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ON THE REGULARIZING EFFECT FOR UNBOUNDED SOLUTIONS OF

FIRST-ORDER HAMILTON-JACOBI EQUATIONS

GUY BARLES AND EMMANUEL CHASSEIGNE

Abstract. We give a simplified proof of regularizing effects for first-order Hamilton-Jacobi Equa-
tions of the form ut+H(x, t, Du) = 0 in R

N
×(0,+∞) in the case where the idea is to first estimate

ut. As a consequence, we have a Lipschitz regularity in space and time for coercive Hamiltonians
and, for hypo-elliptic Hamiltonians, we also have an Hölder regularizing effect in space following
a result of L. C. Evans and M. R. James.

1. Introduction

In this short paper we give a new proof of regularizing effects for Hamilton-Jacobi Equations

ut +H(x, t,Du) = 0 in R
N × (0,∞) , (1.1)

in the case when the aim is to estimate ut first. This new proof is inspired by ideas introduced in
[3] and then simplified in [2]; a precise comparison between the results and ideas of [3, 2] and ours
is provided just after the statement of the main results of this article, at the end of Section 2. More
classical proofs can be found in [1] but with stronger assumptions and more tedious proof.

The model equations we have in mind are

ut + |A(x, t)Du|m = f(x, t) in R
N × (0,∞) , (1.2)

where f is a continuous (typically bounded from below) function and A takes values, in the set of
N ×N symmetric matrices. For such equations, we consider two cases: the coercive case for which
A is invertible and, as a consequence |A(x, t)Du|m → +∞ as |p| → +∞, and the non-coercive case

where A may be degenerate. In both cases, we provide regularizing effects for bounded from below

solutions. The main improvement in the assumptions is easy to describe in the coercive case since
we just require that A, f are continuous in x (no uniform continuity assumptions) and, in particular,
f may have some growth at infinity. In the non-coercive case, analogous results hold except that we
have to impose far more restrictive assumptions on the t-dependence of the equation.

Of course, for (1.2), the equation implies that ut ≤ f(x, t) in R
N × (0,∞) and thefore we just

need an estimate from below for ut.

To do so, our approach consists in using the exponential transform, v := − exp(−u). Notice that
provided u is bounded below (then we can always assume that u is nonnegative), we get that v is
bounded since −1 ≤ v ≤ 0. Moreover, v solves a new Hamilton-Jacobi equation

vt +G(x, t, v,Dv) = 0 , with G(x, t, v, p) := −vH
(

x, t,−
p

v

)

. (1.3)

In order to estimate vt, a key property (as in all the regularizing effects proofs) is to have a large
enough, positive Gv when vt = −G is large (but negative) i.e. when G is large and positive. This
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leads to an assumption on (Hp · p−H)(x, t, p) which is classical except that, here, this quantity has
to be large when H(x, t, p) is large, and not when |p| is large as it is classical for the estimate on Du.

The paper is organized as follows : in Section 2, we state our main results, one in the case where
H is assumed to be coercice, one in the degenerate case and we give and we deduce full regularizing
effects, i.e. in space and time. The proofs of the main theorems are are given in Section 3. Then, in
Section 4, we treat several explicit examples. We have put some technical results about Hamiltonian
G in an appendix.

Acknowledgement – Both authors were partially supported by the french ANR project WKBHJ
(Weak KAM beyond Hamilton-Jacobi), ANR-12-BS01-0020.

2. Assumptions and main results

2.1. Assumptions. In order to state and prove our results, we use several structure conditions,
which all rely on the following fundamental hypothesis

(H0) The function H is continuous in R
N × [0, T ]×R

N and there exists c0 = c0(H) ≥ 0 such that

• H is locally Lipschitz in the p-variable, in a neighborhood of the set {(x, t, p); H(x, t, p) ≥ c0};

• there exists a continuous, increasing function φ : [c0,∞[→ [0,∞[ such that for some A > c0,
∫ +∞

A

1

sφ(s)
ds < +∞ (2.1)

and for almost all x, p ∈ R
N , t ∈ [0, T ],

(Hp · p−H)(x, t, p) ≥ φ
(

H(x, t, p)
)

a.e. in {(x, t, p); H(x, t, p) ≥ c0} ;

• there exists κ > 0 such that

|Hp(x, t, p)| ≤ κ.(Hp · p−H)(x, t, p) a.e. in {(x, t, p); H(x, t, p) ≥ c0} .

We first point out that, for the model equation (1.2), (H0) is satisfied with c0 = 0 and φ(s) =
(m− 1)s by homogeneity, both in the coercive and non-coercive cases.

Remark 2.1. Roughly speaking, (H0) is a superlinearity condition on H either in the p-variable
or a linear function of p (possibly depending on x, t and possibly degenerate). Indeed, it is easy
to show that if H(x, t, p) satisfies (H0) then H(x, t, a(x, t)p) also satisfies (H0) for any bounded
matrix-valued function a. We also refer to Section 4 for various examples. Even if we were not
able to prove it in full generality, Condition (2.1) should be automatically satisfied for convex and
superlinear Hamiltonians.

The first main consequence of (H0) is the following: if we set

∀τ ∈ (c0,∞) , F (τ) := 2

∫ ∞

τ

dσ

σφ(σ)
and ∀s ∈ (0, F (c0)) , η(s) = F−1(s) ,

then η′(s) = −η(s)φ(η(s))/2, s 7→ η(s) is decreasing and η(0+) = +∞. Notice that if c0 = 0, since
φ(s) ∼ φ(0)s near s = 0, the integral blows-up and F (0) = ∞. Similarly, if φ(c0) = 0 we have
F (c0) = +∞.



ON THE REGULARIZING EFFECT FOR HAMILTON-JACOBI EQUATIONS 3

The next assumption concerns the dependence of H in t. In order to formulate it, we notice
that η 7→ 2η + φ(2η) is increasing from (c0,∞) to (2c0 + φ(2c0),∞). Hence, its inverse, denoted by
ψ : (2c0 + φ(2c0),∞) → (c0,∞) is well-defined and also increasing. Notice that ψ is sublinear but
ψ(τ) → ∞ as τ → ∞.

(H1) There exists c1 > 0 such that the function H is locally Lipschitz in t in a neighborhood of the

set {(x, t, p); H(x, t, p) ≥ c1} and for any x, p ∈ R
N , t ∈ [0, T ],

|Ht(x, t, p)| ≤ ψ
(

H(x, t, p)
)

(Hp · p−H)(x, t, p) a.e. in {(x, t, p); H(x, t, p) ≥ c1} .

For the model equation (1.2), (H1) is satisfied in the coercive case as soon as A is Lipschitz
continuous in t, while, in the non-coercive case, it imposes rather restrictive (or at least non-natural
assumptions) since A should satisfy |At(x, t)p| ≤ k|A(x, t)p|.(|A(x, t)p|m) for any x, t, p such that
|A(x, t)p|m ≥ c1, a property which imposes particular types of degeneracies (see Section 4 for a
study of the scalar case). However (H1) is satisfied with c1 = 0 if A does not depend on t.

We then define precisely the coercive case: H is coercive if

(H2) H(x, t, p) → +∞ when |p| → +∞, uniformly for (x, t) in a compact subset of RN × (0, T ].

And we have to impose some additional restrictions on the behavior of H in x in the non-coercive
case i.e. when (H2) does not hold.

(H3) There exists c2 > 0 such that the function H is locally Lipschitz in x in a neighborhood of

the set {(x, t, p); H(x, t, p) ≥ c2} and there exists a constant γ > 0 such that, for any x, p ∈ R
N ,

t ∈ [0, T ],

|Hx(x, t, p)| ≤ γ(|p|+ 1)(Hp · p−H)(x, t, p) a.e. in {(x, t, p); H(x, t, p) ≥ c2} .

For the model equation (1.2), (H2) is satisfied (in the non-coercive case) as soon as A is Lipschitz
continuous in x.

2.2. The main theorem. In order to state our main results, we first introduce

c∗ :=

{

max(c0, c1) if (H0)-(H1)-(H2) holds ,

max(c0, c1, c2) if (H0)-(H1)-(H3) holds .

and we set

t∗ = t∗(H) :=

{

η−1(c∗) = F (c∗) if c∗ > 0 ,

+∞ if c∗ = 0 .

Notice that this is consistent with the fact that F (0+) = +∞.

Theorem 2.2. We assume that either (H0)-(H1)-(H2) or (H0)-(H1)-(H3) holds and let u be a

continuous, bounded from below solution of (1.1). Then for any t ∈ (0, t∗) and x ∈ R
N , the function

v := − exp(−u) satisfies

inf
0≤s≤t

{

v(x, t)− v(x, s) + (t− s)η(s)
}

≥ 0 . (2.2)

Notice that since u and v are continuous functions, ut and vt are defined in the sense of distribu-
tions. A distributional formulation of (2.2) is the following: vt ≥ −η(t) in R

N × (0, t∗). Similarly,
we have ut ≥ −η(t)u on the same set.
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2.3. Consequences. The general statement of this theoremmay hide some non-trivial consequences
concerning global estimates, at least in some particular cases. First, if c∗ > 0 and we want to get
an estimate for t > t∗, we can apply the estimate of the theorem to w(x, s) := u(x, s + t − t∗/2)
which is a solution of an analogous (just shifted in time) pde for s ∈ (0, T − t+ t∗/2). This interval
corresponds to the interval (t− t∗/2, T ) for u. Hence the

Corollary 2.3. If c∗ > 0, setting C = η(t∗/2) we have

vt ≥ −max(η(t), C) and ut ≥ −max
(

η(t), C
)

u a.e. in R
N × (0, T ) .

If T = +∞, the previous estimate gives the lower estimate ut ≥ −Cu for t big enough. However,
if c∗ = 0 then t∗ = ∞ and we get a much better asymptotic estimate

Corollary 2.4. If c∗ = 0 and T = +∞,

vt ≥ −η(t) and ut ≥ −η(t)u a.e. in R
N × (0,∞) .

In particular, (ut)
− → 0 locally uniformly in R

N as t→ ∞.

We first point out, as we already do it after the statement of (H1), that c∗ = 0 implies in
particular c1 = 0, which is a rather restrictive assumption in the non-coercive case. We come back
on this point in Section 4.

This asymptotic result leads us to the comparison with the results of [3, 2] which concern cases
where H does not depend on t. The main issue in these papers was the asymptotic behavior of u
which is expected to be of ergodic type, namely

u(x, t) = −λt+ φ(x) + ot(1) when t→ +∞ ,

where λ is the ergodic constant and φ a solution of the ergodic problem

H(x,Dφ) = λ in R
N .

In [3, 2], the key idea is to reduce to the case when λ = 0 and then to show that (ut)
− → 0 (or

(ut)
+ → 0) locally uniformly in R

N as t → ∞. To do so, one has to take into account the fact that
λ = 0 and φ plays a key role since it interferes in the analogue of (H0). With all these ingredients,
the proofs of [3, 2] are slightly more sophisticated that ours. But we point out that, remarking that
an analogous proof could provide regularizing effects is (to the best of our knowledge) completely
new.

This analysis through the ergodic behavior of u also shows that Corollary 2.4 can only hold in
particular situations.

2.4. Gradient estimates and spatial regularity. In the coercive case, we can deduce a gradient
estimate from (2.2). Indeed, Theorem 2.2 implies

H(x, t,Du) ≤ −ut ≤ η(t)u ,

and standard arguments in viscosity solutions’ theory show that u is locally Lipschitz continuous.
Moreover, a local estimate of Du follows from the above inequality.

In the non-coercive case we studied above (Example 3), the bound on ut implies a local estimate
on |A(x, t)Du| and using a result of Evans and James [4], we can deduce a local C0,α bound when
A satisfies some “hypoelliptic” type assumptions.
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3. Proof of Theorem 2.2

In all the proof, we fix 0 < t < t∗ where we recall that t∗ = η−1(c∗). Assuming that for some
x0 ∈ R

N , inequality (2.2) does not hold, we deduce that for α, β, ǫ > 0 small enough with ǫ≪ α, β,
we have also

min
t≥s≥0, x,y∈RN

{

v(x, t) − v(y, s) + (t− s)η(s) +
|x− y|2

ǫ2
+ α|y|2 + βη(s)

}

≤ −δ , (3.1)

for some δ > 0 which does not depend on α, β, ǫ. Notice first that this min is attained because of the
α-term, and it cannot be attained at s = 0 because of the β-term. For simplicity, we still denote by
x, y, s, t the variables for which the min is attained. Since v is bounded, we have the usual estimates
|x− y| ≤ O(ǫ), |y| = o(α−1/2).

Next, the equation for v given in (1.3) involves a new Hamiltonian G whose properties follow
from the assumptions on H (see the proof in Appendix): if G(x, t, v, p) ≥ c∗,

(H0) implies (G0) : Gv(x, t, v, p) ≥ φ(G(x, t, v, p)) and |Gp(x, t, v, p)| ≤ κGv(x, t, v, p) ,

(H1) implies (G1) : |Gt(x, t, v, p)| ≤ ψ(G(x, t, v, p))Gv(x, t, v, p) ,

(H3) implies (G3) : |Gx(x, t, v, p)| ≤ γ(|p|+ 1)Gv(x, t, v, p) .

Using the supersolution inequality for v(x, t) in the viscosity sense, and the subsolution for v(y, s)
we get, with pǫ = −2(x− y)/ǫ2,

−η(s) +G
(

x, t, v(x, t), pǫ
)

≥ 0 ,

−η(s) + (t− s+ β)η′(s) +G
(

y, s, v(y, s), pǫ + 2αy
)

≤ 0 .

We begin with the coercive case, assuming (H0)-(H1)-(H2). We remark that, if α and β remain
fixed, then x, y stay in a compact subset of RN and t, s in a compact subset of (0, t∗) and we can
let ǫ tend to zero. By the uniform continuity of H and v on such compact sets, we end up with

−η(s) +G
(

x, t, v(x, t), p
)

≥ 0 ,

−η(s) + (t− s+ β)η′(s) +G
(

x, s, v(x, s), p+ 2αx
)

≤ 0 ,
(3.2)

for some p ∈ R
N . In order to estimate the difference of the hamiltonians, we denote by v1 =

v(x, t), v2 = v(x, s), qα = 2αx and ξσ := (x, t, v1, p) + σ(0, s− t, v2 − v1, qα).

The following arguments rely on the next two lemmas, where s and t are fixed, and σ is the
running variable.

Lemma 3.1. Let 0 ≤ σ1 < σ2 ≤ 1 such that

η(s) ≤ G(ξσ) ≤ η(s) + φ(η(s)) for any σ ∈ [σ1, σ2] . (3.3)

Then, the function σ 7→ G(ξσ) is increasing on [σ1, σ2].

Proof — We argue as if G were C1 (otherwise a standard mollification argument allows to reduce
to this case) and compute

d

dσ

[

G(ξσ)
]

= Gt(ξσ)(s− t) +Gv(ξσ)(v2 − v1) +Gp(ξσ) · qα .

Inequality (3.1) yields (recall that we have let ǫ tend to 0)

v2 − v1 ≥ (t− s+ β)η(s) + α|x|2 + δ , (3.4)
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and therefore, as long as G(ξσ) ≥ η(s), we have Gv(ξσ) ≥ 0 and

d

dσ

[

G(ξσ)
]

≥ Gt(ξσ)(s− t) +Gv(ξσ)
(

(t− s+ β)η(s) + α|x|2 + δ
)

+Gp(ξσ) · qα .

Denoting

I1 := Gt(ξσ)(s− t) +
1

2
Gv(ξσ)(t− s)η(s) ,

I2 :=
1

2
Gv(ξσ)α|x|

2 −Gp(ξσ) · qα ,

I3 :=
1

2
Gv(ξσ)δ ,

we have to estimate these three terms, as long as η(s) ≤ G(ξσ) ≤ η(s) + φ(η(s)). Recall that since
η(s) ≥ η(t∗) = c∗, as long as G(ξσ) ≥ η(s), we have G(ξσ) ≥ c∗ and we can apply the hypotheses
on G.

First,

I1 ≥
1

2
(t− s)Gv(ξσ)

[

η(s)− 2
|Gt(ξσ)|

Gv(ξσ)

]

,

and by (G1), |Gt(ξσ)|/Gv(ξσ) ≤ ψ(G(ξσ)) ≤ ψ
(

η(s) + φ(η(s))
)

= η(s)/2, the last equality coming
from the definition of ψ. Hence I1 ≥ 0 on [σ1, σ2].

Concerning I2, we have

I2 ≥
1

2
αGv(ξσ)

[

|x|2 − 2

∣

∣Gp(ξσ)
∣

∣

Gv(ξσ)
|x|

]

≥
1

2
αGv(ξσ)

[

|x|2 − 2κ|x|
]

.

Using (G0) we remark that the quantity in the bracket is positive if |x| > 2κ and therefore we are
left with considering the case when |x| ≤ 2κ. But in this case, I2 is estimated by 4ακ2Gv(ξσ) and
I3 controls this term since δ ≥ 4ακ2 for α small enough, so that I3 + I2 > 0.

In any case, I1 + I2 + I3 > 0 on [σ1, σ2] and we deduce that, if t∗ is chosen small enough and α
is small enough, d

dσ

[

G(ξσ)
]

> 0 for σ ∈ [σ1, σ2].
Q.E.D.

The next step shows that we can apply Lemma 3.1 on the whole interval σ1 = 0 and σ2 = 1:

Lemma 3.2. For any σ ∈ [0, 1]

η(s) ≤ G(ξσ) ≤ η(s) + φ(η(s)) .

Proof — We recall that in this proof s is fixed. We first notice that viscosity inequalities (3.2) yield
G(ξ0) ≥ η(s) and

G(ξ1) ≤ η(s)− (t− s+ β)η′(s) = η(s) + (t− s+ β)η(s)
φ(η(s))

2
.

From (3.4) we deduce that (t−s+β)η(s) ≤ v2−v1− δ ≤ 1− δ so that G(ξ1) ≤ η(s)+(1− δ)φ(η(s)).

Now assume by contradiction that G(ξσ) > η(s) + φ(η(s)) for some σ ∈ [0, 1) and denote by
σ̄ the supremum of such σ. Then, since G(ξ1) ≤ η(s) + (1 − δ)φ(η(s)), necessarily σ̄ < 1 and
G(ξσ̄) = η(s) + φ(η(s)). Since G(ξ1) < G(ξσ̄) = η(s) + φ(η(s)), by continuity of σ 7→ G(ξσ), there
exists a subinterval [σ1, σ2] ⊂ [σ̄, 1], such that G(ξσ1

) > G(ξσ2
) and for any σ ∈ [σ1, σ2],

η(s) ≤ G(ξσ) ≤ η(s) + φ(η(s)) .

But this yields a contradiction with Lemma 3.1. Hence for any σ ∈ [0, 1], G(ξσ) ≤ η(s) + φ(η(s)).
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For the other inequality, the argument is the same: if there exists σ such that G(ξσ) < η(s) (using
this time G(ξ0) and the interval [0, σ̄] where σ̄ is the infimum of the above set of σ), we get a similar
contradiction with Lemma 3.1. Hence the proof is complete.

Q.E.D.

In order to conclude the proof of the first part of Theorem 2.2, we subtract the viscosity inequal-
ities, we obtain

(t− s+ β)η′(s) +G(ξ1)−G(ξ0) = (t− s+ β)η′(s) +G
(

x, s, v2, p+ qα
)

−G(x, t, v1, p) ≤ 0 ,

and we can perform almost the same computations to compute the left hand side, except that we
write

Gv(ξσ) =
1

2
Gv(ξσ) +

1

2
Gv(ξσ) ≥

1

2
Gv(ξσ) +

1

2
φ(η(s)) ,

and we obtain

(t− s+ β)
(

η′(s) +
1

2
φ(η(s))η(s)

)

+

∫ 1

∗

{

Gt(ξσ)(s− t) +
1

2
Gv(ξσ)

(

(t− s+ β)η(s) + α|x|2 + δ
)

+Gp(ξσ) · qα

}

dσ ≤ 0 .

By the choice of η(·), the first term is 0 and the integral is strictly positive for t∗ and α small enough.
Therefore we have a contradiction, proving the claim in the coercive case.

Now we turn to the non-coercive case, assuming (H3) instead of (H2), where the main difference
is that we are not able to let ǫ tend to 0. We define G(ξσ) in a similar way and prove that
G(ξσ) ≥ η(s) (we omit the proof here since it follows, as in Lemma 3.1, from the same argument as
below). Computing the difference of G in the same way, we can write the difference of the viscosity
inequalities as

∫ 1

∗

{

Q1(σ) +Q2(σ) +Q3(σ) +Q4(σ)
}

dσ ≤ 0 ,

where

Q1(σ) := (t− s+ β)η′(s) +
1

2
Gv(ξσ)

(

(t− s+ β)η(s) + δ
)

,

and by the same arguments as above Q1(σ) ≥
1
2Gv(ξσ)δ.

Q2(σ) := Gx(ξσ) · (x− y) +
1

2
Gv(ξσ)

|x− y|2

ǫ2
,

which can be rewritten as

Q2(σ) ≥
1

2
ǫ2Gv(ξσ)

[

−

∣

∣Gx(ξσ)
∣

∣

Gv(ξσ)
|pǫ|+

1

4
|pǫ|

2
]

≥
1

2
ǫ2Gv(ξσ)

[

− γ|pǫ|(|pǫ|+ 1) +
1

4
|pǫ|

2
]

.

But ǫ2|pǫ|
2 =

|x− y|2

ǫ2
= oǫ(1) if α, β are fixed and therefore Q2 ≥ oǫ(1)Gv(ξσ) is controlled by Q1

for ǫ small enough.

Q3(σ) := (t− s)

[

1

2
Gv(ξσ)η(s) −Gt(ξσ)

]

is as I1 above and clearly the quantity in the bracket is positive if η(s) is large enough, i.e. t∗ small
enough. Finally

Q4(σ) :=
1

2
αGv(ξσ)

[

|y|2 − 2

∣

∣Gp(ξσ)
∣

∣

Gv(ξσ)
|y|

]

,

is treated as I2 above. And the proof is complete.
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4. Examples and applications

Example 1 — We first consider the model equation (1.2) where, for m > 1

H(x, t, p) = |A(x, t)p|m − f(x, t) ,

the function f being bounded from below. In this case

(Hp · p−H)(x, t, p) = (m− 1)|A(x, t)p|m + f(x, t) = (m− 1)H(x, t, p) +mf(x, t) .

We can assume without loss of generality that f(x, t) ≥ 1 (which can be obtained by changing u
into u(x, t) + Ct), so that (H0) is satisfied with φ(s) = (m − 1)s for s ≥ 0 and c0 = 0. Moreover,
|Hp(x, t, p)| = m|A(x, t)p|m−1 and if H(x, t, p) ≥ 0 then |A(x, t)p| ≥ f(x, t)1/m ≥ 1. Therefore

|Hp(x, t, p)| ≤ m|A(x, t)p|m ≤
m

m− 1
(Hp · p−H)(x, t, p) .

A direct computation shows that η(s) =
[

(m−1)s
]−1

which yields the estimate ut ≥ −u/
[

(m−1)t
]

.

Example 2 — Let us now adress a non-homogeneous situation where, again for m > 1

H(x, t, p) = |A(x, t)p|m − b(x, t) ·Du− f(x, t) . (4.1)

Here, the function b is continuous and there exists Cb > 0 such that for any (x, t), |b(x, t)| ≤ Cb.
We are also considering the coercive case where A is an invertible matrix and we assume that there
exists CA > 0 such that for any (x, t), ‖A(x, t)‖ , ‖A−1(x, t)‖ ≤ CA.

In this case, as for the homogeneous case we have

(Hp · p−H)(x, t, p) = (m− 1)|A(x, t)p|m + f(x, t) .

By Young’s inequality

|b(x, t) · p| = |A−t(x, t)b(x, t) · A(x, t)p| ≤
1

m
|A(x, t)p|m +

(m− 1)

m
|A−t(x, t)b(x, t)|m/(m−1)

where A−t is the inverse of the transpose matrix of A. Therefore, by our hypotheses on b and A
there exists two constants C1, C2 > 0 such that

(1−
1

m
)|A(x, t)p|m − C1 − f(x, t) ≤ H(x, t, p) ≤ (1 +

1

m
)|A(x, t)p|m + C2 − f(x, t) ,

and from there we deduce that (H0) is satisfied with φ(s) =
[

m(m − 1)/(m + 1)
]

s − C for some
constant C > 0 and for all s > 0.

Example 3 — In the non-coercive case for (4.1), i.e. if A is not invertible, the same computations
for (H0) can be done if the Hamiltonian H has the form

H(x, t, p) = |A(x, t)p|m − c(x, t) ·A(x, t)Du − f(x, t) ,

where c : RN × [0, T ] → R
N . This means that b has to be of the form b(x, t) = At(x, t) · c(x, t).

Notice that in this degenerate case, at least for large H , (H3) is automatically satisfied if A, c and
f are Lipschitz continuous in x, uniformly in t.

Example 4 — In the non-coercive case it is also interesting to examine the simple example where

H(x, t, p) := a(x, t)|p|m ,
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where m > 1 and a : RN × [0, T ] → [0,+∞) is Lipschitz continuous in t. Taking into account that
φ(s) = (m− 1)s and ψ(s) = s/(2m) , assumption (H1) imposes

|at(x, t)| ≤
m− 1

2m
a(x, t)

(

a(x, t)|p|m
)

for a(x, t)|p|m ≥ c1, for some constant c1 ≥ 0. Clearly this implies |at(x, t)| ≤ c · a(x, t) for some
c > 0, which implies some particular degeneracy: for any x either a(x, t) = 0 for any t or a(x, t) > 0
for any t. An –admittedly– not very natural hypothesis. Moreover if we want c1 = 0 then necessarily
the above constant c has to be 0 and therefore a cannot depend on t.

Remarks — (i) Concerning (H1), in all the previous examples above the function ψ(H) behaves
like c.H for some constant c > 0. And in the case of (4.1), at least for large H , this is automatically
satisfied if A, b and f are Lipschitz continuous in t, and uniformly in x in the coercive case. In
the non-coercive case, we are in a similar situation as for Example 4: we have to impose that
|At(x, t)p| ≤ C|A(x, t)p|m+1 for some constant C > 0, at least for |A(x, t)p| large enough. And
again, this is not a very natural assumptions. The conclusion is that in non-coercive cases, the
t-dependance is a problem in general.

(ii) We can consider other types of growths: if for instance H(x, t, p) = e|p| we have φ(s) =
s ln(s− 1), defined for s > 2 = c0. Hypotheses (H0)-(H1)-(H2) are satisfied with c1 = 2 and in this
case, η(s) ≫ s−1 as s→ 0.

(iii) If on most examples the function φ grows at least linearly, this is not always true. For
instance, the case H(p) = |p| ln(1+ |p|) leads to Hp ·p−H ≃ |p| for |p| big, which leads to a function
φ which is not superlinear, only asymptotically linear at infinity. Indeed, for any ǫ > 0, one can
check that for σ > 0 big enough, σ ≤ φ(σ) ≤ σ1−ǫ so that the function [σφ(σ)]−1 is still integrable
near infinity. Hence, (H0) is satisfied and our results apply.

Appendix

Lemma 4.1. Assumptions (H0),(H1),(H3) imply that for any (x, t, v, p) such that G(x, t, v, p) ≥ c∗,

(G0) Gv(x, t, v, p) ≥ φ(G(x, t, v, p)) and |Gp(x, t, v, p)| ≤ κGv(x, t, v, p) ,

(G1) |Gt(x, t, v, p)| ≤ ψ(G(x, t, v, p))Gv(x, t, v, p) ,

(G3) |Gx(x, t, v, p)| ≤ γ(|p|+ 1)Gv(x, t, v, p) .

Proof — We first recall that G(x, t, v, p) = −vH(x, t,−p/v) ≤ H(x, t,−p/v) since v ∈ [−1, 0). So, if
G(x, t, v, p) ≥ c∗, necessarily H(x, t,−p/v) ≥ c∗ also.

For (G0), straightforward computations show that Gv(x, t, v, p) = (Hp · p − H)(x, t, v, p) and
Gp(x, t, v, p) = Hp(x, t,−p/v). Thus, (H0) implies that if G(x, t, v, p) ≥ c∗,

Gv(x, t, v, p) ≥ φ(H(x, t,−p/v)) ≥ φ(G(x, t, v, p))

since φ is increasing. The second part of (G0) is obvious.

To get (G1) we start from (H1):

|Gt(x, t, v, p)| = | − vHt(x, t,−p/v)| ≤ (−v)ψ(H(x, t,−p/v))Gv(x, t, v, p) .

Then we notice that ψ satisfies the following sublinear property: for any λ ∈ [0, 1], λψ(H) ≤ ψ(λH).
Indeed, since φ is increasin, for any λ ∈ [0, 1] and η > c∗, (λ2η)φ(λ2η) ≤ λ(2ηφ(2η)). Taking the in-
verse yields the result. Thus, taking λ = −v ∈ [0, 1] we get |Gt(x, t, v, p)| ≤ ψ(G(x, t, v, p))Gv(x, t, v, p).
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The proof of (G3) is similar: |Gx(x, t, v, p)| ≤ |v||Hx(x, t,−p/v)|. Then, using (H3), |v| ≤ 1, we
get

|Gx(x, t, v, p)| ≤ γ
(∣

∣

∣

p

v

∣

∣

∣
+ 1

)

|v|Gv(x, t, v, p) ≤ γ(|p|+ 1)Gv(x, t, v, p) ,

which gives the result.
Q.E.D.
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