REMOVABLE SINGULARITIES FOR div v = f IN WEIGHTED LEBESGUE SPACES - Archive ouverte HAL
Article Dans Une Revue Indiana University Mathematics Journal Année : 2018

REMOVABLE SINGULARITIES FOR div v = f IN WEIGHTED LEBESGUE SPACES

Résumé

Let $w\in L^1_{loc}(\R^n)$ be apositive weight. Assuming that a doubling condition and an $L^1$ Poincar\'e inequality on balls for the measure $w(x)dx$, as well as a growth condition on $w$, we prove that the compact subsets of $\R^n$ which are removable for the distributional divergence in $L^{\infty}_{1/w}$ are exactly those with vanishing weighted Hausdorff measure. We also give such a characterization for $L^p_{1/w}$, $1
Fichier principal
Vignette du fichier
MRT.pdf (277.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01214613 , version 1 (12-10-2015)

Identifiants

Citer

Laurent Moonens, Emmanuel Russ, Heli Tuominen. REMOVABLE SINGULARITIES FOR div v = f IN WEIGHTED LEBESGUE SPACES. Indiana University Mathematics Journal, 2018, 67 (2), pp.859-887. ⟨10.1512/iumj.2018.67.6310⟩. ⟨hal-01214613⟩
442 Consultations
219 Téléchargements

Altmetric

Partager

More