q

du(z), vt € [0, 1],

In this setting, the measure contraction property is a global control on the evolution
of the measure of €2;. The function sx comes from the exact behavior of the Jacobian
determinant of the exponential map on Riemannian space forms of constant curvature
K and dimension N, where is an equality. On a complete Riemannian manifold M
equipped with the Riemannian measure, the MCP(K, N) is equivalent to Ric > K and
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2 MEASURE CONTRACTION PROPERTIES OF CARNOT GROUPS

dim M < N (see [15]). Thus, the measure contraction property is a synthetic replacement
for Ricci curvature bounds on more general metric measure spaces, and is actually one
the weakest. It has been introduced independently by Ohta [I5] and Sturm [20]. See
also [19) 20, 12] for other (stronger) synthetic curvature conditions, including the popular
geometric curvature dimension condition CD(K, N). An important property, shared by
all these synthetic conditions, is their stability under (pointed) Gromov-Hausdorff limits.

It is interesting to investigate whether the synthetic theory of curvature bounds can
be applied to the study of sub-Riemannian manifolds. These are an interesting class
of metric spaces, that generalize Riemannian geometry with non-holonomic constraints.
Even though some sub-Riemannian structures can be seen as Gromov-Hausdorff limits
of sequences of Riemannian ones with the same dimension, these turn out to have Ricci
curvature unbounded from below [16] 3]. For this reason a direct analysis is demanded.

In this paper we focus on Carnot groups. In the following, any Carnot group G is
considered as a metric measure space (G,d, ) equipped with the Carnot-Carathéodory
distance d and a left-invariant measure p. The latter coincides with the Popp [14] [7] and
with the Hausdorff one [I], up to a constant rescaling. All of them coincide with the
Lebesgue measure when we identify G >~ R™ in a set of adapted coordinates.

1.1. The Heisenberg group. In [9], Juillet proved that the 2d + 1 dimensional Heisen-
berg group Hsyi1 does not satisfy the CD(K, N) condition, for any value of K and N.
On the other hand, it satisfies the MCP(K, N) if and only if K <0 and N > 2d + 3.

The number N' = 2d + 3, which is the lowest possible dimension for the synthetic
condition MCP (0, N) in Hagy 1, is surprisingly larger than its topological dimension (2d+1)
or the Hausdorff one (2d + 2). This is essentially due to the fact that, letting Q = B(z, 1),
we have Q; C B(z,t) strictly, and

(4) p(Q) ~ 243 while  p(B(x,t)) ~ 22,
for t — 0T (see [0, Remark 2.7]).

1.2. Corank 1 Carnot groups. Our first result is an extension of the MCP results of
[9] to any corank 1 Carnot group.

Theorem 2. Let (G,d,pn) be a corank 1 Carnot group of rank k. Then it satisfies the
MCP(K,N) if and only if K <0 and N > k + 3.

Remark 1. We stress that, in general, corank 1 Carnot groups admit abnormal minimizing
curves (albeit not strictly abnormal ones).

1.3. The geodesic dimension. The geodesic dimension has been introduced in [3] for
sub-Riemannian structures. We present it here in a different and more general setting.

Definition 3. Let (X, d, i) be a metric measure space. For any x € X and s > 0, define

(5)  Cs(x) :=sup {lim sup 1 p(h)

1ot 5 pu(Q)

where () is the homothety of Q with center z and ratio ¢ as in (I)). We define the geodesic
dimension of (X, d, ) at x € X as the non-negative real number

(6) N(z) :=inf{s > 0| Cs(X) = +o0} = sup{s > 0 | Cs(X) = 0},

with the conventions inf () = +o0c and sup () = 0.

| 2 measurable, bounded, 0 < u(2) < —i—oo} ,

Roughly speaking, the measure of 1(€2;) vanishes at least as N @) or more rapidly, for
t — 0. The two definitions in ([6)) are equivalent since s > s" implies Cs(z) > Cy ().

Remark 2. Indeed N () does not change if we replace p with any commensurable measure
(two measures p and p' are commensurable if p < p/ and p/ < p).
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The geodesic dimension N (x) is a local property. In fact, for sufficiently small ¢ > 0,
the set € lies in an arbitrarily small neighborhood of x. The next theorem puts it in
relation with Hausdorff dimension dimg(B) of a subset B C X (see [5] for reference).

Theorem 4. Let (X,d, u) be a metric measure space. Then, for any Borel subset B
(7) sup{N(z) | x € B} > dimg(B).
The next result appears in [3, Proposition 5.49], and we give here a self-contained proof.

Theorem 5. Let (X,d,pn) be the metric measure space defined by an equiregular sub-
Riemannian or Riemannian structure, equipped with a smooth measure u, then

(8) N(z) > dimpg(X) > dim(X), Vo € X,

and the equality holds if and only if (X,d, ) is Riemannian.

Remark 3. For an equiregular (sub-)Riemannian structure, the Hausdorff measure is com-
mensurable w.r.t. any smooth one [13]. This is no longer true in the non-equiregular case
[8]. By choosing the Hausdorff measure instead of a smooth one, one obtains, a priori, a
different geodesic dimension N (z).

1.4. A lower bound for the MCP dimension. If (X,d, u) satisfies the MCP(K, N),
then N > N (x) at any point. We give here a general statement for metric measure spaces.

Theorem 6. Let (X,d, p) be a metric measure space, with geodesic dimension N (x), that
satisfies the MCP(K,N), for some K € R and N € N or K <0 and N =1. Then

(9) N > sup{N(z) | z € X}.
The following definition was given originally in [I6] for Carnot groups.
Definition 7. Let (X,d, u) be a metric measure space that satisfies the MCP(0, N) for
some N > 1. Its curvature exponent is
(10) Ny :=inf{N > 1| MCP(0, N) is satisfied}.
When (X, d, ;1) does not satisfy the MCP(0, N) for all N > 1, we set Ny = 400.

Indeed, if Ny < 400, then the MCP(0, Np) is satisfied. Theorem@implies that No > N.
It may happen that Ny > A strictly, as in the following example.

Ezample 1 (Riemannian Heisenberg). Consider the Riemannian structure generated by
the following global orthonormal vector fields, in coordinates (z,y, z) € R3:

(11) X:@c—gaz, Y:ay+gaz, Z=0..

Being a Riemannian structure, N’ = 3. In [16] it is proved that, when equipped with the
Riemannian volume, it satisfies the MCP(0, 5). With the same computations it is easy to
prove that the MCP (0,5 —¢) is violated for any € > 0, so its curvature exponent is Ny = 5.

1.5. Back to Carnot groups. More recently, in [16], Rifford studied the measure con-
traction properties of general Carnot groups. It may happen that Ny = 400, that is the
MCP(0, N) is never satisfied. However, if the Carnot group is ideal (i.e. it does not admit
non-trivial abnormal minimizing geodesics), we have the following result.

Theorem 8 (Rifford [16]). Let (G, d, p) be a Carnot group. Assume it is ideal. Then it
satisfies the MCP(0, N) for some N > 1. In particular its curvature exponent Ny < +00.

The proof of the above result is based on a semiconcavity property of the distance for
ideal structures, which does not hold in general. Nevertheless, Theorem [2] shows that the
above statement can hold even in presence of non-trivial abnormal minimizers. In general,
nothing is known on the finiteness of Ny, but we have the following lower bound.
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Theorem 9 (Rifford [16]). Let (G,d, ) be a Carnot group. Assume it is geodesic with
negligible cut locus. Then its curvature exponent Ny satisfies

(12) No>Np:=Q+n—k,

where @) is the Hausdorff dimension, n is the topological one, and k is the rank of the
horizontal distribution.

For Carnot groups, the geodesic dimension N (z) = N is clearly constant. In particular
No>N,by T heorem@ This lower bound improves , as a consequence of the following.

Theorem 10. A Carnot group is ideal if and only if it is faﬂ. In this case, N = Ng. If
a Carnot group is not fat, then

(13) N > Ng.

Remark 4. Since fat Carnot groups do not admit non-trivial abnormal curves, the first part
of Theorem [I0] can be restated as follows: a Carnot group admits a non-trivial abnormal
curve if and only if it admits a non-trivial abnormal minimizer (see Section [2).

Ezample 2 (Engel group). Consider the Carnot group in dimension 4, generated by the
following global orthonormal left-invariant vector fields in coordinates (x1, z2, 23, 74) € R*

(14) X1 =04, X9 =09 + 21035 + x12204.

The Engel group is a metric space with negligible cut locus. It has rank 2, step 3, dimension
4 and growth vector (2,3,4). Its Hausdorff dimension is @ = 7. The geodesic dimension
is N/ = 10, while Ng = 9. This is the lowest dimensional Carnot group where Ny > N.

Checking whether the Engel group satisfies the MCP (0, ') should be possible, at least
in principle, as expressions for the Jacobian determinant are known [6].

1.6. Open problems. As a consequence of the formula for A/(z) in the (sub-)Riemannian
setting (see Section , for any corank 1 Carnot group we have

(15) N =Fk+3.

Thus, Theorem [2 can be restated saying that for any corank 1 Carnot group, the curvature
exponent is equal to the geodesic dimension. Moreover, for Hog, 1, this gives N' = 2d + 3,
and coincides with the “mysterious” integer originally found by Juillet.

We do not know whether non-ideal Carnot groups enjoy some MCP(0, N). It is not even
known whether general Carnot groups have negligible cut locus (this is related with the
Sard conjecture in sub-Riemannian geometry [I8], [10]). However, if they do, it is natural
to expect the curvature exponent to be equal to the curvature dimension.

Conjecture. Let (X,d,u) be a Carnot group. Assume that it has negligible cut locus.
Then the geodesic dimension coincides with the curvature exponent.

Preliminary results (using sub-Riemannian curvature techniques, in collaboration with
D. Barilari) seem to provide evidence to the above claim for some step 2 Carnot group
(these are Lipschitz and, in particular, have negligible cut locus [17]).

Structure of the paper. In Section [2] we collect some preliminaries of sub-Riemannian
geometry and Carnot groups. In Section [3] we characterize the minimizers of corank 1
Carnot groups. In Section [4] [5] [6] we prove Theorems [6] respectively. In Section [7] we
recall the formula for the geodesic dimension on general sub-Riemannian structures, we
prove Theorem [5| and we discuss the Engel example. In Section |8 we prove Theorem

Acknowledgments. I warmly thank D. Barilari for many fruitful discussions.

1A sub-Riemannian structure (M, D, g) is fat (or strong bracket-generating) if for all z € M and X € D,
X(z) #0, then D, + [X, D], = To M. It is ideal if it does not admit non-trivial abnormal minimizers.
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2. SUB-RIEMANNIAN GEOMETRY

We present some basic results in sub-Riemannian geometry. See [2, 17, [14] for reference.

2.1. Basic definitions. A sub-Riemannian manifold is a triple (M, D, g), where M is a
smooth, connected manifold of dimension n > 3, D is a vector distribution of constant
rank £ < n and ¢ is a smooth metric on D. We always assume that the distribution is
bracket-generating. A horizontal curve v : [0,1] — M is a Lipschitz continuous path such
that 4(t) € D) for almost any ¢. Horizontal curves have a well defined length

(16) (0= [ Vo5

The sub-Riemannian (or Carnot-Carathéodory) distance is defined by:

(17) d(xz,y) = inf{l(y) | v(0) = =, v(1) = y, v horizontal}.

By the Chow-Rashevskii theorem, under the bracket-generating condition, d : M x M — R
is finite and continuous. A sub-Riemannian manifold is complete if (M, d) is complete as
a metric space. In this case, for any x,y € M there exists a minimizing geodesic joining
the two points. In place of the length ¢, one can consider the energy functional as

1

1
(18) O RCIORION]

It is well known that, on the space of horizontal curves with fixed endpoints, the minimizers
of J(-) coincide with the minimizers of ¢(-) with constant speed. Since ¢ is invariant by
reparametrization (and in particular we can always reparametrize horizontal curves in such
a way that they have constant speed), we do not loose generality in defining geodesics as
horizontal curves that are locally energy minimizers between their endpoints.

2.2. Hamiltonian. We define the Hamiltonian function H : T*M — R as

k
1
2 =1
for any local orthonormal frame X7,..., Xy for D. Here (), -) denotes the dual action of
covectors on vectors. The cotangent bundle 7 : T*"M — M is equipped with a natural
symplectic form o. The Hamiltonian vector field H is the unique vector field such that

o(-,H) = dH. In particular, the Hamilton equations are

(20) At) = HA(t),  At) e T*M.

If (M, d) is complete, any solution of can be extended to a smooth curve for all times.
2.3. End-point map. Let v, : [0,1] — M be an horizontal curve joining x and y. Up
to restriction and reparametrization, we assume that the curve has no self-intersections.

Thus we can find a smooth orthonormal frame Xi,..., X}, of horizontal vectors fields,
defined in a neighborhood of 7,,. Moreover, there is a control u € L°°(]0,1],R¥) such that

k
(21) 7u<t) - Euz<t)Xz(’Yu(t))v a.e. t € [07 1]'

Let U C L>([0, 1], R¥) be the open set such that, for v € U, the solution of

k
(22) Yo(t) = Z vi () Xi (1 (1)), Y0(0) = ,

i=1
is well defined for a.e. ¢t € [0, 1]. Indeed u € U. We define the end-point map with base x
as By : U — M that sends v — v,(1). The end-point map is smooth on U.
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2.4. Lagrange multipliers. We can see J : Y — R as a smooth functional on U (we are
identifying ¢ with a neighborhood of ~, in the space of horizontal curves starting from
x). A minimizing geodesic 7, is a solution of the constrained minimum problem

(23) J(v) — min, E.(v) =y, vel.
By the Lagrange multipliers rule, there exists a non-trivial pair (A1, v), such that
(24) MoD,E, =vD,J, Al € TJM, v e {0,1},

where o denotes the composition and D the (Fréchet) differential. If 7, : [0,1] — M with
control u € U is an horizontal curve (not necessarily minimizing), we say that a non-
zero pair (A1,v) € Ty M x {0,1} is a Lagrange multiplier for , if is satisfied. The
multiplier (A1, v) is called normal if v = 1 and abnormal if v = 0. Observe that Lagrange
multipliers are not unique, and a horizontal curve may be both normal and abnormal.
Observe also that (A1, v) is an abnormal multiplier if and only if u is a critical point of E,.
The following characterization is a consequence of the Pontryagin Maximum Principle [4].

Theorem 11. Let 7, : [0,1] — M be an horizontal curve joining x with y. A non-zero
pair (A1,v) € Ty M x {0,1} is a Lagrange multiplier for ~, if and only if there exists a
Lipschitz curve \(t) € T3 M with A1) = A1, such that

o if v =1 then )\(t) = ﬁ(v(t)), i.e. it 1s a solution of Hamilton equations,
o if v =0 then a(/\(t),T,\(t)DL) =0,

where D~ C T*M s the sub-bundle of covectors that annihilate the distribution.

In the first (resp. second) case, A(t) is called a normal (resp. abnormal) extremal.
Normal extremals are precisely the integral curves A(¢) of H. As such, they are smooth,
and are characterized by their initial covector A = A(0). A geodesic is normal (resp.
abnormal) if admits a normal (resp. abnormal) extremal. On the other hand, it is well
known that the projection v)(t) = 7(A(t)) of a normal extremal is locally minimizing,
hence it is a normal geodesic. The exponential map with base x € M is the map

(25) exp, : TaM — M,

which assigns to A € T,y M the final point 7(A(1)) of the corresponding normal geodesic.
The curve y)(t) := exp,(t\), for t € [0,1], is the normal geodesic corresponding to A,
which has constant speed [[¥A(t)|| = /2H (\) and length (7|, 4,)) = 2H (A)(t2 — t1).

2.5. Carnot groups. A Carnot group (G,*) of step s is a connected, simply connected
Lie group of dimension n, such that its Lie algebra g = T.G is stratified of step s, that is

(26) g=019...9g,,
with
(27) [glag]] = 01+5, V1 SJ < S, Us 7é {0}7 gs+1 = {O}

The group exponential map expg : g — G associates with V' € g the element 7y (1), where
v : [0,1] — G is the integral line, starting at +y(0) = e, of the left invariant vector
field associated with V. Since G is simply connected and g is nilpotent, exp. is a smooth
diffeomorphism. Thus, by choosing a basis of g, we identify G ~ R".

Let D be the left-invariant distribution generated by gi, with a left-invariant scalar
product g. This defines a sub-Riemannian structure (G, D, g) on the Carnot group. For
x € G, we denote with L;(y) := x x y the left translation. The map L, : G — G is a
smooth isometry. Any Carnot group is a metric measure space (X,d, ) where d is the
Carnot-Carathéodory distance and p the Lebesgue measure of G = R". Haar, Popp,
Lebesgue and top-dimensional Hausdorff measures are all left-invariant and proportional.
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3. CORANK 1 CARNOT GROUPS

A Corank 1 Carnot group is a Carnot groups of step s = 2, with dimg; = k and
dimgs = 1. In exponential coordinates (x,z) on R*¥ x R, they are generated by the
following set of global orthonormal left-invariant frames

k
1
(28) Xi :axi - 52Aijxj82, 1= 1,...,]€,
j=1
where A is a k X k skew symmetric matrix. Observe that
(29) (X, X;] = Ayd.,  ij=1,...,k
Let 0 < a1 < ... < ag be the non-zero singular values of A. In particular, dimker A =
k — 2d. Up to an orthogonal change of coordinates, we can assume that
0

ard 0 1

(30) A= ) J=<_1 0)'
adJ

The first zero block has dimension k — 2d, while each other diagonal block is 2 x 2. We
split the coordinate z = (2%, 2, ..., 2%), where 2° € R*=2¢ and 2 € R?, for i = 1,...,d.
If A has trivial kernel (in particular, k is even), we are in the case of a contact Carnot
group, and there are no non-trivial minimizers. However, when A has a non-trivial kernel,
then non-trivial abnormal minimizers appear. To prove Theorem [6] we need a complete
characterization of the minimizing geodesics on a general corank 1 Carnot group. Our
study extends the results of [I], where the case of a non-degenerate A is considered.

3.1. Characterization of minimizers. On any corank 1 sub-Riemannian distribution,
all minimizing geodesics are normal (this is true for any step 2 distribution). In particular,
they can be recovered by solving Hamilton equations. By left-invariance, it is sufficient
to consider geodesics starting from the identity e = (0,0). Any covector A € TG has
coordinates (p,p.), where we split p, = (p2,pL,...,pd).

Lemma 12. The exponential map exp, : I, G — G of a Corank 1 Carnot group is

(31) expe(p27p:llf7"'7pi7pz):(1'07:B17""$d?z)7
where, for all i =1,...,d we have
(32) 2 = pl,

. 1 . . —1
(33) b (sm(alpz)l n cos(a;py) J) .

;P ;P

(34) zd: H i ||2aipz - Sin(aipz)

z= .

= Pe 20;p?

If p, = 0, one must consider the limit p, — 0, that is exp,(pz,0) = (pz,0).

Remark 5 (Abnormal geodesics). A non-zero covector A = (py, p,) such that Ap, = 0, that
is of the form (p?,0,...,0,p,) corresponds to an abnormal geodesic. A way to see this is
to observe that there is an infinite number of initial covectors giving the same geodesic

(35) exp, (tp2,0,...,0,tp.) = (tp2,0,...,0,0), Vp, € R.

A direct analysis of the end-point map shows that abnormal geodesic are all of this type.
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Proof. Let hy = (h1,...,hg) : T*G — R¥ and h, : T*G — R, where h;(\) := (), X;), for
i=1,...,kand h.(\) := (\,0,). Indeed H = §||h,||>. Hamilton equations are

(36) h.=0,  hy=—hAh,, ©=h,  i=-%hiAz,
where, without risk of confusion, the dot denotes the derivative w.r.t. t. Indeed we have
(37) ho(t) =psy  he(t) = e P4,

The equations for (z, z) can be easily integrated, using the block-diagonal structure of A.
Split hy = (RO, AL, ... hd), with A € R¥=24 and Al € R? for i = 1,...,d. We obtain

(38) ha(t) =13, hy(t) = [cos(aip:t)I — sin(aip.t)J]pS,
where [ is the 2 x 2 identity matrix. Integrating the above on [0, ¢], we obtain
. 1 i Zt S 3 Zt — ]. ;
(39) L) =0, ai(t) = (Sm(o‘ pet) 4 coslep:t) J) P
QiDz QP2

Finally, for the coordinate z we obtain

(40) z:—f/ hy(s)Az(s :—72/ hi(s)*a;Jx'(s)ds

i 112 in2 [ QiPz — Sin(aipz)
o8 / 1 — cos(a;p,s)) ds = D ( ) O
I 1~ cosfaups) ;H L (2
Lemma 13. The Jacobian determinant of the exponential map is
(41)
. a;p . a;p a;p a;p
J(pz,p2) = 22d+22\|pm|2Hsm< ) 1n< ;Z) (sm( 122)— Zzzcos< ;Z>>,

JF

where a = H;-izl «; s the product of the non-zero singular values of A. If p, = 0, the
formula must be taken in the limit p. — 0. In particular J(ps,0) = 5 S Ipk]Pad.

Proof. For any matrix with the following block structure

(42) = p).

w
where the only constraint is that § € R is a one-dimensional block, we have
(43) det(M) = 0 det(B) — v*cof (B)w,

where cof denotes the matrix of cofactors. More in general, let

By V0
By V1
(44) M = e
Bg vq
wy wy ... wy 0

where By, ..., By are square blocks of arbitrary (possibly different) dimension, # € R and
v;, w; are column vectors of the appropriate dimension. In this case we have

(45) det(M) = HﬁdetBi Z (HdetB ) vy cof (B;)w;.

=0 1=0 \j#ti
If B; = a;I +b;J, then cof(B;) = B;. If we also assume that By = 1, vy = wy = 0, we have

(46) det(M) = 0 H det B; — Z (H det B; ) v; Biw;.

=1 \j#i
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From Lemma [12] the differential of the exponential map has the above form, with

47) Bo= 2" _y  p o 0r _sinlawps) p  cos(aips) —1
0 i

P op, ip: Qip:
(48) v = ox’ _ oip: cos(a;py) — sin(aipz)jpi N 1 — cos(ayp,) — aip. sin(a 1pz)J Z

" Op, a;p? * o;p?
(49)  w; = 0z _ ups — sin(oipz)

©opk aip? v

4o (2sin(aip,) — app. — a;ps cos(aips)
(50) A e .
'LpZ

The result follows applying formula and observing that, for ¢ = 1,...,d, we have

(51)  det(B;) = 4sin® (aip: /2)

( zpz)2 ’
2 2
v; Biw; = ( ”ix)” (aip, — sin(ayp.))(a;p, sin(a;p,) + 2 cos(a;p.) — 2). O
Z z

Lemma 14 (Characterization of the cotangent injectivity domain). Consider the set
2

(52) D := {/\ = (pz,p2) € T)G such that |p,| < T and Apy # O} c T;G.
aq

Then exp, : D — exp,(D) is a smooth diffeomorphism and C(e) := G\ exp.(D) is a closed
set with zero measure.

Proof. Since all geodesic are normal and (G, d) is complete, each point of G is reached
by at least one minimizing normal geodesic 7y : [0,1] — G, with A\ = (pg,p.) € TG.
If |p.| > 2m/ay and Apy # 0, then ) is a strictly normal geodesic (i.e. not abnormal)
with a conjugate time at t, = 27/aq|p.| < 1. Strictly normal geodesics lose optimality
after their first conjugate time (see [2]), hence ~,(¢) it is not minimizing on [0, 1]. On the
other hand, if Ap, = 0, for any value of p, we obtain the same abnormal geodesic (see
Remark . It follows that exp, : D — G is onto (the bar denotes the closure). Thus,
exp, : D — exp,(D) is onto and C(e) = G \ exp,.(D) = exp,(9D) has zero measure.

We now prove that, if A\ € D, then v, : [0,1] — G is the unique geodesic joining its
endpoints. In fact, assume that there are two covectors A = (pg, p.) and A = (g, D.) € D,
such that exp,(\) = exp,(\). Since the two geodesics have the same length, |p.| =

£(yy) = £(5) = ||pz||. Using Lemma we have p) = pY and
(53) l2°11? = 4]lpg | sinc(aipz)? = 4|15 ||* sinc(aipz)?, Vi=1,....d,
where sinc(w) = sin(w)/w is positive and strictly decreasing on [0, 7). Since Ap,, Ap, # 0,
there exist two non-empty set of indices I, I C {1,...,d} such that, for i € I (resp. I) we
have ||p%||? # O (resp. ||p%||? # 0). Since Qipz, q;p, < m, by (B3)), we have I =TI

Assume now that p, > p,. Then by |P%]12 > [|pL||? for all i € I. In particular
(54) 17217 = 112117 + D 1507 > llpall* + > Ipel* = llpal?,

icl iel

which is absurd. Analogously if p, < p., with reversed inequalities. Thus p, = p,. Using
now the equations for the coordinate z* of Lemma |12[ we observe that

- ) —1 o
(55) Sln(Oézpz)I i COS(Oézpz) J] (ﬁ; _plx) =0, Vi=1,...,d.
(07§ % (07§

The 2 x 2 matrix on the Lh.s. is invertible (since if a;p, < 7), hence also p, = p,. Thus
exp, : D — exp,.(D) is invertible.
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Finally, no point A € D can be critical for exp,. In fact, from Lemma we have
that J(pg, p.) = % |pL]12fi(p-), where each fi(p.) > 0 for p. < 27w/ag. In particular
J(pz,p2) = 0 if and only if Ap, = 0. But this closed set was excluded from D. O

Corollary 15. For any z € G, let C(x) := L,C(e), where L, : G — G is the left-
translation. There exists a measurable map ®* : G\ C(x) x [0,1] — G, given by

(56) O (y,t) = Ly exp,(texp, (L 'y)),
such that ®*(y,t) is the unique minimizing geodesic joining x with y.

The next key lemma and its proof are a simplified version of the original concavity
argument of Juillet for the Heisenberg group [9, Lemma 2.6].

Lemma 16. Let g(z) := sin(x) — xcos(x). Then, for all z € (0,7) and t € [0, 1],
(57) glte) > tNg(x), VN >3.

Proof. The condition N > 3 is necessary, as g(z) = x3/3 + O(z?). It is sufficient to prove
the statement for N = 3. The cases t = 0 and t = 1 are trivial, hence we assume ¢t € (0,1).
By Gronwall’s Lemma the above statement is equivalent to the differential inequality

(58) g'(s) < 3g(s)/s, s € (tx, x).

We need to prove the above inequality for all s € (0, ), which is equivalent to

(59) f(s) := (3 — s%)sin(s) — 3scos(s) > 0, s € (0,m).

To prove it, we observe that f(0) =0 and f’(s) = s(sin(s) — scos(s)) >0 on (0,7). O

Corollary 17. For all (py,p.) € D, we have the following inequality

J(tpz, tp2) 2
60 — >t vt € [0, 1].
Proof. Apply Lemma [I6] to the explicit expression of J from Lemma [I3] and the standard
inequality sin(tz) > tsin(z) for all z € [0, 7] and ¢ € [0, 1]. O

4. PROOF OF THEOREM [2]

The proof combines the arguments of [9] and the computation of the Jacobian determi-
nant of [I] for contact Carnot groups, extended here to the general corank 1 case.

4.1. Step 1. We first prove that the MCP(0, N) holds for N > k + 3. By left-translation,
it is sufficient to prove the inequality for the homothety with center equal to the
identity e = (0,0). Let © be a measurable set with 0 < p(Q2) < +o0.

By Lemma up to removing a set of zero measure, 2 = exp,(A) for some A C D C
T7G. On the other hand, by Corollary we have

(61) Q = exp,(tA), vt € [0, 1],

where tA denotes the set obtained by multiplying by ¢ any point of the set A C TG (an
Euclidean homothety). Thus, for all ¢ € [0, 1] we have

62) (@) = [ du= [ Jep.)dpadp.
Q¢ tA
(63) = M1 /A J(tp, tp.)dpydp, >t /A J (e, p2)dpedp, = t*F31(),

where we used Corollary In particular u(Q) > tVu(Q) for all N > k + 3.
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4.2. Step 2. Fix ¢ > 0. We prove that the MCP(0,k + 3 — ¢) does not hold. Let
A = (pz,0) € D. By Lemma and recalling that J > 0 on D, we have

(64) J(tpg,0) = t2J (ps, 0) < t275J (ps, 0), vt € [0,1].

By continuity of J and compactness of [0, 1], we find an open neighborhood A C D of A
such that J(t\) < t27¢J(\), for all ¢ € [0, 1]. In particular, for Q = exp,(A), we obtain

(65) p(Q) < M), teo,1).

4.3. Step 3. To prove that MCP(K, N) does not hold for K > 0 and any N > 1, we
observe that spaces verifying this condition are bounded, while G ~ R" clearly is not.
Finally, assume that (G, d, ) satisfies MCP(K, N) for some K < 0 and N < k + 3. Then
the scaled space (G,e~'d,e~?u) (where ¢ > 0 and Q = k + 2 is the Haudorff dimension
of (G,d)) verifies MCP(e2K, N) for [I5, Lemma 2.4]. But the two spaces (G,d, i) and
(G,e7'd,e~Qpu) are isometric through the dilation &.(z,z2) := (ex,£%2). In particular
(G,d, ) satisfies the MCP (e K, N) for all € > 0, that is

N-1
(66) won = [ tlffj{({j{f?jj IO e, we

Taking the limit for ¢ — 0T, we obtain that (G, d, u) satisfies the MCP(0, N) with N <
k + 3, but this is false by the previous step (these are the same arguments of [9]). O

5. PROOF OF THEOREM [4]

Assume that B is bounded. In particular, u(B) < +oo. For any k > 0 let H* denote
the k-dimensional Hausdorff measure on (X,d). Let k < dimg(B), then H*(B) = +o0.
By [5, Theorem 2.4.3], there exists an = € B such that

B(x,t
(67) lim sup wB(w.1))
tk
t—0t
Let © be a bounded measurable set with 0 < () < +o00, and let ; be its homothety
with center z. Indeed Q C B(x, R) for some R > 0, and ©; C B(x,tR). In particular

(68) lim sup — P < lim sup 17 B, LR))
ot TS Q) T e P u(Q)

Since this holds for any 2, we have Cy_.(x) = 0 for all ¥ < dimy(B) and € > 0. By

definition of geodesic dimension N (x) = sup{s > 0 | Cs(z) = 0} > k. In other words, for

any k < dimg(B) we have found z € B such that N(z) > k, that implies the statement.

If B is not bounded, consider the increasing sequence of bounded sets B; := BNB(z, j),

with j € N, and observe that dimy (B;) is a non-decreasing sequence for j — oco. O

< +00

=0, Ve > 0.

6. PROOF OF THEOREM [6]

By contradiction, assume that N < sup{N(z) | z € M}. In particular there exists
z € X such that N(z) > N. Let & C X be a bounded, measurable set such that
0 < () < 400, and with Q C B(z, 7N —1/K) if K > 0. By the MCP(K, N) we have

w(Q) 1 si(td(z,z)/vVN —1) Nt
(69) @ > M(g)/ﬂt e V=T | e el
Indeed Q C B(z, RVN — 1) for some sufficiently large R (with R < n/VK if K > 0).

Consider the functions sx(t0)/sk(0), for § € (0, R). By explicit inspection using we
find a constant Ax r > 0 (independent on §) such that

(70) SK(t5)/SK((5) > AK,Rt7 Vit € [0, 1], Vo € (O,R)
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Thus we have

(71) / AN N dp(z) = AN wee[o,1].
Let N(x) — N =2z > 0. We have
N-1 N-1
. Lop() AR R _ Axr
72 1 —— =1 — = .
(72 WP N (@) L ey = M T = Fee

In particular Cyr(y)—-(2) = +o0o, where Cy(z) is defined in (5). This is absurd since
N(z) =inf{s > 0| Cs(x) = +o0}. O

7. FORMULA FOR THE GEODESIC DIMENSION

We recall some of the results of [3] and we prove that the definition of geodesic dimension
given in this paper coincides with the one of [3] for sub-Riemannian structures.

7.1. Flag of the distribution and Hausdorff dimension. Let (M,D,g) be a fixed
(sub-)Riemannian structure. The flag of the distribution at x € M is the filtration of
vector subspaces D,,l: - D% C...CT,M defined as

(73) D! =D, Dl .= Dl + [D,DY,,

x

where [D, D'], is the vector space generated by the iterated Lie brackets, up to length
1+ 1, of local sections of D, evaluated at x. We denote with s, the step of the distribution
at x, that is the smallest (finite) integer such that D3* = T, M.

We say that D is equireqular if dim DY are constant for all 4 > 0. In this case the step
is constant and equal to s. The growth vector of the distribution is

(74) (di,...,ds), d; == dim D",

Theorem 18 (Mitchell [13]). Let (M, D,g) an equiregular (sub-)Riemannian structure.
Then its Hausdorff dimension is given by the following formula:
S

(75) dimp (M) =) i(d; — di—1), dy := 0.

i=1
7.2. Flag of the geodesic and geodesic dimension. Let ) : [0,£) — M be a normal
geodesic, with initial covector A, and = v(0). Let T' € I'(D) any horizontal extension of
7, that is T'(y(t)) = 4(¢) for all t € [0,¢). The flag of the geodesic is the filtration of vector
subspaces ]-"/{ - }"f C ... C T, M defined by

(76) Fy=span{L(X)|, | X €T(D), j<i-1}CTM, i>1,

where £ denotes the Lie derivative. By [3, Section 3.4], this definition does not depend
on the choice of the extension T', but only on the germ of (¢) at ¢t = 0. In particular, it
depends only on the initial covector A € Ty M. We define the geodesic growth vector as

(77) Gy = (k1y. . ki), k; := dim F3%.

We say that 7, is ample (at t = 0) if there is a smallest integer m > 1 such that F{* = T, M.
In this case the growth vector is constant after its m-th entry, and m is called the geodesic
step. Different initial covectors may give different growth vectors (possibly associated with
non-ample geodesics when + is abnormal). The maximal geodesic growth vector at x is

(78) gmar . — (Efrer o Emer ), kM = max{dim F} | A € TFM}.

Theorem 19. The set A, C T M of initial covectors such that the corresponding geodesic
is ample, and its growth vector is maximal is an open, non-empty Zariski subset.
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In particular, the generic normal geodesic starting at = has maximal growth vector and
the minimal step m(x). For a fixed x € M, consider the following number:

m(z)

(79) N(@) = 3 (20— 0™ = k%), ke =0,
=1

Theorem 20. Let (M, D, g) be a sub-Riemannian manifold, equipped with a smooth mea-
sure. Assume that, as a metric measure space (M,d, ), has negligible cut locus. Let
x € M, and let Q be any measurable, bounded subset with 0 < () < +o0o. Then there
exists a constant C(2) > 0 such that

(80) w(Q) ~Cc(N@® 07

Equation is the definition of geodesic dimension given in [3]. As a consequence of
Theorem [20] it coincides with the one given in this paper, when specified to sub-Rieman-
nian structures. In this case, to compute A (z), it is sufficient to compute the growth
vector for the generic geodesic, and use . Theorems are also proved in [3], and
are based on a deep relation between the geodesic growth vector and the asymptotics of
the exponential map on a general sub-Riemannian manifold.

7.3. Proof of Theorem If (M,D,g) is Riemannian, for any point z € M we have
G, = (dim(M)) for any non-trivial initial covector and N (z) = dim(M) = dimy (M).

If (M,D,g) is sub-Riemannian (with £ = rankD < n), and equiregular of step s, let
gi == di —di_y, for i =1,...,s and p; := k" — k9", for all i = 1,...,m(x). Indeed
m(z) > s > 2. By Mitchell’s formula (75), and (79)), we have
(81) dimpg(M) =14 +1+42+4 4245+ +s,

— V= ds
(82) N(@)=1+-+1+3+ - +3+-+2m(x) -1+ +2m(z) — L.
p1 P2 Pm(x)

Both sums have n terms and ¢; = p1 = k < n. The terms of , after the k-th, are
strictly greater then the ones of (81). Thus A (z) > dimy (M) > dim(M). O

7.4. The Engel group. We discuss more in detail the Engel group introduced in (Ex-
ample . This is the Carnot group, in dimension n = 4, generated by the following global
orthonormal left-invariant vector fields in coordinates (z1,x2,x3,24) € R*

(83) X1 =04, X9 =09 + 1103 + x12204.
Indeed it is a rank 2 Carnot group of step 3, with g; = span{X;, Xs} and
(84) 92 = [X1, Xo] = 05 + 2204, g3 = [Xo, [X1, Xo]] = 04,

where we omit the linear span. In particular, by left-invariance, D' = g;, D? = g1 @ go
and D3 = g1 ® g2 ® g3. The growth vector of the distribution is (2,3,4). By Mitchell’s
formula for the Hausdorff dimension we have Q =2+2+4+3=7.

Let us compute the geodesic growth vector. It is sufficient to choose the curve ~(t) =
e!X2(e) (this is a normal geodesic, by Lemma . Using the definition, we obtain F! =
span{ X1, X2} and, omitting the linear span,

(85) F?=[X9, X1] = 03+ 2204,  F° =[Xo,[X2, X1]] = 04
Indeed this gives the maximal possible geodesic growth vector, hence
(86) Gl = (2,3,4), Vr € G.

In particular, using we obtain A" =2+ 3+ 5 = 10.
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8. PROOF oF THEOREM [10]

Let (G, D, g) be a Carnot group of step s and dimension n. We identify g = T.G (and
its subspaces) with the vector space of left-invariant vector fields. In particular D = g;.

8.1. Step 1: Estimates in the fat case. We remind that a sub-Riemannian structure
(M,D,g) is fat (or strong bracket-generating) if for any x € M and X € D, X(z) # 0,
then D, + [X, D], = T, M. It is well known that fat structures do not admit non-trivial
abnormal minimizers [2} 14, I7]. If G is a fat Carnot group of rank k, then the geodesic
growth vector of any geodesic is

(87) Gt = (k,n), VaeG.

By we have N' = k+3(n—k) = 3n—2k. On the other hand, the Hausdorff dimension
is @ =k+2(n—k) =2n — k. Moreover, from , we have Ng = Q +n — k = 3n — 2k.
This proves that on a fat Carnot group N = Ng.

To prove the inequality N' > Ni when G is not fat, let G™% = (kq, ko, ..., ky) be the
maximal geodesic growth vector, with geodesic step m > s > 2. Let ¢; := d; — d;_1, for
1=1,...,sand p; := k; — k;_1, for : = 1,...,m. Since dy = kg = 0 by convention and
ds = ky =mn, we have n =37, ¢; = > iy p;- Thus, from , we obtain

m m
(88) N = (20— 1)p; =) (20 — 2)p; +n.
i=1 i=2
On the other hand, for Ngp = Q + n — k and using Mitchell’s formula ([75)), we obtain
S S
(89) NR:Ziqi—Fn—k:Ziqi—kn.
i=1 i=2
Arranging the terms as we did in the proof of Theorem [5| we write
(90) N-—n=2+-+2+4+ - +4+ - +2m -2+ +2m -2,
p2 p3 Pm
(91) Np—n=2+4 +2+3+ - +3+ - +s+-+s.
L ] L ] L 1
q2 q3 Ps
Both sums have n — k = Y /"o pi = > ;¢ entries. Moreover m > 2 (if m = 2, then

F? = g1 ®[X,01] = T.M for some X € gy, which is absurd if G is not fat). Then the
entries of , after the po-th one, are strictly greater than the corresponding ones of
(91)), and NV > Ng.

8.2. Step 2: Ideal = Fat. To conclude the proof of Theorem [I0] we prove that any ideal
Carnot group is fat. Denote with adx : g — g the linear map:
d -
(92) adx(V) = [X,V] = 2| el Y (x(1),
tli=o
where vx (t) = !X (x) is the integral curve of X € g; starting from x € G.

Lemma 21. Let vx(t) = e!X(z) be the integral curve of the left-invariant vector field
X € g1, starting from x. Then vx it is a normal geodesic. It is also an abnormal geodesic
if and only if there exists a non-zero A € TG such that

(93) (A\adi(g1)) =0, Vi=0,...,5—1.
Proof. Let X1,..., X} be a basis of left-invariant vector fields. Indeed X = Zle u; X; for

a constant control u € L>([0, 1], R¥). By left-invariance we can set = e. A well known
formula for the differential of the end-point map [2, 17] Dy Ee : Tl ~U — T, ()G, gives

(94) DyE.(v) = /0 Llonx Xk:vi(t)Xi(fy(t))dt, Yu € L*([0, 1], R*).
=1
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We first prove that yx () is a normal geodesic. Consider the covector n € TG such that
(n,X;) =w; and (n,W) =0forall W € g2®... & gs. Then

k
95) (D) = [ 3w X))t = (w00 = D (1)
i=1

Thus vx(t) with control u satisfies the normal Lagrange multiplier rule with covector
m=(eX)yneT ':((1)G’ and is a normal geodesic. By definition vx(¢) is also abnormal
if and only if there exists a A\ € T;(I)G such that A\; o D, E. = 0. That is, if and only if
there exists A = (eX)*\; € T*G such that

k
96) 0= DB = [ D udhe KGO Yo 1201,
=1

This is true if and only if (\,e;™Y) = 0 for any Y € g; and ¢ € [0,1]. Since all the
relevant data are analytic, ¢ — (A, e;*XY) is an analytic function of t. Hence it vanishes
if and only if all its derivatives at ¢ = 0 are zero, and this condition coincides with 93] O

Lemma 22. Let G be a Carnot group of step s < 2. G is ideal if and only if it is fat.

Proof. The implication fat = ideal is trivial. Then, assume that g; is not fat, i.e. there
exists X # 0 € g1 such that g; ® [X, g1] & T.G. Hence there exists A # 0 € TG such that

(97) 0= <)\, gl> = <)\,adX(gl)>.
By Lemma vx(t) = e"X(e) is a normal and abnormal geodesic. In particular, a
sufficiently short segment of it is a minimizing curve. O

We learned the following fact by E. Le Donne. For the reader’s convenience we provide
a simple proof here, which is similar to the one in [I1].

Lemma 23. Let G be a Carnot group of step s > 3. Then there exists a non-zero X € g
such that the integral curve yx(t) = X (e) is a normal and abnormal geodesic.

Proof. If there exists a X # 0 € g; such that adx(g1) S g2, using the same argument of
Lemma we show that vx(¢) is abnormal and normal. Let ¢; := dimg;, fori =1,...,s.
Then assume that, for any X # 0 € g;, we have adx(g1) = go. This implies g2 < ¢ — 1.
Consider a basis Y7,...,Y,, of g2 and a basis Z1,...,Z,, of g3. Let A € TG such that
(N, Z;y =01if i > 1 and (N, Z;) = 1, while (A, g;) = 0 for all i # 3. Consider the linear
maps A; :=Aoady;, : g1 > R, fori=1,...,¢2. Indeed dimker 4; > ¢; — 1. Moreover

(98) dim(ker Ay Nker Ag) = dimker A; + dim ker Ay — dim(ker A; + ker As)

(99) 22— -—q=qa-2
After a finite number of similar steps we arrive to
(100) dim(ker A;N...NkerAg,) > g —q@>q — (@1 —1)=1.

Thus let X # 0 € ker A; N ... Nker Ay,. We show that yx(¢) = e (e), which is indeed
a normal geodesic, verifies the abnormal characterization of Lemma [21] with covector A.
Since ad’ (g1) C gi+1, we have (A, ad’(g1)) = 0 for all ¢ # 2 by construction of A. Finally,

(101) (A adk (g1)) = (A, adx(g2)) = 0,
where in the last passage we used the fact that adx(g1) = g2, that the latter is generated
by the Y;, and the definition of X. Then ~x(¢) is abnormal by Lemma O

To sum up, a Carnot group of step s > 3 admits non-trivial abnormal minimizing
curves, and cannot be ideal. On the other hand if s < 2, then ideal < fat. O
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