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REMOVABLE SINGULARITIES FOR div v = f
IN WEIGHTED LEBESGUE SPACES

LAURENT MOONENS, EMMANUEL RUSS, AND HELI TUOMINEN

Abstract. Let w ∈ L1

loc(R
n) be a positive weight. Assuming that a doubling

condition and an L1 Poincaré inequality on balls for the measure w(x)dx, as well
as a growth condition on w, we prove that the compact subsets of R

n which
are removable for the distributional divergence in L∞

1/w are exactly those with

vanishing weighted Hausdorff measure. We also give such a characterization for
L
p
1/w, 1 < p < +∞, in terms of capacity. This generalizes results due to Phuc and

Torres, Silhavy and the first author.

1. Introduction

In the past years, removable singularities of bounded vector fields satisfying
div v = 0 in the distributional sense have been studied, e.g. by the first author
[26], Silhavy [33] and Phuc and Torres [30]. It has been shown, in particular, that a
compact set S ⊆ R

n can contain a non void support of the distributional divergence
of a bounded vector field on R

n, if and only if its (n − 1)-dimensional Hausdorff
measure is positive. As a matter of fact, all those results have immediate counter-
parts for vector fields defined on an open subset Ω of Rn, satisfying the equation
div v = f , where f is a locally integrable function on Ω, in case the latter equation
admits at least one solution in L∞(Ω).

Given n/(n− 1) < p <∞, Phuc and Torres in [30] showed a corresponding result
for Lp-vector fields. More precisely, given an open set Ω ⊆ R

n and a locally integrable
function f in Ω for which the equation div v = f is solvable in Lp(Ω), their results
imply that a compact set S ⊆ Ω contains a non void support of the distributional
divergence of an Lp-vector field in R

n, if and only if capp′(S) > 0, where capp′ is the

capacity associated to the Sobolev space W 1,p′(Rn) (see Definition 4.4 below) and
p′ is the conjugate exponent to p verifying 1/p+ 1/p′ = 1.

On the other hand, given a (bounded) domain Ω ⊂ R
n, it may happen that it is

not possible to find a constant C > 0 such that given any f ∈ L∞(Ω), the equation

div v = f

admits a bounded solution v ∈ L∞(Ω,Rn) satisfying ‖v‖∞ 6 C‖f‖∞. In fact, the
existence in this context of an integrable weight w > 0 such that the divergence
operator acting from the weighted Lebesgue space L∞

1/w(Ω,R
n) to the usual space

L∞(Ω), admits a continuous right inverse, has been shown by Duran, Muschietti,
the second author and Tchamitchian in [13] to be equivalent to the integrability of
the geodesic distance (in Ω) to a fixed point x0 ∈ Ω. Under the latter integrability
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2 LAURENT MOONENS, EMMANUEL RUSS, AND HELI TUOMINEN

property, a similar invertibility result also holds when L∞
1/w(Ω,R

n) and L∞(Ω) are

replaced by Lp
1/w(Ω,R

n) and Lp(Ω), respectively, with 1 < p <∞.

In order to get some understanding of how the introduction of a (locally) inte-
grable weight w influences, in the associated weighted Lebesgue spaces, the set of
singularities of a vector field having a prescribed divergence, we shall assume here
that Ω = R

n and f = 0 in the sequel (leaving the case where Ω is a bounded domain
for a future work), and study first (see section 3) the possible sets of singularities
of vector fields in L∞

1/w(R
n,Rn) solving div v = 0 (or div v = f for some locally

integrable function f on R
n yielding at least a solution in L∞

1/w(R
n,Rn)), and make

a similar study in appropriate weighted Lp spaces.
More precisely, calling Lp

1/w-removable any compact subset of Rn that does not

support any nonzero distributional divergence of a vector field v ∈ Lp
1/w(R

n,Rn), we

show the following result (which combines our Theorems 3.24 and 4.19).

Theorem 1.1. Assume S is a compact subset of Rn.

(i) If p = ∞ and if the weight w is 1-admissible and satisfies the growth condition
(3.1) below, then S is L∞

1/w-removable if and only if H h(S) = 0, where H h

is the Hausdorff outer measure associated to w as in Section 3.1.
(ii) If 1 < p < ∞ and if one has wp′−1 ∈ Ap′, then S is Lp

1/w-removable if

and only if one has Capwp′−1

p′ (S) = 0, where Capwp′−1

p′ is the Sobolev capacity

associated to wp′−1 appearing in Definition 4.4.

In the previous statement, we mean by saying that a weight is 1-admissible, that
it is doubling and satisfies a (1, 1)-Poincaré inequality (see Definition 2.2 below),
while Ap′ stands for the Muckenhoupt class introduced (see Definition 2.3). Note
that any A1 weight is 1-admissible (see Remark 2.4). Note that H h is the classical
(spherical) Hausdorff measure of dimension n− 1 is case w = 1.

A first remark about the previous theorem is that we recover, when w = 1, the
result mentioned above stating that L∞-removable (compact) sets are exactly those
satisfying H n−1(S) = 0, and similarly in Lp.

An interesting case covered by our results is the one when the weight w equals
+∞ on a “large” set (e.g. on a set of positive Hausdorff dimension) — allowing the
vector fields in L∞

1/w to have singular pointwise behaviour on this “large” set. More

precisely, as an interesting complement to [Theorem 1.1, (i)], we provide examples
of A1 weights w of the form w(x) := dist(x, C)−α, with α > 0, whose singular set C
has positive Hausdorff dimension yet is L∞

1/w-removable for the equation div v = 0
for some values of α related to the Hausdorff dimension of C and that of the ambient
space. This is our Example 3.26.

The proof of both parts of Theorem 1.1 follow the same structure. Sufficient
removability conditions are obtained by truncation arguments as in De Pauw [12]
and [26] (case p = ∞) and [30] (case 1 < p < ∞), but extra care is needed for
we cannot, in this weighted context, rely on straightforward estimates relating the
(weighted) perimeter of a ball B of radius r to the integral 1

r

∫

B
w. Showing those

conditions are also necessary for a set S to be removable is done by solving the
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equation div v = µ in Lp
1/w(R

n,Rn) for some suitable measures µ supported in S,

and showing it might admit non trivial solutions in case S does not satisfy the
conditions in question. This is done, as in Bourgain and Brezis [8] and [30], by using
a simple version of the closed range theorem. Note that the case where p = +∞
cannot be dealt with using capacity arguments, see Remark 3.25 below.

The paper is organized as follows. In Section 2, we give definitions and basic
properties of p-admissible weights and introduce the notations used in the paper.
In Section 3, we study the removability question for the divergence equation for
weighted L∞-vector fields. In the proofs, we need theory of functions of bounded
variation in the weighted case, the weighted Hausdorff measure of co-dimension one,
the boxing inequality and a version of Frostman’s lemma. Those, as well as some
technical lemmas are presented before the main results of the section. Section 4
contains characterization of removable sets for the divergence equation for weighted
Lp-vector fields. In this section, important tools are weighted Sobolev spaces, dif-
ferent capacities and some tools from the general theory of Lq-capacities, discussed
before the main results.

2. Weights and notation

A locally integrable function w : Rn → R is a weight if w(x) > 0 for almost every
x ∈ R

n. We say that the weight w is doubling if there exists a constant CD > 1
(called the doubling constant of w) such that for any x ∈ R

n and any r > 0 one has:
∫

B(x,2r)

w 6 CD

∫

B(x,r)

w,

where B(x, r) denotes the Euclidean (open) ball with center x and radius r in R
n

and where one integrates with respect to Lebesgue measure. An iteration of the
doubling inequality then ensures that one has, for all t > 0:

(2.1)

∫

B(x,tr)

w 6 CDt
sD

∫

B(x,r)

w,

where sD := log2CD is the doubling dimension of the weighted space (Rn, w).
For 1 6 p 6 ∞, the weighted Lp-space, Lp

w(R
n,Rk), consists of measurable func-

tions u : Rn → R
k for which |u|pw ∈ L1(Rn,Rk), and we let:

‖u‖p,w :=

(
∫

Rn

|u|pw
)1/p

,

for p <∞, and

‖u‖∞,w := ‖uw‖∞.
We finally let Lp(Rn) := Lp(Rn,R).

In the sequel we shall denote by Lipc(R
n) the set of all compactly supported

(real valued) Lipschitz functions in R
n. For a weight w, the weighted Euclidean

space endowed with the Euclidean metric and the measure dµ = w dx is denoted by
(Rn, w).
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Definition 2.1. Let 1 6 p < +∞ be a real number. We shall say that the weighted
space (Rn, w) supports a weighted (1, p)-Poincaré inequality in case that there exist
constants CP > 0 and τ > 1 such that for any ϕ ∈ Lipc(R

n), any x ∈ R
n and any

r > 0 we have:
∫

B(x,r)

|ϕ− ϕ̄x,r|w 6 CP r

(
∫

B(x,τr)

|∇ϕ|pw
)1/p

,

where we let ϕ̄x,r :=
∫

B(x,r)
ϕw and where

∫

B
ϕw denotes the mean value 1

∫

B
w

∫

B
ϕw

for any Borel set B satisfying |B| > 0.

We use the class of p-admissible weights as in [16, Section 1.1] and [6, Defini-
tion A.6]. Such weights are important in the nonlinear potential theory developed
in [16], see also [6, Appendix A].

Definition 2.2. Let 1 6 p < ∞ be a real number. A weight w is said to be
p-admissible in case it is doubling and the weighted space (Rn, w) supports a (1, p)-
Poincaré inequality.

It follows from Heinonen, Kilpeläinen and Martio [16, Corollary 20.9] (in the
second edition of their book) that p-admissible weights for p > 1 satisfy a bunch
of other interesting properties, among which the following Poincaré inequality for
compactly supported functions (see [16, Section 1.4] and [34, Corollary 2.1.5]): there
exists κ > 0 such that for any ball B = B(x, r) ⊆ R

n and any ϕ ∈ Lipc(R
n)

supported in B(x, r), we get:

(2.2)

∫

B(x,r)

|ϕ|pw 6 κ rp
∫

B(x,r)

|∇ϕ|pw.

An important class of p-admissible weights are the Ap-weights, which were defined
by Muckenhoupt in [28], where he showed that when 1 < p < ∞, the Hardy–
Littlewood maximal operator is Lp

w-bounded if and only if w ∈ Ap.

Definition 2.3. A weight w is an Ap-weight, 1 < p <∞, if

sup
B

(

∫

B

w
)(

∫

B

w1/(1−p)
)p−1

<∞,

where the supremum is taken over all balls B ⊂ R
n. Note that the Ap-condition

implies that w ∈ L1/(1−p)(Rn) locally.
A weight w is an A1-weight, if

sup
B

(

∫

B

w
)

ess sup
B

1

w
<∞.

Remark 2.4. The fact that Ap-weights are p-admissible has been proved in [16,
Theorem 15.21] in case p > 1 and in [7, Theorem 4] in case p = 1. The doubling
property follows easily from the Ap-condition but the validity of a weighted (1, p)-
Poincaré inequality requires more work.

For further properties of Ap-weights, see for example [11], [18], [32, Chapter V] and
[34, Remark 1.2.4] and for examples of p-admissible weights that are not Ap-weights,
see for example [10] and [15].
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Example 2.5. It is classical that for −n < η 6 0, wη(x) := |x|η is an A1-weight.
Moreover any weight of the form wη(x) = |x|η for η > −n is doubling (while it may
not be A1). See e.g. [34, Example 1.2.5].

For a set A ⊂ R
n, M+(A) is the set of locally finite (nonnegative) Radon measures

supported in A.

3. The case of weighted L∞ vector fields

In this section, we study the removability question for the divergence equation
for weighted L∞-vector fields. We start by defining some tools and proving results
needed in the proofs - those include weighted Hausdorff content and measure of
codimension 1 and functions of bounded variation in the weighted setting. Our
main results in this section hold for doubling weights that satisfy a (1, 1)-Poincaré
inequality. In Theorem 3.17, we show that any compact set S ⊆ R

n with H h(S) =
0, is L∞

1/w-removable for div v = 0. Indeed, vanishing Hausdorff measure almost
characterizes removable sets - if the weight w satisfies an additional mild growth
condition, then a compact set S ⊆ R

n is L∞
1/w-removable for div v = 0 if and only if

H h(S) = 0, see Theorem 3.24.

3.1. Hausdorff contents. Let w be a weight. Associated to w, define a (spherical)
measure function h on (closed) balls B(x, r) by:

h(B(x, r)) :=
1

r

∫

B(x,r)

w.

According to the usual Carathéodory construction (see [23, Section 4.1]), we also
define a weighted co-dimension 1 (spherical) Hausdorff outer measure (as in Turesson
[34, Section 2.3] and Nieminen [29]) by letting first, for 0 < δ 6 ∞ and E ⊆ R

n:

H
h
δ (E) := inf

∑

j∈J

h(B(xj , rj)),

where the infimum is taken on all countable coverings of E by balls (B(xj , rj))j∈J
satisfying rj 6 δ for all j ∈ J . We define then

H
h(E) := lim

δ→0
H

h
δ (E).

It follows from [34, Proposition 2.3.3] that H h
δ is an outer measure for any 0 < δ 6

∞, and that H h is a Borel regular outer measure.
The following straightforward lemma will be useful in the sequel.

Lemma 3.1. Let h be associated to the weight w as above and assume that the
compact set S ⊆ R

n satisfies H h(S) = 0. Then S is Lebesgue-negligible.

Proof. If η > 0 is an arbitrary positive number, let (B(xj , rj))j∈J be a finite family
of balls covering S, verifying rj 6 1 for each j ∈ J as well as:

∑

j∈J

h(B(xj , rj)) 6 η.
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We then compute:
∫

S

w 6

∫

⋃

j∈J B(xj ,rj)

w 6
∑

j∈J

∫

B(xj ,rj)

w =
∑

j∈J

rjh(B(xj , rj)) 6
∑

j∈J

h(B(xj , rj)) 6 η,

so that one has
∫

S
w = 0, since η > 0 is arbitrary. It follows that the set {x ∈ S :

w(x) > 0} is Lebesgue-negligible, and hence that S itself is Lebesgue-negligible for
we assumed than one has w > 0 a.e. on R

n. �

When R
n is endowed with a doubling weight which grows fast enough, we have

the following version of Frostman’s lemma, which is a particular case of [34, Theo-
rem 3.4.27].

Lemma 3.2. Assume that w is a doubling weight on R
n. If moreover, for any

x ∈ R
n:

(3.1) lim
r→∞

h(B(x, r)) = ∞,

and if B ⊆ R
n is a Borel set verifying H h

∞(B) > 0, then there exists a nontrivial
measure µ ∈ M+(B) satisfying the following inequality:

µ(B(x, r)) 6 Ch(B(x, r)),

for any x ∈ R
n and r > 0.

Example 3.3. An easy computation shows that the weight wη defined in Exam-
ple 2.5 also satisfies condition (3.1) in case 1− n < η 6 0.

In fact, assuming the growth condition (3.1) only for x = 0, it is equivalent for a
bounded set B to satisfy H

h
∞(B) = 0 or H

h(B) = 0.

Lemma 3.4. Assume that w is doubling and that one has:

(3.2) lim
r→∞

h(B(0, r)) = ∞.

For any bounded set B ⊆ R
n, the equalities H h(B) = 0 and H h

∞(B) = 0 are
equivalent.

Proof. Fix a bounded set B ⊆ R
n. Since one has H h

∞(B) 6 H h(B), it is clear that
H h

∞(B) = 0 provided that H h(B) = 0.
Conversely, assume that H h

∞(B) = 0. Choose R0 > 0 such that one has B ⊂
B(0, R0). Let f(r) := h(B(0, r)) for all r > 0. Since (3.2) yields

lim
r→+∞

f(r) = +∞,

we are allowed to choose R > R0 such that f(r) > 3sDCD for all r > R, where
CD > 0 and sD := log2CD are the doubling constants of w (see (2.1) above).

Fix now δ > 0 and let:

cδ := max
(

3, 2 +
R0

δ

)

.

Choose then ε > 0 with:

ε < min
(

1,
1

csDδ CDR

∫

B(0,δ)

w

)

.
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Since one has H h
∞(B) = 0, there exists an (at most countable) family of balls

(B(xj , rj))j∈J covering B and satisfying:

∑

j∈J

h(B(xj , rj)) =
∑

j∈J

1

rj

∫

B(xj ,rj)

w 6 ε.

One may assume that, for all j ∈ J , one has B(xj , rj)∩B 6= ∅, so that one computes
|xj | 6 rj + R0. By the doubling property (2.1), we get for any j ∈ J such that
rj > R0:

∫

B(0,rj)

w 6

∫

B(xj ,rj+|xj |)

w 6 CD

(

1 +
|xj |
rj

)sD ∫

B(xj ,rj)

w

6 CD

(

2 +
R0

rj

)sD ∫

B(xj ,rj)

w 6 3sDCD

∫

B(xj ,rj)

w,

so that:
∑

j∈J

f(rj) 6 3sDCDε < 3sDCD.

We hence get rj 6 R for all j ∈ J , for the latter inequality is obvious in case j ∈ J
is such that one has rj 6 R0 < R.

Assume now that j ∈ J is such that rj > δ. If moreover one has rj > R0, the
computations above show that:

∫

B(0,rj )

w 6 3sDCDrj ·
1

rj

∫

B(xj ,rj)

w 6 3sDCDRε 6 csDδ CDRε.

In case one has δ < rj 6 R0, we compute using again (2.1):
∫

B(0,rj)

w 6 CD

(

2 +
R0

rj

)sD ∫

B(xj ,rj)

w 6

(

2 +
R0

δ

)sD

CDrjε 6 csDδ CDRε.

Hence in both cases we have
∫

B(0,rj)
w 6 csDδ CDRε. We hence get:

∫

B(0,δ)

w 6

∫

B(0,rj)

w 6 csDδ CDRε <

∫

B(0,δ)

w,

which is impossible.
Therefore rj 6 δ for each j ∈ J , so that we get:

H
h
δ (B) 6

∑

j∈J

h(B(xj , rj)) 6 ε.

Since ε is arbitrary small, this yields H h
δ (B) = 0. Finally, we get H h(B) = 0 for

the previous estimates yield H h
δ (B) = 0 for any δ > 0. �

Remark 3.5. In case w is 1-admissible, the previous lemma can be obtained by
combing results [20, Lemma 7.6, Remark 7.4] by Kinnunen, Korte, Shanmugalingam
and the third author.
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3.2. Miranda’s BV -functions. In the more general context of metric measure
spaces, M. Miranda introduced in [25] the notion of function with bounded variation.
We shall in the sequel particularize some results obtained by Miranda to the context
where Rn is endowed by an appropriate weight; to this purpose, we need to introduce
some terminology.

Following Miranda [25], read in this weighted context by Camfield [9], define the
metric (weighted) variation of u ∈ L1

w(R
n) by:

‖Du‖w := inf

{

lim
k→∞

∫

Rn

|∇ϕk|w : (ϕk) ⊆ Lip(Rn), ϕk → u in L1
w

}

.

The following Theorem, stated here for reader’s convenience but unnecessary for
our purposes, is a direct consequence of two deep results by Camfield [9, Theo-
rems 3.2.6 and 3.4.5]. It shows that, under some regularity conditions on the weight
w, the metric variation of a Lipschitz function is identical to the L1

w norm of its
gradient.

Theorem 3.6 (Camfield). Assume that w is locally integrable and lower semicontin-
uous. If moreover there exists an H h-negligible set E outside which w is continuous
and (strictly) positive, then for any ϕ ∈ Lipc(R

n) we have:

(3.3) ‖Dϕ‖w = ‖∇ϕ‖1,w =

∫

Rn

|∇ϕ|w.

For 1-admissible weights, the equality (3.3) can be replaced by a comparison
between the two quantities involved, at least for Lipschitz functions (see [25, p. 992,
(19) and below]).

Proposition 3.7. Assume that the weight w is 1-admissible. Then for any ϕ ∈
Lipc(R

n) we have:
c‖∇ϕ‖1,w 6 ‖Dϕ‖w 6 ‖∇ϕ‖1,w,

where c > 0 is independent of ϕ.

The following proposition is a particular case of M. Miranda’s Coarea formula [25,
Proposition 4.2]. The (weighted) perimeter of a Borel set B, denoted by Pw(B), is
defined by:

Pw(B) := ‖DχB‖w.
Proposition 3.8. Assume that w is a 1-admissible weight. Then, for any u ∈
L1
w(R

n) verifying ‖Du‖w < +∞, we have:

‖Du‖w =

∫

R

Pw({u > t}) dt.

We shall also make use of the following boxing inequality, due (in the more general
framework of measure metric spaces) to Kinnunen, Korte, Shanmugalingam and the
third author [20, Theorem 3.1].

Theorem 3.9 (Boxing inequality). Assume that w is a 1-admissible weight. There
exists a constant CB = CB(CD, CP ) > 0 such that for any open set U ⊆ R

n verifying
∫

U
w < ∞, we can find sequences (xi) ⊆ U and (ri) ⊆ (0,+∞) satisfying the

following conditions:
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(i) B(xi, ri) ∩ B(xj , rj) = ∅ for i 6= j;
(ii) U ⊆ ⋃

i∈NB(xi, 5ri);
(iii)

∑∞
i=0 h(B(xi, 5ri)) =

∑∞
i=0

1
5ri

∫

B(xi,5ri)
w 6 CBPw(U).

We are now ready to study removable singularities of divergence-free vector fields

3.3. Removable singularities. Assume in this whole section that w is a weight.
Given vector field v ∈ L∞

1/w(R
n,Rn) and ϕ ∈ Lipc(R

n), it is clear that we have, a.e.
on R

n:

|v · ∇ϕ| 6
∣

∣

∣

v

w

∣

∣

∣
|∇ϕ|wχsuppϕ 6 ‖v‖∞,1/w‖∇ϕ‖∞wχsuppϕ.

Since w is locally integrable, one can define the (extended) distributional divergence
of v by:

〈div v, ϕ〉 := −
∫

Rn

v · ∇ϕ,

for any ϕ ∈ Lipc(R
n).

Definition 3.10. Let S ⊆ R
n be compact and f ∈ L1

loc(R
n). The set S is said

to be L∞
1/w-removable with respect to the equation div v = f in case for any v ∈

L∞
1/w(R

n,Rn), the equality

(3.4) 〈div v, ϕ〉 =
∫

Rn

fϕ

for any ϕ ∈ Lipc(R
n) with suppϕ ∩ S = ∅ (which we shall abbreviate “div v = f

outside S”) implies that (3.4) also holds for any ϕ ∈ Lipc(R
n) (which we shall

abbreviate “div v = f in R
n”).

Remark 3.11. Assume that w is an A1 weight. According to the fact that given
ϕ ∈ Lipc(R

n), one has ϕ ∈ L1
w(R

n) ∩ L1
loc(R

n) and ∇ϕ ∈ L1
w(R

n) ∩ L1
loc(R

n),
[34, Corollary 2.1.5] ensures that the above definition remains unchanged in case
Lipc(R

n) is replaced by C∞
c (Rn); yet it is not clear that the two definitions are

equivalent without this extra assumption on w.

Remark 3.12. Assume that f ∈ L1
loc(R

n) yields a solution v0 ∈ L∞
1/w(R

n,Rn) to
the equation div v = f , in the sense that div v0 = f in R

n. Assume also that S is
L∞
1/w-removable for the equation div v = 0. Fix now v ∈ L∞

1/w(R
n,Rn) and assume

that div v = f outside S. Since it is clear that one has div(v − v0) = 0 outside S,
the removability assumption made on S ensures that one has div(v− v0) = 0 in R

n;
we hence get div v = f in R

n, and S is L∞
1/w-removable for the equation div v = f .

Conversely, one shows in a similar fashion that any L∞
1/w-removable set for div v = f

is also removable for div v = 0. Hence we shall assume in the sequel that f = 0.

3.4. A sufficient condition for a set to be L∞
1/w-removable. Let us observe

first that it suffices, in order to show that a set is removable, that one is able to
construct, in any of its neighborhood, an appropriate Lipschitz approximation of its
characteristic function.



10 LAURENT MOONENS, EMMANUEL RUSS, AND HELI TUOMINEN

Lemma 3.13. Assume that S is compact and that for any ε > 0, there exists a
neighborhood U of S satisfying

∫

U
w 6 ε together with a Lipschitz function χ ∈

Lipc(R
n) satisfying suppχ ⊆ U , 0 6 χ 6 1 in U , χ = 1 in a neighborhood of S as

well as ‖∇χ‖1,w 6 ε. Then S is L∞
1/w-removable for the equation div v = 0.

Proof. Assume that one has 〈div v, ϕ〉 = 0 for any ϕ ∈ Lipc(R
n) satisfying suppϕ ∩

S = ∅. Fix then ϕ ∈ Lipc(R
n), let ε > 0 and let χ be associated to U and ε as in

the above assumption. Observe that one has, by hypothesis:

〈div v, ϕ〉 = 〈div v, ϕχ〉

6 ‖v‖∞,1/w

(

‖∇ϕ‖∞
∫

U

w + ‖ϕ‖∞‖∇χ‖1,w
)

6 ε‖v‖∞,1/w(‖∇ϕ‖∞ + ‖ϕ‖∞).

It then follows that 〈div v, ϕ〉 = 0 for ε > 0 is arbitrary. This establishes that S is
L∞
1/w-removable for the equation div v = 0. �

The following proposition will be useful while showing that compact sets with
H h(S) = 0 are removable for the divergence equation.

Proposition 3.14. Let w be a 1-admissible weight and assume that V ′ ⊂⊂ V ⊂⊂
U ⊂⊂ R

n are open sets, and assume that |∂V | = |∂V ′| = 0. For any ε > 0, there
exists a Lipschitz function ϕ ∈ Lipc(R

n) satisfying suppϕ ⊆ U , ϕ = 1 on V ′ and

‖∇ϕ‖1,w 6 ε+ 2Pw(V ).

Proof. Start by choosing ψ ∈ Lipc(R
n) satisfying χV ′ 6 ψ 6 χV . Choose, according

to the definition of Pw(V ), a sequence (ϕk) ⊆ Lip(Rn) converging in L1
w(R

n) to χV

and such that for any k ∈ N, one has:

‖∇ϕk‖1,w 6
ε

4
+ Pw(V ).

Replacing if necessary ϕk by min[1,max(ϕk, 0)] (which does not increase the norm
of the gradient of ϕk on the complement of a negligible set), one can assume that
one has 0 6 ϕk 6 1 for each k. Replacing if necessary ϕk by θϕk for k ∈ N, where
θ ∈ Lipc(R

n) satisfies 0 6 θ 6 1, as well as θ = 1 on V and θ = 0 outside U , and
observing that one has, for any k ∈ N:

|∇(θϕk)|w 6 |∇θ||ϕk − χV |w + |∇ϕk|w 6 ‖∇θ‖∞|ϕk − χV |w + |∇ϕk|w,
we may also assume that suppϕk ⊆ U for any k ∈ N.

Define now, for k ∈ N:

ϕ̃k := ψ + (1− ψ)ϕk.

It is clear that ϕ̃k is Lipschitz and has compact support for any k ∈ N; moreover
one computes, for a.e. x ∈ R

n (recall that one has |∂V ′| = |∂V | = 0):

|∇ϕ̃k(x)| 6











0 if x ∈ V ′,

2|∇ϕk(x)|+ ‖∇ψ‖∞|1− ϕk(x)| if x ∈ V \ V ′,

|∇ϕk(x)| if x ∈ ∁V.
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We hence get, a.e. on R
n, for any k ∈ N:

|∇ϕ̃k|w 6 2|∇ϕk|w + ‖∇ψ‖∞|χV − ϕk|w.
Since we have ϕk → χV in L1

w(R
n), there exists k ∈ N such that:

‖∇ϕ̃k‖1,w 6 ε+ 2Pw(V ).

We can hence take ϕ := ϕ̃k, and the proof is complete. �

The next lemma, taken from [21, Lemma 6.2], will be of some help. We include
its proof for the sake of clarity.

Lemma 3.15. Assume that w is a 1-admissible weight. Given x ∈ R
n and r > 0,

there exists ρ ∈ [r, 2r] such that one has:

Pw(B(x, ρ)) 6 Ch(B(x, ρ)),

where C > 0 is independent of x and ρ.

Proof. Fix x ∈ R
n and r > 0. Define ϕ ∈ Lipc(R

n) by the formula:

ϕ(y) := max

[

0,min

(

2− 1

r
|y − x|, 1

)]

,

for y ∈ R
n. It is clear that one has |∇ϕ| 6 1

r
χB(x,2r)\B(x,r) on R

n. Hence we get,
using M. Miranda’s coarea formula (Proposition 3.8) and Proposition 3.7:

∫ 1

0

Pw(B(x, (2− t)r)) dt =

∫

R

Pw({ϕ > t}) = ‖Dϕ‖w

6

∫

Rn

|∇ϕ|w 6
1

r

∫

B(x,2r)\B(x,r)

w 6 CDh(B(x, r)).

If we now choose ρ ∈ [r, 2r] such that one has

Pw(B(x, ρ)) 6

∫ 1

0

Pw(B(x, (2− t)r)) dt,

we get:

Pw(B(x, ρ)) 6 CDh(B(x, r)) 6 2CDh(B(x, ρ)),

and the lemma is proved. �

The next proposition is a first step towards showing H h-negligible sets are re-
movable.

Proposition 3.16. Assume that w is a 1-admissible weight. If S is compact and
satisfies H h(S) = 0, then for any ε > 0 and any neighborhood U of S, one can find
an open subset V ⊂⊂ U , satisfying S ⊆ V as well as:

Pw(V ) 6 ε.

Moreover V can be chosen to be a finite union of balls.
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Proof. Fix η > 0. Let 0 < δ < 1
4
dist(S, ∁U) and observe that H h

δ (S) = 0. Hence
there are balls B(xj , rj) for some xj ∈ R

n, rj > 0, j ∈ J covering S (since S is
compact we can assume J to be finite), satisfying rj 6 δ for each j ∈ J and:

∑

j∈J

h(B(xj , rj)) 6 η.

According to Lemma 3.15, choose for each j ∈ J a radius ρj ∈ [rj , 2rj] for which
one has:

Pw(B(xj , ρj)) 6
C

ρj

∫

B(xj ,ρj)

w;

observe that the doubling property of w yields, for any j ∈ J :

Pw(B(xj , ρj)) 6
CCD

rj

∫

B(xj ,rj)

w = CCDh(B(xj , rj)).

Letting V :=
⋃

j∈J B(xj , ρj) ⊂⊂ U , we hence get, using the subadditivity of the

weighted perimeter ([25, Proposition 4.7]):

Pw(V ) 6
∑

j∈J

Pw(B(xj , ρj)) 6 CCD

∑

j∈J

h(B(xj , rj)) 6 CCDη,

from which the desired inequality readily follows. �

The previous proposition together with Lemma 3.13 and Proposition 3.14, yield
a sufficient removability condition.

Theorem 3.17. Assume that w is a 1-admissible weight. Then any compact set
S ⊆ R

n verifying H h(S) = 0, is L∞
1/w-removable for div v = 0.

Proof. According to Lemma 3.1, the set S is Lebesgue-negligible. So we may fix
ε > 0, and let U be a neighborhood of S for which one has

∫

U
w 6 ε (we may

moreover assume that U consists of a finite union of balls). Start, according to
Proposition 3.16, by choosing an open set V ⊂⊂ U satisfying Pw(V ) 6 ε

4
as well

as S ⊆ V (and consisting of a finite union of balls). Choose, according to Proposi-
tion 3.14, a Lipschitz function ϕ ∈ Lipc(R

n) equal to 1 in a neighborhood V ′ ⊂⊂ V
of S and verifying ‖∇χ‖1,w 6 ε

2
+ 2Pw(V ). One now computes:

‖∇χ‖1,w 6
ε

2
+ 2Pw(V ) 6 ε,

and it follows from Lemma 3.13 that S is L∞
1/w-removable for div v = 0. �

3.5. A necessary condition for a set to be L∞
1/w-removable. We first state

the following estimate for measures satisfying a weighted-Frostman condition. It is
similar to [34, Theorem 2.6.3], although we do not require here w to be A1.

Proposition 3.18. Assume that w is a 1-admissible weight. Let µ be a (nonneg-
ative) Radon measure on R

n and assume that for any x ∈ R
n and any r > 0, we

have :

(3.5) µ(B(x, r)) 6 Ch(B(x, r)).
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Then for any ϕ ∈ Lipc(R
n) we have:

∫

Rn

|ϕ| dµ 6M‖∇ϕ‖1,w,

where M > 0 is independent of ϕ.

Proof. Fix t > 0 and let Ut be the bounded open set defined by Ut := {x ∈ R
n :

|ϕ(x)| > t}. According to the weighted boxing inequality (Theorem 3.9), there exists
(xi) ⊆ Ut and (ri) ⊆ (0,∞) satisfying conditions (i) to (iii) in Theorem 3.9, with Ut

instead of U . Write then

µ(Ut) 6
∞
∑

i=0

µ(B(xi, 5ri)) 6 C

∞
∑

i=0

1

5ri

∫

B(xi,5ri)

w 6 CCBPw(Ut).

Now we have, using Cavalieri’s principle and Miranda’s coarea formula (Proposi-
tion 3.8):

∫

Rn

|ϕ| dµ =

∫ ∞

0

µ(Ut) dt 6 CCB

∫ ∞

0

Pw(Ut) dt = CCB‖D|ϕ|‖w.

According to Proposition 3.7, we have

‖D|ϕ|‖w 6 ‖∇|ϕ|‖1,w = ‖∇ϕ‖1,w,
since one has |∇|ϕ|| = |∇ϕ| almost everywhere. This finishes the proof since one
can take M := CCB > 0. �

The following lemma, of functional analytic nature, avoids unnecessary technical-
ities in the sequel, and has been suggested by J. Boël.

Lemma 3.19. Let X and Y be two normed spaces, and assume that T : X → Y is
linear and isometric, i.e. that one has ‖T (x)‖Y = ‖x‖X for every x ∈ X. Then its
adjoint map T ∗ : Y ∗ → X∗ is surjective.

Remark 3.20. Observe that one does not need, in the above statement, any kind
of completeness to be satisfied, neither by X nor by Y .

Proof. Fix f ∈ X∗. It is clear by assumption that T is injective; hence the formula:

〈g0, T (x)〉 := 〈f, x〉,
defines a linear map g0 : T (X) → R satisfying

|〈g0, T (x)〉| 6 ‖f‖‖x‖X = ‖f‖‖T (x)‖Y
for any x ∈ X . The Hahn-Banach Theorem hence ensures the existence of g ∈ Y ∗

verifying g ↾ T (X) = g0, meaning that one has:

〈T ∗g, x〉 := 〈g, T (x)〉 = 〈g0, T (x)〉 = 〈f, x〉,
for any x ∈ X . This shows that T ∗g = f and establishes the surjectivity of T ∗. �

We are now able to show that any Radon measure satisfying a weighted Frostman
condition is the divergence of a vector field in L∞

1/w.
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Theorem 3.21. Let w be a 1-admissible weight. If µ is a (nonnegative) Radon
measure verifying condition (3.5) above, then there exists v ∈ L∞

1/w(R
n,Rn) such

that, for any ϕ ∈ Lipc(R
n), one has:

〈div v, ϕ〉 =
∫

Rn

ϕdµ;

in particular, div v = µ holds on R
n, in the distributional sense.

Proof. It is inspired by [30, Theorem 3.3]. Denote by X the space Lipc(R
n) endowed

with the norm ‖ϕ‖X := ‖∇ϕ‖1,w, and define an operator

T : X → L1
w(R

n,Rn), u 7→ −∇u.
Since T is clearly isometric, its adjoint operator

div : [L1
w(R

n,Rn)]∗ = L∞
1/w(R

n,Rn) → X∗

is surjective. Yet Proposition 3.18 ensures that we have µ ∈ X∗. The proof is
complete. �

Remark 3.22. To obtain the isometric isomorphism between [L1
w(R

n,Rn)]∗ and
L∞
1/w(R

n,Rn), it suffices to notice that given f ∈ [L1
w(R

n,Rn)]∗, the formula v 7→
〈f, v

w
〉 defines a bounded linear map on L1(Rn,Rn) with the same norm as f . Hence

there exists g ∈ L∞(Rn,Rn) with ‖g‖∞ = ‖f‖ such that for any u ∈ L1
w(R

n,Rn)
one has

f(u) =

∫

Rn

u · gw.

Yet the function h := gw belongs to L∞
1/w(R

n,Rn) and ‖h‖L∞

1/w
= ‖f‖.

We now have a necessary condition on a compact set S for it to be L∞
1/w-removable.

Theorem 3.23. Assume that w is a 1-admissible weight that satisfies condition
(3.1). If the compact set S ⊆ R

n is L∞
1/w-removable for div v = 0, then H h

∞(S) = 0.

Proof. To show this, assume that one has H h
∞(S) > 0. According to the above

weighted version of Frostman’s lemma (Lemma 3.2), there exists a nontrivial Radon
measure µ on R

n supported in S and satisfying:

µ(B(x, r)) 6 Ch(B(x, r)),

for any x ∈ R
n and r > 0. Since Theorem 3.21 ensures the existence of a vector field

v ∈ L∞
1/w(R

n,Rn) such that div v = µ, we get div v 6= 0 while 〈div v, ϕ〉 = 0 holds in

case ϕ ∈ Lipc(R
n) satisfies suppϕ ∩ S = ∅. Hence S cannot be L∞

1/w-removable for
div v = 0. �

According to Lemma 3.4, Theorems 3.17 and 3.23 give a complete characterization
of L∞

1/w-removable (compact) subsets of Rn for the equation div v = 0, in case w

satisfies (3.1).

Theorem 3.24. Assume that w is a 1-admissible weight and that w satisfies condi-
tion (3.1). Let S ⊆ R

n be compact. Under those assumptions, S is L∞
1/w-removable

for div v = 0 if and only if one has H
h(S) = 0.
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Remark 3.25. The reader may wonder why we did not use the capacity theory to
establish Theorem 3.24. Indeed, recall that in the classical unweighted case, H n−1,
Hausdoff measure of dimension n− 1 and 1-capacity cap1 (defined by (4.2) below)
have same zero sets, see [14, Theorem 3, p. 193]. A corresponding result holds in the
setting of metric spaces: by [20, Theorem 3.5] Hausdorff content of codimension 1
and 1-capacity are comparable for compact sets. The reason why we cannot use this
result here is that, in [20], admissible functions for 1-capacity belong to the Sobolev
space defined using weak upper gradients, and it is not known if |∇u| is a 1-minimal
weak upper gradient of each locally Lipschitz function u, see [6, Appendix A2].

Before discussion on Lp-analogues of the previous results, let us mention an in-
teresting example.

Example 3.26. Given a cube Q, we denote by σ(Q) the length of its edges. For
0 < λ < 1/2, we let E (Q, λ) stand for the collection of 2n cubes contained in Q
whose edges have length λσ(Q), arranged in such a way that each cube of E (Q, λ)
has a common vertex with Q.

Fix a sequence λ = (λk)k>1 ⊆ (0, 1/2). Write E0 := [0, 1]n and E0 = {E0}. For
each k > 1, define inductively

Ek(λ1, . . . , λk) := ∪{E (Q, λk) : Q ∈ Ek−1(λ1, . . . , λk−1)}
and Ek(λ1, . . . , λk) := ∪Ek(λ1, . . . , λk) (or briefly Ek and Ek when the underlying
sequence is clear). In particular, each cube in Ek has edges of length σk := λ1 . . . λk.
We finally let

E(λ) =
∞
⋂

k=1

Ek.

Associated to λ, we choose a nondecreasing function h : [0,∞) → [0,∞) satisfying
h(0) = 0 and h(σk) = 2−kn for each k > 1. Recall that the Hausdorff h-measure of
E(λ) is positive and finite (see [23, Section 4.9]).

If for example we fix a real number 0 < s < n and take λk = 2−
n
s for each k,

this yields σk = 2−
kn
s for each k, and we may take h(t) = ts. Hence in this case the

set E := E(λ) has Hausdorff dimension s and is s-Ahlfors regular according to [22,
Theorem 8.3.2] (see also [27] and [17]). It hence follows from [5, Theorem 7] that
for any 0 6 γ < 1, the map wγ defined for a.e. x ∈ R

n by

wγ(x) := dist(x, C)γ(s−n),

is an A1-weight.
Observing now that Ek consists of 2kn cubes of side length σk, compute, for any

one of those cubes Q and B ⊇ Q, the smallest ball containing Q having the same
center:

1

|B|

∫

B

wγ 6 Aγ ess inf
B

wγ,

where Aγ > 0 is a constant associated with the A1-property of wγ. Since the set:
{

x ∈ B : dist(x, E) >
1

4

(σk
2

− σk+1

)}
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has positive Lebesgue measure, this yields:

1

|B|

∫

B

wγ 6 Aγ4
γ(n−s)

(σk
2

− σk+1

)γ(s−n)

.

Since 2kn of those balls suffice to cover Ek, we compute:

H
h(Ek) 6 2knh(B) = 2kn ·

√
2√
nσk

∫

B

wγ

6 C(n, γ, s)2knσn−1
k

(σk
2

− σk+1

)γ(s−n)

= C(n, γ, s)2knσ
n−1+γ(s−n)
k

(

1

2
− 2−

n
s

)γ(n−s)

= C ′(n, γ, s)2
−k

[

(1−γ)n
2

s
−n

s
+(γ−1)n

]

.

The last expression tends to zero for k → ∞, provided that one has:

(3.6) s < n− 1

1− γ
.

This yields H h(E) = 0 if inequality (3.6) is satisfied. In particular, the set E is
then L∞

1/wγ
-removable for the equation div v = 0 while we have wγ = +∞ on E.

4. The case of weighted Lp vector fields

In this section, we study the removability question for the equation div v = 0 for
Lp
1/w-vector fields, that is measurable functions v : Rn → R

n such that

‖v‖Lp
1/w

:=

(
∫

Rn

|v(x)|p 1

w(x)
dx

)1/p

< +∞,

1 < p < +∞. In Theorems 4.17 and 4.18, we give a characterization for removability
by showing that, under suitable assumptions on the weight w, a compact set S is

Lp
1/w-removable for div v = 0 if and only if Capw

p′−1

p′ (S) = 0. Before that, we

recall the definition of weighted Sobolev spaces, different capacities and prove some
lemmas. In the whole section, p and p′ are conjugate exponents satisfying 1/p +
1/p′ = 1.

Remark 4.1. It follows from the Hölder inequality that if w ∈ Lp′−1
loc (Rn), then the

distributional divergence of v ∈ Lp
1/w(R

n,Rn) is well defined by the formula:

〈div v, ϕ〉 := −
∫

Rn

v · ∇ϕ,

for ϕ ∈ Lipc(R
n).

Removability in the Lp-case is defined similarly as for L∞-vector fields.
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Definition 4.2. Let S ⊆ R
n be compact and 1 < p < ∞. Let w be a weight. The

set S is Lp
w-removable with for the equation div v = 0 (in the distributional sense) if

for any v ∈ Lp
w(R

n,Rn), the validity of the equality

(4.1) 〈div v, ϕ〉 = 0

for any ϕ ∈ Lipc(R
n) with suppϕ ∩ S = ∅ implies that (4.1) also holds for any

ϕ ∈ Lipc(R
n).

Remark 4.3. Given 1 < p < ∞ and an Ap weight w, we can again (as in Re-
mark 3.11) rely on [34, Corollary 2.1.5] (see [24, Lemma 2.4] for a proof in this case)
to claim that the above definition remains unchanged in case Lipc(R

n) is replaced
by C∞

c (Rn).

4.1. Weighted Sobolev spaces. There are two ways to define weighted Sobolev
spaces: using distributional derivatives or the closure of smooth compactly sup-
ported functions in the weighted Sobolev norm. The space W 1,p

w (Rn) consists of
functions u ∈ Lp

w(R
n) whose distributional derivatives of order one belong to Lp

w(R
n).

The space is equipped with norm

‖u‖W 1,p
w (Rn) := ‖u‖p,w + ‖∇u‖p,w,

where ∇u is the distributional gradient of u. The space H1,p
w (Rn) is the closure

of C∞
c (Rn) under the norm ‖ · ‖W 1,p

w (Rn). For Ap-weights, 1 < p < ∞, H and W

definitions of weighted Sobolev spaces give the same space by [19, Theorem 2.5].

4.2. Potentials and capacities. We need three different capacities: Sobolev ca-
pacity and the weighted versions of Riesz and Bessel capacity. The capacity theory
in weighted Sobolev spaces has been developed to study nonlinear potential theory,
see [16], [2] and [34]. For the properties of Riesz and Bessel potentials, we refer, in
the classical case to [3], [31, Chapter V] and [35] and in the weighted case to [2],
[4], [34]. As in the unweighted Euclidean space, Riesz and Bessel potentials and the
corresponding capacities are closely related to Sobolev spaces.

Definition 4.4. Let w be a weight and let 1 ≤ p < ∞. The weighted Sobolev
p-capacity of a set E is

Capw
p (E) := inf

{
∫

Rn

|ϕ|pw +

∫

Rn

|∇ϕ|pw
}

,

where the infimum is taken over all functions ϕ ∈ A(E), where we let:

A(E) :=
{

ϕ ∈ C∞
c (Rn) : ϕ ≥ 1 in a neighbourhood of E

}

,

where as usual C∞
c (Rn) denotes the space of all compactly supported smooth func-

tions in R
n.

Remark 4.5. Assume that E is compact and that w ∈ Ap. We claim that

Capw
p (E) = inf

{
∫

Rn

|ϕ|pw +

∫

Rn

|∇ϕ|pw
}

,
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where the infimum is taken over all functions ϕ ∈ B(E), defined by

B(E) :=
{

ϕ ∈ C∞
c (Rn) : 0 6 ϕ 6 1 in R

n and ϕ = 1 in a neighbourhood of E
}

.

Indeed, let ϕ ∈ A(E). Define ψ := max(0, inf(ϕ, 1)). The function ψ belongs to
Lipc(R

n) with |∇ψ| 6 |∇ϕ| almost everywhere, satisfies 0 6 ψ 6 1 in R
n and ψ = 1

in a neighbourhood of E and
∫

Rn

|ψ|pw +

∫

Rn

|∇ψ|pw 6

∫

Rn

|ϕ|pw +

∫

Rn

|∇ϕ|pw.

According to [34, Corollary 2.1.5] (see also [24, Lemma 2.4] for the proof in our
case where p > 1) and since ψ is compactly supported, for all ε > 0, there exists
a function ψε belonging to C∞

c (Rn) (obtained by mollification of ψ with a suitable
convolution kernel), satisfying 0 6 ψε 6 1 in R

n and ψε = 1 in a neighbourhood of
E, such that

‖ψε‖pp,w 6 ε+ ‖ψ‖pp,w and ‖∇ψε‖pp,w 6 ε+ ‖∇ψ‖pp,w,
which proves the claim, for we hence get:

∫

Rn

|ψε|pw +

∫

Rn

|∇ψε|pw 6 2ε+

∫

Rn

|ϕ|pw +

∫

Rn

|∇ϕ|pw.

Remark 4.6. Assume that 1 < p < n is a real number and that w is a p-admissible
weight. According to [16, Corollary 2.39], the weighted Sobolev capacity Capw

p has
the same zero sets as the capacity capw

p defined by

(4.2) capw
p (E) := inf

{
∫

Rn

|∇ϕ|pw
}

,

where the infimum is taken over all functions ϕ ∈ A(E).

Riesz potential and capacity. Let 0 < R 6 ∞. The (R-truncated) Riesz potential (of
order 1) of a nonnegative, locally integrable function u is the function I1,Ru : R

n →
[0,∞] given by

I1,Ru(x) :=

∫

B(x,R)

u(y)

|x− y|n−1
dy,

and the (R-truncated) Riesz potential of a measure µ ∈ M+(R
n) is I1,Rµ : R

n →
[0,∞], given by

I1,Rµ(x) :=

∫

B(x,R)

1

|x− y|n−1
dµ(y).

Taking R = ∞ gives the usual Riesz potential as defined in [3] and [34] (note that
usually the integrals above are multiplied by a constant γ(n); since we are not
interested in the exact values of potentials and capacities, we omit the constant).

Definition 4.7. Let w be a weight and let 1 < p < ∞. For 0 < R 6 ∞, we define
the (R-truncated) weighted Riesz capacity of a set E ⊂ R

n by

Rw
1,p;R(E) := inf

{

‖f‖pp,w : f ≥ 0, I1,Rf ≥ 1 on E
}

,

and we let Rw
1,p(E) := Rw

1,p;∞(E).
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If I1,Rµ ∈ Lp
w(R

n), then we say that measure µ has a finite weighted (p, w;R)-
energy (or finite weighted (p, w)-energy in case R = ∞).

Bessel potential and capacity. The Bessel kernel G1 is the tempered distribution
whose Fourier transform is Ĝ1(x) = (1+ |x|2)−1/2. It is actually a function with the
same singularity at 0 as the Riesz kernel I1(x) = |x|1−n, but has more rapid decay
at infinity. Similarly as for Riesz potentials, the Bessel potential of a measurable
function u is convolution G1u = G1 ∗ u and of measure µ ∈ M+(R

n), G1µ = G1 ∗ µ.
Riesz potentials are easier to handle but Bessel potentials have better mapping

properties. The most important properties for us are the inequality

(4.3) 0 < G1(x) < CI1(x)

for all x ∈ R, the fact that

G1(x) = I1(x) + o(I1(x))

as x → 0 (for these two facts, see [34, Section 3.1.2]), and the following Theorem
from [24, Theorem 3.3], [29] which says that the Bessel potential space equals the
weighted Sobolev space for Ap-weights.

Theorem 4.8. Let 1 < p < ∞. Let w be an Ap-weight. A function u belongs to
H1,p

w (Rn) if and only if there is a function f ∈ Lp
w(R

n) such that u = G1f . Moreover,
there is a constant C = C(n, p, w) > 0 such that

1

C
‖f‖p,w ≤ ‖u‖H1,p

w (Rn) ≤ C‖f‖p,w.

Definition 4.9. Let 1 < p < ∞. Let w be a weight. The weighted Bessel capacity
of a set E ⊂ R

n is

Bw
1,p(E) = inf

{

‖f‖pp,w : f ≥ 0, G1f ≥ 1 on E
}

.

4.3. Connection between different capacities. In the proof of Theorem 4.18, we
need the property that weighted Sobolev, Bessel and Riesz capacities have same zero
sets. Connection between Sobolev and Bessel capacities is much stronger; Theorem
4.8 implies that the weighted Bessel and Sobolev capacities for an Ap-weight are
comparable. For a proof, see [34, Theorem 3.5.2].

Theorem 4.10. Let 1 < p <∞. Let w be an Ap-weight. There is a constant C > 0
such that

1

C
Capw

p (K) ≤ Bw
1,p(K) ≤ C Capw

p (K)

for all compact sets K ⊂ R
n.

Concerning Riesz capacities, we have, by (4.3), that

Rw
1,p(E) ≤ CBw

1,p(E)

for all sets E ⊂ R
n. In the unweighted case, Bessel and Riesz capacities have same

sets of finite capacity by [1, Theorem 1]. This Theorem says that if p < n, then

B1,p(E) ≤ C
(

R1,p(E) +R1,p(E)
n/(n−p)

)

.
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In the weighted case, Bessel and Riesz capacities are locally comparable if the Ap-
weight satisfies an additional integrability condition, see [4, Lemma 20]. The fol-
lowing lemma (resulting from [34, Theorem 3.3.7 and Lemma 3.3.8]) together with
Theorem 4.10 implies that for Ap-weights, weighted Sobolev, Bessel and (localized)
Riesz capacities are comparable.

Lemma 4.11. Let 1 < p < ∞ and R > 0 be real numbers. Let w be an Ap-weight.
There is a constant CR > 0 such that

1

CR

Rw
1,p;R(K) ≤ Bw

1,p(K) ≤ CRR
w
1,p;R(K),

for all compact sets K ⊂ R
n.

Remark 4.12. We could use the general theory for Lq-capacities and dual defini-
tions of capacity from [3, Chapter 2] for weighted Riesz capacities, see also [2] and
[34, Chapter 3]. We do not repeat the details of the theory because the only prop-
erty we need is that for each (compact) set S ⊆ B(0, R) ⊆ R

n of positive weighted
(3R)-localized Riesz capacity, there is a nonnegative non-zero measure supported in
S with finite energy.

Indeed, by [3, Theorem 2.5.3], for each compact set K ⊂ R
n, there is a measure

µK ∈ M+(K) such that

(4.4) Capg,q(K) = µK(K) =

∫

Rn

(

∫

Rn

g(x, y) dµK(x)
)q′

dν(y)

where 1 < q <∞, 1/q+ 1/q′ = 1, capacity Capg,q is defined using a kernel function
g(x, y) and ν is a positive measure in R

n.

Let S ⊆ B(0, R) be a compact set with Capw
p′−1

p′ (S) > 0. A non-zero measure
supported in S with finite (p, 1/w; 3R) energy is obtained using (4.4) and selecting
q′ = p, because for

dν = wp′−1 dy and g(x, y) =
χB(0,3R)(x− y)

|x− y|n−1
w(y)1−p′,

we have
∫

Rn

(

∫

Rn

g(x, y) dµ(x)
)p

dν(y)

=

∫

Rn

(

∫

Rn

χB(0,3R)(x− y)

|x− y|n−1
w(y)1−p′ dµ(x)

)p

w(y)p
′−1 dy

=

∫

Rn

(

∫

Rn

χB(0,3R)(x− y)

|x− y|n−1
dµ(x)

)p

w(y)(1−p′)p−1+p′ dy

=

∫

Rn

(

I1,3Rµ
)p
w(y)−1 dy.

4.4. Removable singularities. The following result is a counterpart of Proposi-
tion 3.18 in the Lp-case. In the unweighted case, compare it with [30, Theorem
3.2].
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Proposition 4.13. Let w be a weight and let 1 < p <∞ and R > 0 be real numbers.
Assume that wp′−1 is p′-admissible. If µ ∈ M+(B(0, R)) has a finite (p, 1/w; 3R)-
energy, then

∫

Rn

|ϕ| dµ ≤ C(n)‖I1,3Rµ‖p,w−1‖∇ϕ‖p′,wp′−1

for each ϕ ∈ Lipc(R
n).

Proof. Assume first that ϕ ∈ Lipc(R
n) satisfies suppϕ ⊆ B(0, 2R). Fix x ∈ B(0, R).

Since for any y ∈ B(0, R) one has x − y ∈ B(0, 3R), and since, according to [31,
(18) p. 125], there is a constant C = C(n) > 0 such that, for all x ∈ R

n,

ϕ(x) = C(n)

∫

Rn

∇ϕ(y) · (x− y)

|x− y|n dy,

we get, using the fact that ϕ vanishes outside B(0, 2R) that, for all x ∈ R
n,

ϕ(x) = C(n)

∫

Rn

∇ϕ(y) · (x− y)

|x− y|n
χB(0,3R)(x− y) dy.

Hence we have, using the Fubini Theorem and the Hölder inequality,
∫

Rn

|ϕ| dµ ≤ C(n)

∫

Rn

I1,3R|∇ϕ| dµ = C(n)

∫

Rn

|∇ϕ|I1,3Rµ

≤ C(n)
(

∫

Rn

|∇ϕ|p′wp′−1
)1/p′(

∫

Rn

(I1,3Rµ)
pw−1

)1/p

,

and the claim follows in case one has suppϕ ⊆ B(0, 2R).
Given a general ϕ ∈ Lipc(R

n), choose χ ∈ Lipc(R
n) satisfying χB(0,R) 6 χ 6

χB(0,2R) as well as ‖∇ϕ‖∞ 6 2/R. According to the computations before and to the
fact that supp µ ⊆ B(0, R), we know that one has:

∫

Rn

|ϕ| dµ =

∫

Rn

|ϕχ| dµ 6 C(n)‖I1,3Rµ‖p,w−1‖∇(ϕχ)‖p′,wp′−1 .

Since we have ∇(ϕχ) = χ∇ϕ + ϕ∇χ a.e. on R
n and since χ = 0 outside B(0, 2R),

we get:

‖∇(ϕχ)‖p′,wp′−1 6 ‖∇ϕ‖p′,wp′−1 +
2

R

(
∫

B(0,2R)

|ϕ|p′wp′−1

)1/p′

.

Yet wp′−1 being p′-admissible, we get:
∫

B(0,2R)

|ϕ|p′wp′−1 6 κ(2R)p
′

∫

Rn

|∇ϕ|p′wp′−1,

where κ is a constant associated to the p′-admissibility of the weight wp′−1 according
to Poincaré inequality (2.2). This finally gives rise to the following inequality:

‖∇(ϕχ)‖p′,wp′−1 6 (1 + 4κ1/p
′

)‖∇ϕ‖p′,wp′−1

and the proof is complete. �
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Remark 4.14. We have assumed that wp′−1 ∈ Ap′ . By the definition of conjugate
exponents 1/p+ 1/p′ = 1 and Aq-weights, this means that

sup
B

(

∫

B

wp′−1
)(

∫

B

w−1
)1/(p′−1)

<∞

and hence that 1/w is locally integrable on R
n.

A counterpart of Theorem 3.21 in the Lp-case says that any nonnegative Radon
measure with finite (p, 1/w)-energy is the divergence of a vector field in Lp

1/w.

Theorem 4.15. Let w ∈ Lp′−1
loc (Rn) be a weight and let R > 0 and 1 < p <∞ be real

numbers. Assume that wp′−1 is p′-admissible. If µ ∈ M+(B(0, R)) is a measure with
finite (p, 1/w; 3R)-energy, then there exists v ∈ Lp

1/w(R
n,Rn) such that div v = µ in

R
n in the distributional sense.

Proof. Let X := Lipc(R
n) be endowed with the norm

‖ϕ‖X = ‖∇ϕ‖p′,wp′−1

(notice that it is clear that this norm is well defined), and let T : X → Lp′

wp′−1
(Rn,Rn),

Tu = −∇u. Since T is a linear isometry, Lemma 3.19 implies that the adjoint
operator

T ∗ :
(

Lp′

wp′−1
(Rn,Rn)

)∗ → X∗

is surjective. A standard argument of functional analysis recalled below shows that
(

Lp′

wp′−1
(Rn,Rn)

)∗
= Lp

1/w(R
n,Rn). Since

〈T ∗v, ϕ〉 = 〈v, Tϕ〉 = −
∫

Rn

v · ∇ϕ

for all ϕ ∈ X , we have that T ∗ = div in the distributional sense. The claim follows
because µ ∈ X∗ by Proposition 4.13. �

Remark 4.16. To obtain the isometric isomorphism [Lp′

wp′−1
(Rn,Rn)]∗ = Lp

1/w(R
n,Rn),

it suffices to notice that given f ∈ [Lp′

wp′−1
(Rn,Rn)]∗, the formula v 7→ 〈f, v

w1/p 〉 de-
fines a bounded linear map on Lp′(Rn,Rn) with the same norm as f . Hence there

exists g ∈ Lp(Rn,Rn) with ‖g‖Lp(Rn) = ‖f‖ such that for any u ∈ Lp′

wp′−1
(Rn,Rn)

one has

〈f, u〉 =
∫

Rn

u · gw1/p.

Yet the function h := gw1/p belongs to Lp
1/w(R

n,Rn) and ‖h‖Lp
1/w

= ‖f‖.

Theorem 4.17. Let 1 < p < ∞ be a real number. Let w ∈ Lp′−1
loc (Rn) be a weight

such that wp′−1 ∈ Ap′. Let S ⊂ R
n be a compact set. If Capw

p′−1

p′ (S) = 0, then S is
Lp
1/w-removable for

(4.5) div v = 0.
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Proof. Since Capw
p′−1

p′ (S) = 0, by Remark 4.5, there are functions uk ∈ C∞
0 (Rn),

k ∈ N, such that 0 ≤ uk ≤ 1 and uk = 1 in a neighborhood of S for all k,
‖∇uk‖p′,wp′−1 → 0 and uk → 0 as k → ∞ almost everywhere. Let v ∈ Lp

1/w(R
n,Rn)

be a solution of (4.5) in R
n \ S. Let ϕ ∈ Lipc(R

n). We have to show that
∫

Rn

v · ∇ϕ = 0.

Since div v = 0 outside S and (1− uk)ϕ ∈ Lipc(R
n \ S), we have

∫

Rn

v · ∇ϕ =

∫

Rn

v · ∇((1− uk)ϕ) +

∫

Rn

v · ∇(ukϕ)

=

∫

Rn

v · ∇(ukϕ).

Hence, using the Hölder inequality, we obtain
∣

∣

∣

∫

Rn

v · ∇ϕ
∣

∣

∣
≤

∫

Rn

|v · ∇(ukϕ)|

≤ ‖v‖p,w−1

(

‖uk∇ϕ‖p′,wp′−1 + ‖ϕ∇uk‖p′,wp′−1

)

→ 0

as k → ∞ by the properties of functions uk and ϕ. This shows that S is removable
for div v = 0. �

Theorem 4.18. Let 1 < p < ∞ be a real number. Let w ∈ Lp′−1
loc (Rn) be a weight

such that wp′−1 ∈ Ap′. Let S ⊂ R
n be a compact set. If S is Lp

1/w-removable for

div v = 0, then Capw
p′−1

p′ (S) = 0.

Proof. Since S is compact, there exists R > 0 such that S ⊆ B(0, R).

If Capw
p′−1

p′ (S) > 0, then, by Theorem 4.10 and Lemma 4.11, Rwp′−1

1,p′;3R(S) > 0.
Hence, by Remark 4.12, there is a nonnegative non-zero measure µS supported in S
such that:

∫

Rn

(

I1,3RµS

)p
w(y)−1 dy < +∞.

Theorem 4.15 implies that there exists v ∈ Lp
1/w(R

n,Rn) such that div v = µS in R
n

in the distributional sense. This shows that S is not removable for div v = 0. Hence
we have that Capw

p′−1

p′ (S) = 0.
�

In summary, we proved the following result.

Theorem 4.19. Let 1 < p < ∞ be a real number. Let w ∈ Lp′−1
loc (Rn) be a weight

such that wp′−1 ∈ Ap′. Let S ⊂ R
n be a compact set. Under those assumptions, the

set S is Lp
1/w-removable for div v = 0 if and only if one has Capw

p′−1

p′ (S) = 0.
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[16] Juha Heinonen, Tero Kilpeläinen and Olli Martio. Nonlinear potential theory of degener-
ate elliptic equations. Oxford Mathematical Monographs, Oxford Science Publications. The
Clarendon Press, Oxford University Press, New York, 1993.

[17] John E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J. 30 (5): 713–747,
1981.

[18] Peter W. Jones. Factorization of Ap weights. Ann. of Math. (2) 111 (3): 511–530, 1980.
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E.R., Université Joseph Fourier, Institut Fourier, 100 rue des Maths, B.P.
74, F-38402 Saint-Martin-d’Hères, France
Emmanuel.Russ@ujf-grenoble.fr

H.T., Department of Mathematics and Statistics, P.O. Box 35, FI-40014 Uni-
versity of Jyväskylä, Finland
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