On the regularizing effect for unbounded solutions of first-order Hamilton-Jacobi equations - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2016

On the regularizing effect for unbounded solutions of first-order Hamilton-Jacobi equations

Résumé

We give a simplified proof of regularizing effects for first-order Hamilton-Jacobi Equations of the form $u_t+H(x,t,Du)=0$ in $\R^N\times(0,+\infty)$ in the case where the idea is to first estimate $u_t$. As a consequence, we have a Lipschitz regularity in space and time for coercive Hamiltonians and, for hypo-elliptic Hamiltonians, we also have an H\"older regularizing effect in space following a result of L. C. Evans and M. R. James.
Fichier principal
Vignette du fichier
reg_effect-fin.pdf (147.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01214425 , version 1 (12-10-2015)

Identifiants

  • HAL Id : hal-01214425 , version 1

Citer

Guy Barles, Emmanuel Chasseigne. On the regularizing effect for unbounded solutions of first-order Hamilton-Jacobi equations. Journal of Differential Equations, 2016, 260 (9), pp.7020-7031. ⟨hal-01214425⟩
231 Consultations
145 Téléchargements

Partager

More